1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package consistent // import "go.opentelemetry.io/contrib/samplers/probability/consistent"
import "math"
// These are IEEE 754 double-width floating point constants used with
// math.Float64bits.
const (
offsetExponentMask = 0x7ff0000000000000
offsetExponentBias = 1023
significandBits = 52
)
// expFromFloat64 returns floor(log2(x)).
func expFromFloat64(x float64) int {
biased := (math.Float64bits(x) & offsetExponentMask) >> significandBits
// The biased exponent can only be expressed with 11 bits (size (i.e. 64) -
// significant (i.e 52) - sign (i.e. 1)). Meaning the int conversion below
// is guaranteed to be lossless.
return int(biased) - offsetExponentBias // nolint: gosec // See above comment.
}
// expToFloat64 returns 2^x.
func expToFloat64(x int) float64 {
// The exponent field is an 11-bit unsigned integer from 0 to 2047, in
// biased form: an exponent value of 1023 represents the actual zero.
// Exponents range from -1022 to +1023 because exponents of -1023 (all 0s)
// and +1024 (all 1s) are reserved for special numbers.
const low, high = -1022, 1023
if x < low {
x = low
}
if x > high {
x = high
}
biased := uint64(offsetExponentBias + x) // nolint: gosec // See comment and guard above.
return math.Float64frombits(biased << significandBits)
}
// splitProb returns the two values of log-adjusted-count nearest to p
// Example:
//
// splitProb(0.375) => (2, 1, 0.5)
//
// indicates to sample with probability (2^-2) 50% of the time
// and (2^-1) 50% of the time.
func splitProb(p float64) (uint8, uint8, float64) {
if p < 2e-62 {
// Note: spec.
return pZeroValue, pZeroValue, 1
}
// Take the exponent and drop the significand to locate the
// smaller of two powers of two.
exp := expFromFloat64(p)
// Low is the smaller of two log-adjusted counts, the negative
// of the exponent computed above.
low := -exp
// High is the greater of two log-adjusted counts (i.e., one
// less than low, a smaller adjusted count means a larger
// probability).
high := low - 1
// Return these to probability values and use linear
// interpolation to compute the required probability of
// choosing the low-probability Sampler.
lowP := expToFloat64(-low)
highP := expToFloat64(-high)
lowProb := (highP - p) / (highP - lowP)
return uint8(low), uint8(high), lowProb // nolint: gosec // 8-bit sample.
}
|