1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"sync"
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type sumValue[N int64 | float64] struct {
n N
res FilteredExemplarReservoir[N]
attrs attribute.Set
}
// valueMap is the storage for sums.
type valueMap[N int64 | float64] struct {
sync.Mutex
newRes func() FilteredExemplarReservoir[N]
limit limiter[sumValue[N]]
values map[attribute.Distinct]sumValue[N]
}
func newValueMap[N int64 | float64](limit int, r func() FilteredExemplarReservoir[N]) *valueMap[N] {
return &valueMap[N]{
newRes: r,
limit: newLimiter[sumValue[N]](limit),
values: make(map[attribute.Distinct]sumValue[N]),
}
}
func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
s.Lock()
defer s.Unlock()
attr := s.limit.Attributes(fltrAttr, s.values)
v, ok := s.values[attr.Equivalent()]
if !ok {
v.res = s.newRes()
}
v.attrs = attr
v.n += value
v.res.Offer(ctx, value, droppedAttr)
s.values[attr.Equivalent()] = v
}
// newSum returns an aggregator that summarizes a set of measurements as their
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
// the measurements were made in.
func newSum[N int64 | float64](monotonic bool, limit int, r func() FilteredExemplarReservoir[N]) *sum[N] {
return &sum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
start: now(),
}
}
// sum summarizes a set of measurements made as their arithmetic sum.
type sum[N int64 | float64] struct {
*valueMap[N]
monotonic bool
start time.Time
}
func (s *sum[N]) delta(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
// use the zero-value sData and hope for better alignment next cycle.
sData, _ := (*dest).(metricdata.Sum[N])
sData.Temporality = metricdata.DeltaTemporality
sData.IsMonotonic = s.monotonic
s.Lock()
defer s.Unlock()
n := len(s.values)
dPts := reset(sData.DataPoints, n, n)
var i int
for _, val := range s.values {
dPts[i].Attributes = val.attrs
dPts[i].StartTime = s.start
dPts[i].Time = t
dPts[i].Value = val.n
collectExemplars(&dPts[i].Exemplars, val.res.Collect)
i++
}
// Do not report stale values.
clear(s.values)
// The delta collection cycle resets.
s.start = t
sData.DataPoints = dPts
*dest = sData
return n
}
func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
// use the zero-value sData and hope for better alignment next cycle.
sData, _ := (*dest).(metricdata.Sum[N])
sData.Temporality = metricdata.CumulativeTemporality
sData.IsMonotonic = s.monotonic
s.Lock()
defer s.Unlock()
n := len(s.values)
dPts := reset(sData.DataPoints, n, n)
var i int
for _, value := range s.values {
dPts[i].Attributes = value.attrs
dPts[i].StartTime = s.start
dPts[i].Time = t
dPts[i].Value = value.n
collectExemplars(&dPts[i].Exemplars, value.res.Collect)
// TODO (#3006): This will use an unbounded amount of memory if there
// are unbounded number of attribute sets being aggregated. Attribute
// sets that become "stale" need to be forgotten so this will not
// overload the system.
i++
}
sData.DataPoints = dPts
*dest = sData
return n
}
// newPrecomputedSum returns an aggregator that summarizes a set of
// observations as their arithmetic sum. Each sum is scoped by attributes and
// the aggregation cycle the measurements were made in.
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() FilteredExemplarReservoir[N]) *precomputedSum[N] {
return &precomputedSum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
start: now(),
}
}
// precomputedSum summarizes a set of observations as their arithmetic sum.
type precomputedSum[N int64 | float64] struct {
*valueMap[N]
monotonic bool
start time.Time
reported map[attribute.Distinct]N
}
func (s *precomputedSum[N]) delta(dest *metricdata.Aggregation) int {
t := now()
newReported := make(map[attribute.Distinct]N)
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
// use the zero-value sData and hope for better alignment next cycle.
sData, _ := (*dest).(metricdata.Sum[N])
sData.Temporality = metricdata.DeltaTemporality
sData.IsMonotonic = s.monotonic
s.Lock()
defer s.Unlock()
n := len(s.values)
dPts := reset(sData.DataPoints, n, n)
var i int
for key, value := range s.values {
delta := value.n - s.reported[key]
dPts[i].Attributes = value.attrs
dPts[i].StartTime = s.start
dPts[i].Time = t
dPts[i].Value = delta
collectExemplars(&dPts[i].Exemplars, value.res.Collect)
newReported[key] = value.n
i++
}
// Unused attribute sets do not report.
clear(s.values)
s.reported = newReported
// The delta collection cycle resets.
s.start = t
sData.DataPoints = dPts
*dest = sData
return n
}
func (s *precomputedSum[N]) cumulative(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Sum, memory reuse is missed. In that case,
// use the zero-value sData and hope for better alignment next cycle.
sData, _ := (*dest).(metricdata.Sum[N])
sData.Temporality = metricdata.CumulativeTemporality
sData.IsMonotonic = s.monotonic
s.Lock()
defer s.Unlock()
n := len(s.values)
dPts := reset(sData.DataPoints, n, n)
var i int
for _, val := range s.values {
dPts[i].Attributes = val.attrs
dPts[i].StartTime = s.start
dPts[i].Time = t
dPts[i].Value = val.n
collectExemplars(&dPts[i].Exemplars, val.res.Collect)
i++
}
// Unused attribute sets do not report.
clear(s.values)
sData.DataPoints = dPts
*dest = sData
return n
}
|