1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TLS low level connection and record layer
package tls
import (
"bytes"
"context"
"crypto/cipher"
"crypto/subtle"
"crypto/x509"
"errors"
"fmt"
"hash"
"io"
"net"
"sync"
"sync/atomic"
"time"
)
// A Conn represents a secured connection.
// It implements the net.Conn interface.
type Conn struct {
// constant
conn net.Conn
isClient bool
handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake
// handshakeStatus is 1 if the connection is currently transferring
// application data (i.e. is not currently processing a handshake).
// handshakeStatus == 1 implies handshakeErr == nil.
// This field is only to be accessed with sync/atomic.
handshakeStatus uint32
// constant after handshake; protected by handshakeMutex
handshakeMutex sync.Mutex
handshakeErr error // error resulting from handshake
vers uint16 // TLS version
haveVers bool // version has been negotiated
config *Config // configuration passed to constructor
// handshakes counts the number of handshakes performed on the
// connection so far. If renegotiation is disabled then this is either
// zero or one.
handshakes int
didResume bool // whether this connection was a session resumption
cipherSuite uint16
ocspResponse []byte // stapled OCSP response
scts [][]byte // signed certificate timestamps from server
peerCertificates []*x509.Certificate
// verifiedChains contains the certificate chains that we built, as
// opposed to the ones presented by the server.
verifiedChains [][]*x509.Certificate
// serverName contains the server name indicated by the client, if any.
serverName string
// secureRenegotiation is true if the server echoed the secure
// renegotiation extension. (This is meaningless as a server because
// renegotiation is not supported in that case.)
secureRenegotiation bool
// ekm is a closure for exporting keying material.
ekm func(label string, context []byte, length int) ([]byte, error)
// resumptionSecret is the resumption_master_secret for handling
// NewSessionTicket messages. nil if config.SessionTicketsDisabled.
resumptionSecret []byte
// ticketKeys is the set of active session ticket keys for this
// connection. The first one is used to encrypt new tickets and
// all are tried to decrypt tickets.
ticketKeys []ticketKey
// clientFinishedIsFirst is true if the client sent the first Finished
// message during the most recent handshake. This is recorded because
// the first transmitted Finished message is the tls-unique
// channel-binding value.
clientFinishedIsFirst bool
// closeNotifyErr is any error from sending the alertCloseNotify record.
closeNotifyErr error
// closeNotifySent is true if the Conn attempted to send an
// alertCloseNotify record.
closeNotifySent bool
// clientFinished and serverFinished contain the Finished message sent
// by the client or server in the most recent handshake. This is
// retained to support the renegotiation extension and tls-unique
// channel-binding.
clientFinished [12]byte
serverFinished [12]byte
// clientProtocol is the negotiated ALPN protocol.
clientProtocol string
// [UTLS SECTION START]
utls utlsConnExtraFields // used for extensive things such as ALPS
// [UTLS SECTION END]
// input/output
in, out halfConn
rawInput bytes.Buffer // raw input, starting with a record header
input bytes.Reader // application data waiting to be read, from rawInput.Next
hand bytes.Buffer // handshake data waiting to be read
buffering bool // whether records are buffered in sendBuf
sendBuf []byte // a buffer of records waiting to be sent
// bytesSent counts the bytes of application data sent.
// packetsSent counts packets.
bytesSent int64
packetsSent int64
// retryCount counts the number of consecutive non-advancing records
// received by Conn.readRecord. That is, records that neither advance the
// handshake, nor deliver application data. Protected by in.Mutex.
retryCount int
// activeCall is an atomic int32; the low bit is whether Close has
// been called. the rest of the bits are the number of goroutines
// in Conn.Write.
activeCall int32
tmp [16]byte
}
// Access to net.Conn methods.
// Cannot just embed net.Conn because that would
// export the struct field too.
// LocalAddr returns the local network address.
func (c *Conn) LocalAddr() net.Addr {
return c.conn.LocalAddr()
}
// RemoteAddr returns the remote network address.
func (c *Conn) RemoteAddr() net.Addr {
return c.conn.RemoteAddr()
}
// SetDeadline sets the read and write deadlines associated with the connection.
// A zero value for t means Read and Write will not time out.
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
func (c *Conn) SetDeadline(t time.Time) error {
return c.conn.SetDeadline(t)
}
// SetReadDeadline sets the read deadline on the underlying connection.
// A zero value for t means Read will not time out.
func (c *Conn) SetReadDeadline(t time.Time) error {
return c.conn.SetReadDeadline(t)
}
// SetWriteDeadline sets the write deadline on the underlying connection.
// A zero value for t means Write will not time out.
// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
func (c *Conn) SetWriteDeadline(t time.Time) error {
return c.conn.SetWriteDeadline(t)
}
// NetConn returns the underlying connection that is wrapped by c.
// Note that writing to or reading from this connection directly will corrupt the
// TLS session.
func (c *Conn) NetConn() net.Conn {
return c.conn
}
// A halfConn represents one direction of the record layer
// connection, either sending or receiving.
type halfConn struct {
sync.Mutex
err error // first permanent error
version uint16 // protocol version
cipher any // cipher algorithm
mac hash.Hash
seq [8]byte // 64-bit sequence number
scratchBuf [13]byte // to avoid allocs; interface method args escape
nextCipher any // next encryption state
nextMac hash.Hash // next MAC algorithm
trafficSecret []byte // current TLS 1.3 traffic secret
}
type permanentError struct {
err net.Error
}
func (e *permanentError) Error() string { return e.err.Error() }
func (e *permanentError) Unwrap() error { return e.err }
func (e *permanentError) Timeout() bool { return e.err.Timeout() }
func (e *permanentError) Temporary() bool { return false }
func (hc *halfConn) setErrorLocked(err error) error {
if e, ok := err.(net.Error); ok {
hc.err = &permanentError{err: e}
} else {
hc.err = err
}
return hc.err
}
// prepareCipherSpec sets the encryption and MAC states
// that a subsequent changeCipherSpec will use.
func (hc *halfConn) prepareCipherSpec(version uint16, cipher any, mac hash.Hash) {
hc.version = version
hc.nextCipher = cipher
hc.nextMac = mac
}
// changeCipherSpec changes the encryption and MAC states
// to the ones previously passed to prepareCipherSpec.
func (hc *halfConn) changeCipherSpec() error {
if hc.nextCipher == nil || hc.version == VersionTLS13 {
return alertInternalError
}
hc.cipher = hc.nextCipher
hc.mac = hc.nextMac
hc.nextCipher = nil
hc.nextMac = nil
for i := range hc.seq {
hc.seq[i] = 0
}
return nil
}
func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
hc.trafficSecret = secret
key, iv := suite.trafficKey(secret)
hc.cipher = suite.aead(key, iv)
for i := range hc.seq {
hc.seq[i] = 0
}
}
// incSeq increments the sequence number.
func (hc *halfConn) incSeq() {
for i := 7; i >= 0; i-- {
hc.seq[i]++
if hc.seq[i] != 0 {
return
}
}
// Not allowed to let sequence number wrap.
// Instead, must renegotiate before it does.
// Not likely enough to bother.
panic("TLS: sequence number wraparound")
}
// explicitNonceLen returns the number of bytes of explicit nonce or IV included
// in each record. Explicit nonces are present only in CBC modes after TLS 1.0
// and in certain AEAD modes in TLS 1.2.
func (hc *halfConn) explicitNonceLen() int {
if hc.cipher == nil {
return 0
}
switch c := hc.cipher.(type) {
case cipher.Stream:
return 0
case aead:
return c.explicitNonceLen()
case cbcMode:
// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
if hc.version >= VersionTLS11 {
return c.BlockSize()
}
return 0
default:
panic("unknown cipher type")
}
}
// extractPadding returns, in constant time, the length of the padding to remove
// from the end of payload. It also returns a byte which is equal to 255 if the
// padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
func extractPadding(payload []byte) (toRemove int, good byte) {
if len(payload) < 1 {
return 0, 0
}
paddingLen := payload[len(payload)-1]
t := uint(len(payload)-1) - uint(paddingLen)
// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
good = byte(int32(^t) >> 31)
// The maximum possible padding length plus the actual length field
toCheck := 256
// The length of the padded data is public, so we can use an if here
if toCheck > len(payload) {
toCheck = len(payload)
}
for i := 0; i < toCheck; i++ {
t := uint(paddingLen) - uint(i)
// if i <= paddingLen then the MSB of t is zero
mask := byte(int32(^t) >> 31)
b := payload[len(payload)-1-i]
good &^= mask&paddingLen ^ mask&b
}
// We AND together the bits of good and replicate the result across
// all the bits.
good &= good << 4
good &= good << 2
good &= good << 1
good = uint8(int8(good) >> 7)
// Zero the padding length on error. This ensures any unchecked bytes
// are included in the MAC. Otherwise, an attacker that could
// distinguish MAC failures from padding failures could mount an attack
// similar to POODLE in SSL 3.0: given a good ciphertext that uses a
// full block's worth of padding, replace the final block with another
// block. If the MAC check passed but the padding check failed, the
// last byte of that block decrypted to the block size.
//
// See also macAndPaddingGood logic below.
paddingLen &= good
toRemove = int(paddingLen) + 1
return
}
func roundUp(a, b int) int {
return a + (b-a%b)%b
}
// cbcMode is an interface for block ciphers using cipher block chaining.
type cbcMode interface {
cipher.BlockMode
SetIV([]byte)
}
// decrypt authenticates and decrypts the record if protection is active at
// this stage. The returned plaintext might overlap with the input.
func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
var plaintext []byte
typ := recordType(record[0])
payload := record[recordHeaderLen:]
// In TLS 1.3, change_cipher_spec messages are to be ignored without being
// decrypted. See RFC 8446, Appendix D.4.
if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
return payload, typ, nil
}
paddingGood := byte(255)
paddingLen := 0
explicitNonceLen := hc.explicitNonceLen()
if hc.cipher != nil {
switch c := hc.cipher.(type) {
case cipher.Stream:
c.XORKeyStream(payload, payload)
case aead:
if len(payload) < explicitNonceLen {
return nil, 0, alertBadRecordMAC
}
nonce := payload[:explicitNonceLen]
if len(nonce) == 0 {
nonce = hc.seq[:]
}
payload = payload[explicitNonceLen:]
var additionalData []byte
if hc.version == VersionTLS13 {
additionalData = record[:recordHeaderLen]
} else {
additionalData = append(hc.scratchBuf[:0], hc.seq[:]...)
additionalData = append(additionalData, record[:3]...)
n := len(payload) - c.Overhead()
additionalData = append(additionalData, byte(n>>8), byte(n))
}
var err error
plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
if err != nil {
return nil, 0, alertBadRecordMAC
}
case cbcMode:
blockSize := c.BlockSize()
minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
if len(payload)%blockSize != 0 || len(payload) < minPayload {
return nil, 0, alertBadRecordMAC
}
if explicitNonceLen > 0 {
c.SetIV(payload[:explicitNonceLen])
payload = payload[explicitNonceLen:]
}
c.CryptBlocks(payload, payload)
// In a limited attempt to protect against CBC padding oracles like
// Lucky13, the data past paddingLen (which is secret) is passed to
// the MAC function as extra data, to be fed into the HMAC after
// computing the digest. This makes the MAC roughly constant time as
// long as the digest computation is constant time and does not
// affect the subsequent write, modulo cache effects.
paddingLen, paddingGood = extractPadding(payload)
default:
panic("unknown cipher type")
}
if hc.version == VersionTLS13 {
if typ != recordTypeApplicationData {
return nil, 0, alertUnexpectedMessage
}
if len(plaintext) > maxPlaintext+1 {
return nil, 0, alertRecordOverflow
}
// Remove padding and find the ContentType scanning from the end.
for i := len(plaintext) - 1; i >= 0; i-- {
if plaintext[i] != 0 {
typ = recordType(plaintext[i])
plaintext = plaintext[:i]
break
}
if i == 0 {
return nil, 0, alertUnexpectedMessage
}
}
}
} else {
plaintext = payload
}
if hc.mac != nil {
macSize := hc.mac.Size()
if len(payload) < macSize {
return nil, 0, alertBadRecordMAC
}
n := len(payload) - macSize - paddingLen
n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
record[3] = byte(n >> 8)
record[4] = byte(n)
remoteMAC := payload[n : n+macSize]
localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
// This is equivalent to checking the MACs and paddingGood
// separately, but in constant-time to prevent distinguishing
// padding failures from MAC failures. Depending on what value
// of paddingLen was returned on bad padding, distinguishing
// bad MAC from bad padding can lead to an attack.
//
// See also the logic at the end of extractPadding.
macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
if macAndPaddingGood != 1 {
return nil, 0, alertBadRecordMAC
}
plaintext = payload[:n]
}
hc.incSeq()
return plaintext, typ, nil
}
// sliceForAppend extends the input slice by n bytes. head is the full extended
// slice, while tail is the appended part. If the original slice has sufficient
// capacity no allocation is performed.
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}
// encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
// appends it to record, which must already contain the record header.
func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
if hc.cipher == nil {
return append(record, payload...), nil
}
var explicitNonce []byte
if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
record, explicitNonce = sliceForAppend(record, explicitNonceLen)
if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
// The AES-GCM construction in TLS has an explicit nonce so that the
// nonce can be random. However, the nonce is only 8 bytes which is
// too small for a secure, random nonce. Therefore we use the
// sequence number as the nonce. The 3DES-CBC construction also has
// an 8 bytes nonce but its nonces must be unpredictable (see RFC
// 5246, Appendix F.3), forcing us to use randomness. That's not
// 3DES' biggest problem anyway because the birthday bound on block
// collision is reached first due to its similarly small block size
// (see the Sweet32 attack).
copy(explicitNonce, hc.seq[:])
} else {
if _, err := io.ReadFull(rand, explicitNonce); err != nil {
return nil, err
}
}
}
var dst []byte
switch c := hc.cipher.(type) {
case cipher.Stream:
mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
record, dst = sliceForAppend(record, len(payload)+len(mac))
c.XORKeyStream(dst[:len(payload)], payload)
c.XORKeyStream(dst[len(payload):], mac)
case aead:
nonce := explicitNonce
if len(nonce) == 0 {
nonce = hc.seq[:]
}
if hc.version == VersionTLS13 {
record = append(record, payload...)
// Encrypt the actual ContentType and replace the plaintext one.
record = append(record, record[0])
record[0] = byte(recordTypeApplicationData)
n := len(payload) + 1 + c.Overhead()
record[3] = byte(n >> 8)
record[4] = byte(n)
record = c.Seal(record[:recordHeaderLen],
nonce, record[recordHeaderLen:], record[:recordHeaderLen])
} else {
additionalData := append(hc.scratchBuf[:0], hc.seq[:]...)
additionalData = append(additionalData, record[:recordHeaderLen]...)
record = c.Seal(record, nonce, payload, additionalData)
}
case cbcMode:
mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
blockSize := c.BlockSize()
plaintextLen := len(payload) + len(mac)
paddingLen := blockSize - plaintextLen%blockSize
record, dst = sliceForAppend(record, plaintextLen+paddingLen)
copy(dst, payload)
copy(dst[len(payload):], mac)
for i := plaintextLen; i < len(dst); i++ {
dst[i] = byte(paddingLen - 1)
}
if len(explicitNonce) > 0 {
c.SetIV(explicitNonce)
}
c.CryptBlocks(dst, dst)
default:
panic("unknown cipher type")
}
// Update length to include nonce, MAC and any block padding needed.
n := len(record) - recordHeaderLen
record[3] = byte(n >> 8)
record[4] = byte(n)
hc.incSeq()
return record, nil
}
// RecordHeaderError is returned when a TLS record header is invalid.
type RecordHeaderError struct {
// Msg contains a human readable string that describes the error.
Msg string
// RecordHeader contains the five bytes of TLS record header that
// triggered the error.
RecordHeader [5]byte
// Conn provides the underlying net.Conn in the case that a client
// sent an initial handshake that didn't look like TLS.
// It is nil if there's already been a handshake or a TLS alert has
// been written to the connection.
Conn net.Conn
}
func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
err.Msg = msg
err.Conn = conn
copy(err.RecordHeader[:], c.rawInput.Bytes())
return err
}
func (c *Conn) readRecord() error {
return c.readRecordOrCCS(false)
}
func (c *Conn) readChangeCipherSpec() error {
return c.readRecordOrCCS(true)
}
// readRecordOrCCS reads one or more TLS records from the connection and
// updates the record layer state. Some invariants:
// - c.in must be locked
// - c.input must be empty
//
// During the handshake one and only one of the following will happen:
// - c.hand grows
// - c.in.changeCipherSpec is called
// - an error is returned
//
// After the handshake one and only one of the following will happen:
// - c.hand grows
// - c.input is set
// - an error is returned
func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
if c.in.err != nil {
return c.in.err
}
handshakeComplete := c.handshakeComplete()
// This function modifies c.rawInput, which owns the c.input memory.
if c.input.Len() != 0 {
return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
}
c.input.Reset(nil)
// Read header, payload.
if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
// is an error, but popular web sites seem to do this, so we accept it
// if and only if at the record boundary.
if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
err = io.EOF
}
if e, ok := err.(net.Error); !ok || !e.Temporary() {
c.in.setErrorLocked(err)
}
return err
}
hdr := c.rawInput.Bytes()[:recordHeaderLen]
typ := recordType(hdr[0])
// No valid TLS record has a type of 0x80, however SSLv2 handshakes
// start with a uint16 length where the MSB is set and the first record
// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
// an SSLv2 client.
if !handshakeComplete && typ == 0x80 {
c.sendAlert(alertProtocolVersion)
return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
}
vers := uint16(hdr[1])<<8 | uint16(hdr[2])
n := int(hdr[3])<<8 | int(hdr[4])
if c.haveVers && c.vers != VersionTLS13 && vers != c.vers {
c.sendAlert(alertProtocolVersion)
msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
}
if !c.haveVers {
// First message, be extra suspicious: this might not be a TLS
// client. Bail out before reading a full 'body', if possible.
// The current max version is 3.3 so if the version is >= 16.0,
// it's probably not real.
if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
}
}
if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
c.sendAlert(alertRecordOverflow)
msg := fmt.Sprintf("oversized record received with length %d", n)
return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
}
if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
if e, ok := err.(net.Error); !ok || !e.Temporary() {
c.in.setErrorLocked(err)
}
return err
}
// Process message.
record := c.rawInput.Next(recordHeaderLen + n)
data, typ, err := c.in.decrypt(record)
if err != nil {
return c.in.setErrorLocked(c.sendAlert(err.(alert)))
}
if len(data) > maxPlaintext {
return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
}
// Application Data messages are always protected.
if c.in.cipher == nil && typ == recordTypeApplicationData {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
// This is a state-advancing message: reset the retry count.
c.retryCount = 0
}
// Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
switch typ {
default:
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
case recordTypeAlert:
if len(data) != 2 {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
if alert(data[1]) == alertCloseNotify {
return c.in.setErrorLocked(io.EOF)
}
if c.vers == VersionTLS13 {
return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
}
switch data[0] {
case alertLevelWarning:
// Drop the record on the floor and retry.
return c.retryReadRecord(expectChangeCipherSpec)
case alertLevelError:
return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
default:
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
case recordTypeChangeCipherSpec:
if len(data) != 1 || data[0] != 1 {
return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
}
// Handshake messages are not allowed to fragment across the CCS.
if c.hand.Len() > 0 {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
// In TLS 1.3, change_cipher_spec records are ignored until the
// Finished. See RFC 8446, Appendix D.4. Note that according to Section
// 5, a server can send a ChangeCipherSpec before its ServerHello, when
// c.vers is still unset. That's not useful though and suspicious if the
// server then selects a lower protocol version, so don't allow that.
if c.vers == VersionTLS13 {
return c.retryReadRecord(expectChangeCipherSpec)
}
if !expectChangeCipherSpec {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
if err := c.in.changeCipherSpec(); err != nil {
return c.in.setErrorLocked(c.sendAlert(err.(alert)))
}
case recordTypeApplicationData:
if !handshakeComplete || expectChangeCipherSpec {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
// Some OpenSSL servers send empty records in order to randomize the
// CBC IV. Ignore a limited number of empty records.
if len(data) == 0 {
return c.retryReadRecord(expectChangeCipherSpec)
}
// Note that data is owned by c.rawInput, following the Next call above,
// to avoid copying the plaintext. This is safe because c.rawInput is
// not read from or written to until c.input is drained.
c.input.Reset(data)
case recordTypeHandshake:
if len(data) == 0 || expectChangeCipherSpec {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
c.hand.Write(data)
}
return nil
}
// retryReadRecord recurs into readRecordOrCCS to drop a non-advancing record, like
// a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
c.retryCount++
if c.retryCount > maxUselessRecords {
c.sendAlert(alertUnexpectedMessage)
return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
}
return c.readRecordOrCCS(expectChangeCipherSpec)
}
// atLeastReader reads from R, stopping with EOF once at least N bytes have been
// read. It is different from an io.LimitedReader in that it doesn't cut short
// the last Read call, and in that it considers an early EOF an error.
type atLeastReader struct {
R io.Reader
N int64
}
func (r *atLeastReader) Read(p []byte) (int, error) {
if r.N <= 0 {
return 0, io.EOF
}
n, err := r.R.Read(p)
r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
if r.N > 0 && err == io.EOF {
return n, io.ErrUnexpectedEOF
}
if r.N <= 0 && err == nil {
return n, io.EOF
}
return n, err
}
// readFromUntil reads from r into c.rawInput until c.rawInput contains
// at least n bytes or else returns an error.
func (c *Conn) readFromUntil(r io.Reader, n int) error {
if c.rawInput.Len() >= n {
return nil
}
needs := n - c.rawInput.Len()
// There might be extra input waiting on the wire. Make a best effort
// attempt to fetch it so that it can be used in (*Conn).Read to
// "predict" closeNotify alerts.
c.rawInput.Grow(needs + bytes.MinRead)
_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
return err
}
// sendAlert sends a TLS alert message.
func (c *Conn) sendAlertLocked(err alert) error {
switch err {
case alertNoRenegotiation, alertCloseNotify:
c.tmp[0] = alertLevelWarning
default:
c.tmp[0] = alertLevelError
}
c.tmp[1] = byte(err)
_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
if err == alertCloseNotify {
// closeNotify is a special case in that it isn't an error.
return writeErr
}
return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
}
// sendAlert sends a TLS alert message.
func (c *Conn) sendAlert(err alert) error {
c.out.Lock()
defer c.out.Unlock()
return c.sendAlertLocked(err)
}
const (
// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
// size (MSS). A constant is used, rather than querying the kernel for
// the actual MSS, to avoid complexity. The value here is the IPv6
// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
// bytes) and a TCP header with timestamps (32 bytes).
tcpMSSEstimate = 1208
// recordSizeBoostThreshold is the number of bytes of application data
// sent after which the TLS record size will be increased to the
// maximum.
recordSizeBoostThreshold = 128 * 1024
)
// maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
// next application data record. There is the following trade-off:
//
// - For latency-sensitive applications, such as web browsing, each TLS
// record should fit in one TCP segment.
// - For throughput-sensitive applications, such as large file transfers,
// larger TLS records better amortize framing and encryption overheads.
//
// A simple heuristic that works well in practice is to use small records for
// the first 1MB of data, then use larger records for subsequent data, and
// reset back to smaller records after the connection becomes idle. See "High
// Performance Web Networking", Chapter 4, or:
// https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
//
// In the interests of simplicity and determinism, this code does not attempt
// to reset the record size once the connection is idle, however.
func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
return maxPlaintext
}
if c.bytesSent >= recordSizeBoostThreshold {
return maxPlaintext
}
// Subtract TLS overheads to get the maximum payload size.
payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
if c.out.cipher != nil {
switch ciph := c.out.cipher.(type) {
case cipher.Stream:
payloadBytes -= c.out.mac.Size()
case cipher.AEAD:
payloadBytes -= ciph.Overhead()
case cbcMode:
blockSize := ciph.BlockSize()
// The payload must fit in a multiple of blockSize, with
// room for at least one padding byte.
payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
// The MAC is appended before padding so affects the
// payload size directly.
payloadBytes -= c.out.mac.Size()
default:
panic("unknown cipher type")
}
}
if c.vers == VersionTLS13 {
payloadBytes-- // encrypted ContentType
}
// Allow packet growth in arithmetic progression up to max.
pkt := c.packetsSent
c.packetsSent++
if pkt > 1000 {
return maxPlaintext // avoid overflow in multiply below
}
n := payloadBytes * int(pkt+1)
if n > maxPlaintext {
n = maxPlaintext
}
return n
}
func (c *Conn) write(data []byte) (int, error) {
if c.buffering {
c.sendBuf = append(c.sendBuf, data...)
return len(data), nil
}
n, err := c.conn.Write(data)
c.bytesSent += int64(n)
return n, err
}
func (c *Conn) flush() (int, error) {
if len(c.sendBuf) == 0 {
return 0, nil
}
n, err := c.conn.Write(c.sendBuf)
c.bytesSent += int64(n)
c.sendBuf = nil
c.buffering = false
return n, err
}
// outBufPool pools the record-sized scratch buffers used by writeRecordLocked.
var outBufPool = sync.Pool{
New: func() any {
return new([]byte)
},
}
// writeRecordLocked writes a TLS record with the given type and payload to the
// connection and updates the record layer state.
func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
outBufPtr := outBufPool.Get().(*[]byte)
outBuf := *outBufPtr
defer func() {
// You might be tempted to simplify this by just passing &outBuf to Put,
// but that would make the local copy of the outBuf slice header escape
// to the heap, causing an allocation. Instead, we keep around the
// pointer to the slice header returned by Get, which is already on the
// heap, and overwrite and return that.
*outBufPtr = outBuf
outBufPool.Put(outBufPtr)
}()
var n int
for len(data) > 0 {
m := len(data)
if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
m = maxPayload
}
_, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen)
outBuf[0] = byte(typ)
vers := c.vers
if vers == 0 {
// Some TLS servers fail if the record version is
// greater than TLS 1.0 for the initial ClientHello.
vers = VersionTLS10
} else if vers == VersionTLS13 {
// TLS 1.3 froze the record layer version to 1.2.
// See RFC 8446, Section 5.1.
vers = VersionTLS12
}
outBuf[1] = byte(vers >> 8)
outBuf[2] = byte(vers)
outBuf[3] = byte(m >> 8)
outBuf[4] = byte(m)
var err error
outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand())
if err != nil {
return n, err
}
if _, err := c.write(outBuf); err != nil {
return n, err
}
n += m
data = data[m:]
}
if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
if err := c.out.changeCipherSpec(); err != nil {
return n, c.sendAlertLocked(err.(alert))
}
}
return n, nil
}
// writeRecord writes a TLS record with the given type and payload to the
// connection and updates the record layer state.
func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
c.out.Lock()
defer c.out.Unlock()
return c.writeRecordLocked(typ, data)
}
// readHandshake reads the next handshake message from
// the record layer.
func (c *Conn) readHandshake() (any, error) {
for c.hand.Len() < 4 {
if err := c.readRecord(); err != nil {
return nil, err
}
}
data := c.hand.Bytes()
n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
if n > maxHandshake {
c.sendAlertLocked(alertInternalError)
return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
}
for c.hand.Len() < 4+n {
if err := c.readRecord(); err != nil {
return nil, err
}
}
data = c.hand.Next(4 + n)
var m handshakeMessage
switch data[0] {
case typeHelloRequest:
m = new(helloRequestMsg)
case typeClientHello:
m = new(clientHelloMsg)
case typeServerHello:
m = new(serverHelloMsg)
case typeNewSessionTicket:
if c.vers == VersionTLS13 {
m = new(newSessionTicketMsgTLS13)
} else {
m = new(newSessionTicketMsg)
}
case typeCertificate:
if c.vers == VersionTLS13 {
m = new(certificateMsgTLS13)
} else {
m = new(certificateMsg)
}
case typeCertificateRequest:
if c.vers == VersionTLS13 {
m = new(certificateRequestMsgTLS13)
} else {
m = &certificateRequestMsg{
hasSignatureAlgorithm: c.vers >= VersionTLS12,
}
}
case typeCertificateStatus:
m = new(certificateStatusMsg)
case typeServerKeyExchange:
m = new(serverKeyExchangeMsg)
case typeServerHelloDone:
m = new(serverHelloDoneMsg)
case typeClientKeyExchange:
m = new(clientKeyExchangeMsg)
case typeCertificateVerify:
m = &certificateVerifyMsg{
hasSignatureAlgorithm: c.vers >= VersionTLS12,
}
case typeFinished:
m = new(finishedMsg)
// [uTLS] Commented typeEncryptedExtensions to force
// utlsHandshakeMessageType to handle it
// case typeEncryptedExtensions:
// m = new(encryptedExtensionsMsg)
case typeEndOfEarlyData:
m = new(endOfEarlyDataMsg)
case typeKeyUpdate:
m = new(keyUpdateMsg)
default:
// [UTLS SECTION BEGINS]
var err error
m, err = c.utlsHandshakeMessageType(data[0]) // see u_conn.go
if err == nil {
break
}
// [UTLS SECTION ENDS]
return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
// The handshake message unmarshalers
// expect to be able to keep references to data,
// so pass in a fresh copy that won't be overwritten.
data = append([]byte(nil), data...)
if !m.unmarshal(data) {
return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
return m, nil
}
var (
errShutdown = errors.New("tls: protocol is shutdown")
)
// Write writes data to the connection.
//
// As Write calls Handshake, in order to prevent indefinite blocking a deadline
// must be set for both Read and Write before Write is called when the handshake
// has not yet completed. See SetDeadline, SetReadDeadline, and
// SetWriteDeadline.
func (c *Conn) Write(b []byte) (int, error) {
// interlock with Close below
for {
x := atomic.LoadInt32(&c.activeCall)
if x&1 != 0 {
return 0, net.ErrClosed
}
if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
break
}
}
defer atomic.AddInt32(&c.activeCall, -2)
if err := c.Handshake(); err != nil {
return 0, err
}
c.out.Lock()
defer c.out.Unlock()
if err := c.out.err; err != nil {
return 0, err
}
if !c.handshakeComplete() {
return 0, alertInternalError
}
if c.closeNotifySent {
return 0, errShutdown
}
// TLS 1.0 is susceptible to a chosen-plaintext
// attack when using block mode ciphers due to predictable IVs.
// This can be prevented by splitting each Application Data
// record into two records, effectively randomizing the IV.
//
// https://www.openssl.org/~bodo/tls-cbc.txt
// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
var m int
if len(b) > 1 && c.vers == VersionTLS10 {
if _, ok := c.out.cipher.(cipher.BlockMode); ok {
n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
if err != nil {
return n, c.out.setErrorLocked(err)
}
m, b = 1, b[1:]
}
}
n, err := c.writeRecordLocked(recordTypeApplicationData, b)
return n + m, c.out.setErrorLocked(err)
}
// handleRenegotiation processes a HelloRequest handshake message.
func (c *Conn) handleRenegotiation() error {
if c.vers == VersionTLS13 {
return errors.New("tls: internal error: unexpected renegotiation")
}
msg, err := c.readHandshake()
if err != nil {
return err
}
helloReq, ok := msg.(*helloRequestMsg)
if !ok {
c.sendAlert(alertUnexpectedMessage)
return unexpectedMessageError(helloReq, msg)
}
if !c.isClient {
return c.sendAlert(alertNoRenegotiation)
}
switch c.config.Renegotiation {
case RenegotiateNever:
return c.sendAlert(alertNoRenegotiation)
case RenegotiateOnceAsClient:
if c.handshakes > 1 {
return c.sendAlert(alertNoRenegotiation)
}
case RenegotiateFreelyAsClient:
// Ok.
default:
c.sendAlert(alertInternalError)
return errors.New("tls: unknown Renegotiation value")
}
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
atomic.StoreUint32(&c.handshakeStatus, 0)
if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil {
c.handshakes++
}
return c.handshakeErr
}
// handlePostHandshakeMessage processes a handshake message arrived after the
// handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
func (c *Conn) handlePostHandshakeMessage() error {
if c.vers != VersionTLS13 {
return c.handleRenegotiation()
}
msg, err := c.readHandshake()
if err != nil {
return err
}
c.retryCount++
if c.retryCount > maxUselessRecords {
c.sendAlert(alertUnexpectedMessage)
return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
}
switch msg := msg.(type) {
case *newSessionTicketMsgTLS13:
return c.handleNewSessionTicket(msg)
case *keyUpdateMsg:
return c.handleKeyUpdate(msg)
default:
c.sendAlert(alertUnexpectedMessage)
return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
}
}
func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
if cipherSuite == nil {
return c.in.setErrorLocked(c.sendAlert(alertInternalError))
}
newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
c.in.setTrafficSecret(cipherSuite, newSecret)
if keyUpdate.updateRequested {
c.out.Lock()
defer c.out.Unlock()
msg := &keyUpdateMsg{}
_, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal())
if err != nil {
// Surface the error at the next write.
c.out.setErrorLocked(err)
return nil
}
newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
c.out.setTrafficSecret(cipherSuite, newSecret)
}
return nil
}
// Read reads data from the connection.
//
// As Read calls Handshake, in order to prevent indefinite blocking a deadline
// must be set for both Read and Write before Read is called when the handshake
// has not yet completed. See SetDeadline, SetReadDeadline, and
// SetWriteDeadline.
func (c *Conn) Read(b []byte) (int, error) {
if err := c.Handshake(); err != nil {
return 0, err
}
if len(b) == 0 {
// Put this after Handshake, in case people were calling
// Read(nil) for the side effect of the Handshake.
return 0, nil
}
c.in.Lock()
defer c.in.Unlock()
for c.input.Len() == 0 {
if err := c.readRecord(); err != nil {
return 0, err
}
for c.hand.Len() > 0 {
if err := c.handlePostHandshakeMessage(); err != nil {
return 0, err
}
}
}
n, _ := c.input.Read(b)
// If a close-notify alert is waiting, read it so that we can return (n,
// EOF) instead of (n, nil), to signal to the HTTP response reading
// goroutine that the connection is now closed. This eliminates a race
// where the HTTP response reading goroutine would otherwise not observe
// the EOF until its next read, by which time a client goroutine might
// have already tried to reuse the HTTP connection for a new request.
// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
if err := c.readRecord(); err != nil {
return n, err // will be io.EOF on closeNotify
}
}
return n, nil
}
// Close closes the connection.
func (c *Conn) Close() error {
// Interlock with Conn.Write above.
var x int32
for {
x = atomic.LoadInt32(&c.activeCall)
if x&1 != 0 {
return net.ErrClosed
}
if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
break
}
}
if x != 0 {
// io.Writer and io.Closer should not be used concurrently.
// If Close is called while a Write is currently in-flight,
// interpret that as a sign that this Close is really just
// being used to break the Write and/or clean up resources and
// avoid sending the alertCloseNotify, which may block
// waiting on handshakeMutex or the c.out mutex.
return c.conn.Close()
}
var alertErr error
if c.handshakeComplete() {
if err := c.closeNotify(); err != nil {
alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err)
}
}
if err := c.conn.Close(); err != nil {
return err
}
return alertErr
}
var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
// CloseWrite shuts down the writing side of the connection. It should only be
// called once the handshake has completed and does not call CloseWrite on the
// underlying connection. Most callers should just use Close.
func (c *Conn) CloseWrite() error {
if !c.handshakeComplete() {
return errEarlyCloseWrite
}
return c.closeNotify()
}
func (c *Conn) closeNotify() error {
c.out.Lock()
defer c.out.Unlock()
if !c.closeNotifySent {
// Set a Write Deadline to prevent possibly blocking forever.
c.SetWriteDeadline(time.Now().Add(time.Second * 5))
c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
c.closeNotifySent = true
// Any subsequent writes will fail.
c.SetWriteDeadline(time.Now())
}
return c.closeNotifyErr
}
// Handshake runs the client or server handshake
// protocol if it has not yet been run.
//
// Most uses of this package need not call Handshake explicitly: the
// first Read or Write will call it automatically.
//
// For control over canceling or setting a timeout on a handshake, use
// HandshakeContext or the Dialer's DialContext method instead.
func (c *Conn) Handshake() error {
return c.HandshakeContext(context.Background())
}
// HandshakeContext runs the client or server handshake
// protocol if it has not yet been run.
//
// The provided Context must be non-nil. If the context is canceled before
// the handshake is complete, the handshake is interrupted and an error is returned.
// Once the handshake has completed, cancellation of the context will not affect the
// connection.
//
// Most uses of this package need not call HandshakeContext explicitly: the
// first Read or Write will call it automatically.
func (c *Conn) HandshakeContext(ctx context.Context) error {
// Delegate to unexported method for named return
// without confusing documented signature.
return c.handshakeContext(ctx)
}
func (c *Conn) handshakeContext(ctx context.Context) (ret error) {
// Fast sync/atomic-based exit if there is no handshake in flight and the
// last one succeeded without an error. Avoids the expensive context setup
// and mutex for most Read and Write calls.
if c.handshakeComplete() {
return nil
}
handshakeCtx, cancel := context.WithCancel(ctx)
// Note: defer this before starting the "interrupter" goroutine
// so that we can tell the difference between the input being canceled and
// this cancellation. In the former case, we need to close the connection.
defer cancel()
// Start the "interrupter" goroutine, if this context might be canceled.
// (The background context cannot).
//
// The interrupter goroutine waits for the input context to be done and
// closes the connection if this happens before the function returns.
if ctx.Done() != nil {
done := make(chan struct{})
interruptRes := make(chan error, 1)
defer func() {
close(done)
if ctxErr := <-interruptRes; ctxErr != nil {
// Return context error to user.
ret = ctxErr
}
}()
go func() {
select {
case <-handshakeCtx.Done():
// Close the connection, discarding the error
_ = c.conn.Close()
interruptRes <- handshakeCtx.Err()
case <-done:
interruptRes <- nil
}
}()
}
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
if err := c.handshakeErr; err != nil {
return err
}
if c.handshakeComplete() {
return nil
}
c.in.Lock()
defer c.in.Unlock()
c.handshakeErr = c.handshakeFn(handshakeCtx)
if c.handshakeErr == nil {
c.handshakes++
} else {
// If an error occurred during the handshake try to flush the
// alert that might be left in the buffer.
c.flush()
}
if c.handshakeErr == nil && !c.handshakeComplete() {
c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
}
if c.handshakeErr != nil && c.handshakeComplete() {
panic("tls: internal error: handshake returned an error but is marked successful")
}
return c.handshakeErr
}
// ConnectionState returns basic TLS details about the connection.
func (c *Conn) ConnectionState() ConnectionState {
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
return c.connectionStateLocked()
}
func (c *Conn) connectionStateLocked() ConnectionState {
var state ConnectionState
state.HandshakeComplete = c.handshakeComplete()
state.Version = c.vers
state.NegotiatedProtocol = c.clientProtocol
state.DidResume = c.didResume
state.NegotiatedProtocolIsMutual = true
state.ServerName = c.serverName
state.CipherSuite = c.cipherSuite
state.PeerCertificates = c.peerCertificates
state.VerifiedChains = c.verifiedChains
state.SignedCertificateTimestamps = c.scts
state.OCSPResponse = c.ocspResponse
if !c.didResume && c.vers != VersionTLS13 {
if c.clientFinishedIsFirst {
state.TLSUnique = c.clientFinished[:]
} else {
state.TLSUnique = c.serverFinished[:]
}
}
if c.config.Renegotiation != RenegotiateNever {
state.ekm = noExportedKeyingMaterial
} else {
state.ekm = c.ekm
}
return state
}
// OCSPResponse returns the stapled OCSP response from the TLS server, if
// any. (Only valid for client connections.)
func (c *Conn) OCSPResponse() []byte {
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
return c.ocspResponse
}
// VerifyHostname checks that the peer certificate chain is valid for
// connecting to host. If so, it returns nil; if not, it returns an error
// describing the problem.
func (c *Conn) VerifyHostname(host string) error {
c.handshakeMutex.Lock()
defer c.handshakeMutex.Unlock()
if !c.isClient {
return errors.New("tls: VerifyHostname called on TLS server connection")
}
if !c.handshakeComplete() {
return errors.New("tls: handshake has not yet been performed")
}
if len(c.verifiedChains) == 0 {
return errors.New("tls: handshake did not verify certificate chain")
}
return c.peerCertificates[0].VerifyHostname(host)
}
func (c *Conn) handshakeComplete() bool {
return atomic.LoadUint32(&c.handshakeStatus) == 1
}
|