1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package gf256 implements arithmetic over the Galois Field GF(256).
package gf256
import "strconv"
// A Field represents an instance of GF(256) defined by a specific polynomial.
type Field struct {
log [256]byte // log[0] is unused
exp [510]byte
}
// NewField returns a new field corresponding to the polynomial poly
// and generator α. The Reed-Solomon encoding in QR codes uses
// polynomial 0x11d with generator 2.
//
// The choice of generator α only affects the Exp and Log operations.
func NewField(poly, α int) *Field {
if poly < 0x100 || poly >= 0x200 || reducible(poly) {
panic("gf256: invalid polynomial: " + strconv.Itoa(poly))
}
var f Field
x := 1
for i := 0; i < 255; i++ {
if x == 1 && i != 0 {
panic("gf256: invalid generator " + strconv.Itoa(α) +
" for polynomial " + strconv.Itoa(poly))
}
f.exp[i] = byte(x)
f.exp[i+255] = byte(x)
f.log[x] = byte(i)
x = mul(x, α, poly)
}
f.log[0] = 255
for i := 0; i < 255; i++ {
if f.log[f.exp[i]] != byte(i) {
panic("bad log")
}
if f.log[f.exp[i+255]] != byte(i) {
panic("bad log")
}
}
for i := 1; i < 256; i++ {
if f.exp[f.log[i]] != byte(i) {
panic("bad log")
}
}
return &f
}
// nbit returns the number of significant in p.
func nbit(p int) uint {
n := uint(0)
for ; p > 0; p >>= 1 {
n++
}
return n
}
// polyDiv divides the polynomial p by q and returns the remainder.
func polyDiv(p, q int) int {
np := nbit(p)
nq := nbit(q)
for ; np >= nq; np-- {
if p&(1<<(np-1)) != 0 {
p ^= q << (np - nq)
}
}
return p
}
// mul returns the product x*y mod poly, a GF(256) multiplication.
func mul(x, y, poly int) int {
z := 0
for x > 0 {
if x&1 != 0 {
z ^= y
}
x >>= 1
y <<= 1
if y&0x100 != 0 {
y ^= poly
}
}
return z
}
// reducible reports whether p is reducible.
func reducible(p int) bool {
// Multiplying n-bit * n-bit produces (2n-1)-bit,
// so if p is reducible, one of its factors must be
// of np/2+1 bits or fewer.
np := nbit(p)
for q := 2; q < 1<<(np/2+1); q++ {
if polyDiv(p, q) == 0 {
return true
}
}
return false
}
// Add returns the sum of x and y in the field.
func (f *Field) Add(x, y byte) byte {
return x ^ y
}
// Exp returns the base-α exponential of e in the field.
// If e < 0, Exp returns 0.
func (f *Field) Exp(e int) byte {
if e < 0 {
return 0
}
return f.exp[e%255]
}
// Log returns the base-α logarithm of x in the field.
// If x == 0, Log returns -1.
func (f *Field) Log(x byte) int {
if x == 0 {
return -1
}
return int(f.log[x])
}
// Inv returns the multiplicative inverse of x in the field.
// If x == 0, Inv returns 0.
func (f *Field) Inv(x byte) byte {
if x == 0 {
return 0
}
return f.exp[255-f.log[x]]
}
// Mul returns the product of x and y in the field.
func (f *Field) Mul(x, y byte) byte {
if x == 0 || y == 0 {
return 0
}
return f.exp[int(f.log[x])+int(f.log[y])]
}
// An RSEncoder implements Reed-Solomon encoding
// over a given field using a given number of error correction bytes.
type RSEncoder struct {
f *Field
c int
gen []byte
lgen []byte
p []byte
}
func (f *Field) gen(e int) (gen, lgen []byte) {
// p = 1
p := make([]byte, e+1)
p[e] = 1
for i := 0; i < e; i++ {
// p *= (x + Exp(i))
// p[j] = p[j]*Exp(i) + p[j+1].
c := f.Exp(i)
for j := 0; j < e; j++ {
p[j] = f.Mul(p[j], c) ^ p[j+1]
}
p[e] = f.Mul(p[e], c)
}
// lp = log p.
lp := make([]byte, e+1)
for i, c := range p {
if c == 0 {
lp[i] = 255
} else {
lp[i] = byte(f.Log(c))
}
}
return p, lp
}
// NewRSEncoder returns a new Reed-Solomon encoder
// over the given field and number of error correction bytes.
func NewRSEncoder(f *Field, c int) *RSEncoder {
gen, lgen := f.gen(c)
return &RSEncoder{f: f, c: c, gen: gen, lgen: lgen}
}
// ECC writes to check the error correcting code bytes
// for data using the given Reed-Solomon parameters.
func (rs *RSEncoder) ECC(data []byte, check []byte) {
if len(check) < rs.c {
panic("gf256: invalid check byte length")
}
if rs.c == 0 {
return
}
// The check bytes are the remainder after dividing
// data padded with c zeros by the generator polynomial.
// p = data padded with c zeros.
var p []byte
n := len(data) + rs.c
if len(rs.p) >= n {
p = rs.p
} else {
p = make([]byte, n)
}
copy(p, data)
for i := len(data); i < len(p); i++ {
p[i] = 0
}
// Divide p by gen, leaving the remainder in p[len(data):].
// p[0] is the most significant term in p, and
// gen[0] is the most significant term in the generator,
// which is always 1.
// To avoid repeated work, we store various values as
// lv, not v, where lv = log[v].
f := rs.f
lgen := rs.lgen[1:]
for i := 0; i < len(data); i++ {
c := p[i]
if c == 0 {
continue
}
q := p[i+1:]
exp := f.exp[f.log[c]:]
for j, lg := range lgen {
if lg != 255 { // lgen uses 255 for log 0
q[j] ^= exp[lg]
}
}
}
copy(check, p[len(data):])
rs.p = p
}
|