| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 
 | // Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package starlark_test
import (
	"fmt"
	"log"
	"reflect"
	"sort"
	"strings"
	"sync"
	"sync/atomic"
	"testing"
	"unsafe"
	"go.starlark.net/starlark"
)
// ExampleExecFile demonstrates a simple embedding
// of the Starlark interpreter into a Go program.
func ExampleExecFile() {
	const data = `
print(greeting + ", world")
print(repeat("one"))
print(repeat("mur", 2))
squares = [x*x for x in range(10)]
`
	// repeat(str, n=1) is a Go function called from Starlark.
	// It behaves like the 'string * int' operation.
	repeat := func(thread *starlark.Thread, b *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
		var s string
		var n int = 1
		if err := starlark.UnpackArgs(b.Name(), args, kwargs, "s", &s, "n?", &n); err != nil {
			return nil, err
		}
		return starlark.String(strings.Repeat(s, n)), nil
	}
	// The Thread defines the behavior of the built-in 'print' function.
	thread := &starlark.Thread{
		Name:  "example",
		Print: func(_ *starlark.Thread, msg string) { fmt.Println(msg) },
	}
	// This dictionary defines the pre-declared environment.
	predeclared := starlark.StringDict{
		"greeting": starlark.String("hello"),
		"repeat":   starlark.NewBuiltin("repeat", repeat),
	}
	// Execute a program.
	globals, err := starlark.ExecFile(thread, "apparent/filename.star", data, predeclared)
	if err != nil {
		if evalErr, ok := err.(*starlark.EvalError); ok {
			log.Fatal(evalErr.Backtrace())
		}
		log.Fatal(err)
	}
	// Print the global environment.
	fmt.Println("\nGlobals:")
	for _, name := range globals.Keys() {
		v := globals[name]
		fmt.Printf("%s (%s) = %s\n", name, v.Type(), v.String())
	}
	// Output:
	// hello, world
	// one
	// murmur
	//
	// Globals:
	// squares (list) = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
}
// ExampleThread_Load_sequential demonstrates a simple caching
// implementation of 'load' that works sequentially.
func ExampleThread_Load_sequential() {
	fakeFilesystem := map[string]string{
		"c.star": `load("b.star", "b"); c = b + "!"`,
		"b.star": `load("a.star", "a"); b = a + ", world"`,
		"a.star": `a = "Hello"`,
	}
	type entry struct {
		globals starlark.StringDict
		err     error
	}
	cache := make(map[string]*entry)
	var load func(_ *starlark.Thread, module string) (starlark.StringDict, error)
	load = func(_ *starlark.Thread, module string) (starlark.StringDict, error) {
		e, ok := cache[module]
		if e == nil {
			if ok {
				// request for package whose loading is in progress
				return nil, fmt.Errorf("cycle in load graph")
			}
			// Add a placeholder to indicate "load in progress".
			cache[module] = nil
			// Load and initialize the module in a new thread.
			data := fakeFilesystem[module]
			thread := &starlark.Thread{Name: "exec " + module, Load: load}
			globals, err := starlark.ExecFile(thread, module, data, nil)
			e = &entry{globals, err}
			// Update the cache.
			cache[module] = e
		}
		return e.globals, e.err
	}
	thread := &starlark.Thread{Name: "exec c.star", Load: load}
	globals, err := load(thread, "c.star")
	if err != nil {
		log.Fatal(err)
	}
	fmt.Println(globals["c"])
	// Output:
	// "Hello, world!"
}
// ExampleThread_Load_parallel demonstrates a parallel implementation
// of 'load' with caching, duplicate suppression, and cycle detection.
func ExampleThread_Load_parallel() {
	cache := &cache{
		cache: make(map[string]*entry),
		fakeFilesystem: map[string]string{
			"c.star": `load("a.star", "a"); c = a * 2`,
			"b.star": `load("a.star", "a"); b = a * 3`,
			"a.star": `a = 1; print("loaded a")`,
		},
	}
	// We load modules b and c in parallel by concurrent calls to
	// cache.Load.  Both of them load module a, but a is executed
	// only once, as witnessed by the sole output of its print
	// statement.
	ch := make(chan string)
	for _, name := range []string{"b", "c"} {
		go func(name string) {
			globals, err := cache.Load(name + ".star")
			if err != nil {
				log.Fatal(err)
			}
			ch <- fmt.Sprintf("%s = %s", name, globals[name])
		}(name)
	}
	got := []string{<-ch, <-ch}
	sort.Strings(got)
	fmt.Println(strings.Join(got, "\n"))
	// Output:
	// loaded a
	// b = 3
	// c = 2
}
// TestThread_Load_parallelCycle demonstrates detection
// of cycles during parallel loading.
func TestThreadLoad_ParallelCycle(t *testing.T) {
	cache := &cache{
		cache: make(map[string]*entry),
		fakeFilesystem: map[string]string{
			"c.star": `load("b.star", "b"); c = b * 2`,
			"b.star": `load("a.star", "a"); b = a * 3`,
			"a.star": `load("c.star", "c"); a = c * 5; print("loaded a")`,
		},
	}
	ch := make(chan string)
	for _, name := range "bc" {
		name := string(name)
		go func() {
			_, err := cache.Load(name + ".star")
			if err == nil {
				log.Fatalf("Load of %s.star succeeded unexpectedly", name)
			}
			ch <- err.Error()
		}()
	}
	got := []string{<-ch, <-ch}
	sort.Strings(got)
	// Typically, the c goroutine quickly blocks behind b;
	// b loads a, and a then fails to load c because it forms a cycle.
	// The errors observed by the two goroutines are:
	want1 := []string{
		"cannot load a.star: cannot load c.star: cycle in load graph",                     // from b
		"cannot load b.star: cannot load a.star: cannot load c.star: cycle in load graph", // from c
	}
	// But if the c goroutine is slow to start, b loads a,
	// and a loads c; then c fails to load b because it forms a cycle.
	// The errors this time are:
	want2 := []string{
		"cannot load a.star: cannot load c.star: cannot load b.star: cycle in load graph", // from b
		"cannot load b.star: cycle in load graph",                                         // from c
	}
	if !reflect.DeepEqual(got, want1) && !reflect.DeepEqual(got, want2) {
		t.Error(got)
	}
}
// cache is a concurrency-safe, duplicate-suppressing,
// non-blocking cache of the doLoad function.
// See Section 9.7 of gopl.io for an explanation of this structure.
// It also features online deadlock (load cycle) detection.
type cache struct {
	cacheMu sync.Mutex
	cache   map[string]*entry
	fakeFilesystem map[string]string
}
type entry struct {
	owner   unsafe.Pointer // a *cycleChecker; see cycleCheck
	globals starlark.StringDict
	err     error
	ready   chan struct{}
}
func (c *cache) Load(module string) (starlark.StringDict, error) {
	return c.get(new(cycleChecker), module)
}
// get loads and returns an entry (if not already loaded).
func (c *cache) get(cc *cycleChecker, module string) (starlark.StringDict, error) {
	c.cacheMu.Lock()
	e := c.cache[module]
	if e != nil {
		c.cacheMu.Unlock()
		// Some other goroutine is getting this module.
		// Wait for it to become ready.
		// Detect load cycles to avoid deadlocks.
		if err := cycleCheck(e, cc); err != nil {
			return nil, err
		}
		cc.setWaitsFor(e)
		<-e.ready
		cc.setWaitsFor(nil)
	} else {
		// First request for this module.
		e = &entry{ready: make(chan struct{})}
		c.cache[module] = e
		c.cacheMu.Unlock()
		e.setOwner(cc)
		e.globals, e.err = c.doLoad(cc, module)
		e.setOwner(nil)
		// Broadcast that the entry is now ready.
		close(e.ready)
	}
	return e.globals, e.err
}
func (c *cache) doLoad(cc *cycleChecker, module string) (starlark.StringDict, error) {
	thread := &starlark.Thread{
		Name:  "exec " + module,
		Print: func(_ *starlark.Thread, msg string) { fmt.Println(msg) },
		Load: func(_ *starlark.Thread, module string) (starlark.StringDict, error) {
			// Tunnel the cycle-checker state for this "thread of loading".
			return c.get(cc, module)
		},
	}
	data := c.fakeFilesystem[module]
	return starlark.ExecFile(thread, module, data, nil)
}
// -- concurrent cycle checking --
// A cycleChecker is used for concurrent deadlock detection.
// Each top-level call to Load creates its own cycleChecker,
// which is passed to all recursive calls it makes.
// It corresponds to a logical thread in the deadlock detection literature.
type cycleChecker struct {
	waitsFor unsafe.Pointer // an *entry; see cycleCheck
}
func (cc *cycleChecker) setWaitsFor(e *entry) {
	atomic.StorePointer(&cc.waitsFor, unsafe.Pointer(e))
}
func (e *entry) setOwner(cc *cycleChecker) {
	atomic.StorePointer(&e.owner, unsafe.Pointer(cc))
}
// cycleCheck reports whether there is a path in the waits-for graph
// from resource 'e' to thread 'me'.
//
// The waits-for graph (WFG) is a bipartite graph whose nodes are
// alternately of type entry and cycleChecker.  Each node has at most
// one outgoing edge.  An entry has an "owner" edge to a cycleChecker
// while it is being readied by that cycleChecker, and a cycleChecker
// has a "waits-for" edge to an entry while it is waiting for that entry
// to become ready.
//
// Before adding a waits-for edge, the cache checks whether the new edge
// would form a cycle.  If so, this indicates that the load graph is
// cyclic and that the following wait operation would deadlock.
func cycleCheck(e *entry, me *cycleChecker) error {
	for e != nil {
		cc := (*cycleChecker)(atomic.LoadPointer(&e.owner))
		if cc == nil {
			break
		}
		if cc == me {
			return fmt.Errorf("cycle in load graph")
		}
		e = (*entry)(atomic.LoadPointer(&cc.waitsFor))
	}
	return nil
}
 |