1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package starlark_test
import (
"fmt"
"log"
"reflect"
"sort"
"strings"
"sync"
"sync/atomic"
"testing"
"unsafe"
"go.starlark.net/starlark"
)
// ExampleExecFile demonstrates a simple embedding
// of the Starlark interpreter into a Go program.
func ExampleExecFile() {
const data = `
print(greeting + ", world")
print(repeat("one"))
print(repeat("mur", 2))
squares = [x*x for x in range(10)]
`
// repeat(str, n=1) is a Go function called from Starlark.
// It behaves like the 'string * int' operation.
repeat := func(thread *starlark.Thread, b *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
var s string
var n int = 1
if err := starlark.UnpackArgs(b.Name(), args, kwargs, "s", &s, "n?", &n); err != nil {
return nil, err
}
return starlark.String(strings.Repeat(s, n)), nil
}
// The Thread defines the behavior of the built-in 'print' function.
thread := &starlark.Thread{
Name: "example",
Print: func(_ *starlark.Thread, msg string) { fmt.Println(msg) },
}
// This dictionary defines the pre-declared environment.
predeclared := starlark.StringDict{
"greeting": starlark.String("hello"),
"repeat": starlark.NewBuiltin("repeat", repeat),
}
// Execute a program.
globals, err := starlark.ExecFile(thread, "apparent/filename.star", data, predeclared)
if err != nil {
if evalErr, ok := err.(*starlark.EvalError); ok {
log.Fatal(evalErr.Backtrace())
}
log.Fatal(err)
}
// Print the global environment.
fmt.Println("\nGlobals:")
for _, name := range globals.Keys() {
v := globals[name]
fmt.Printf("%s (%s) = %s\n", name, v.Type(), v.String())
}
// Output:
// hello, world
// one
// murmur
//
// Globals:
// squares (list) = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
}
// ExampleThread_Load_sequential demonstrates a simple caching
// implementation of 'load' that works sequentially.
func ExampleThread_Load_sequential() {
fakeFilesystem := map[string]string{
"c.star": `load("b.star", "b"); c = b + "!"`,
"b.star": `load("a.star", "a"); b = a + ", world"`,
"a.star": `a = "Hello"`,
}
type entry struct {
globals starlark.StringDict
err error
}
cache := make(map[string]*entry)
var load func(_ *starlark.Thread, module string) (starlark.StringDict, error)
load = func(_ *starlark.Thread, module string) (starlark.StringDict, error) {
e, ok := cache[module]
if e == nil {
if ok {
// request for package whose loading is in progress
return nil, fmt.Errorf("cycle in load graph")
}
// Add a placeholder to indicate "load in progress".
cache[module] = nil
// Load and initialize the module in a new thread.
data := fakeFilesystem[module]
thread := &starlark.Thread{Name: "exec " + module, Load: load}
globals, err := starlark.ExecFile(thread, module, data, nil)
e = &entry{globals, err}
// Update the cache.
cache[module] = e
}
return e.globals, e.err
}
globals, err := load(nil, "c.star")
if err != nil {
log.Fatal(err)
}
fmt.Println(globals["c"])
// Output:
// "Hello, world!"
}
// ExampleThread_Load_parallel demonstrates a parallel implementation
// of 'load' with caching, duplicate suppression, and cycle detection.
func ExampleThread_Load_parallel() {
cache := &cache{
cache: make(map[string]*entry),
fakeFilesystem: map[string]string{
"c.star": `load("a.star", "a"); c = a * 2`,
"b.star": `load("a.star", "a"); b = a * 3`,
"a.star": `a = 1; print("loaded a")`,
},
}
// We load modules b and c in parallel by concurrent calls to
// cache.Load. Both of them load module a, but a is executed
// only once, as witnessed by the sole output of its print
// statement.
ch := make(chan string)
for _, name := range []string{"b", "c"} {
go func(name string) {
globals, err := cache.Load(name + ".star")
if err != nil {
log.Fatal(err)
}
ch <- fmt.Sprintf("%s = %s", name, globals[name])
}(name)
}
got := []string{<-ch, <-ch}
sort.Strings(got)
fmt.Println(strings.Join(got, "\n"))
// Output:
// loaded a
// b = 3
// c = 2
}
// TestThread_Load_parallelCycle demonstrates detection
// of cycles during parallel loading.
func TestThreadLoad_ParallelCycle(t *testing.T) {
cache := &cache{
cache: make(map[string]*entry),
fakeFilesystem: map[string]string{
"c.star": `load("b.star", "b"); c = b * 2`,
"b.star": `load("a.star", "a"); b = a * 3`,
"a.star": `load("c.star", "c"); a = c * 5; print("loaded a")`,
},
}
ch := make(chan string)
for _, name := range "bc" {
name := string(name)
go func() {
_, err := cache.Load(name + ".star")
if err == nil {
log.Fatalf("Load of %s.star succeeded unexpectedly", name)
}
ch <- err.Error()
}()
}
got := []string{<-ch, <-ch}
sort.Strings(got)
// Typically, the c goroutine quickly blocks behind b;
// b loads a, and a then fails to load c because it forms a cycle.
// The errors observed by the two goroutines are:
want1 := []string{
"cannot load a.star: cannot load c.star: cycle in load graph", // from b
"cannot load b.star: cannot load a.star: cannot load c.star: cycle in load graph", // from c
}
// But if the c goroutine is slow to start, b loads a,
// and a loads c; then c fails to load b because it forms a cycle.
// The errors this time are:
want2 := []string{
"cannot load a.star: cannot load c.star: cannot load b.star: cycle in load graph", // from b
"cannot load b.star: cycle in load graph", // from c
}
if !reflect.DeepEqual(got, want1) && !reflect.DeepEqual(got, want2) {
t.Error(got)
}
}
// cache is a concurrency-safe, duplicate-suppressing,
// non-blocking cache of the doLoad function.
// See Section 9.7 of gopl.io for an explanation of this structure.
// It also features online deadlock (load cycle) detection.
type cache struct {
cacheMu sync.Mutex
cache map[string]*entry
fakeFilesystem map[string]string
}
type entry struct {
owner unsafe.Pointer // a *cycleChecker; see cycleCheck
globals starlark.StringDict
err error
ready chan struct{}
}
func (c *cache) Load(module string) (starlark.StringDict, error) {
return c.get(new(cycleChecker), module)
}
// get loads and returns an entry (if not already loaded).
func (c *cache) get(cc *cycleChecker, module string) (starlark.StringDict, error) {
c.cacheMu.Lock()
e := c.cache[module]
if e != nil {
c.cacheMu.Unlock()
// Some other goroutine is getting this module.
// Wait for it to become ready.
// Detect load cycles to avoid deadlocks.
if err := cycleCheck(e, cc); err != nil {
return nil, err
}
cc.setWaitsFor(e)
<-e.ready
cc.setWaitsFor(nil)
} else {
// First request for this module.
e = &entry{ready: make(chan struct{})}
c.cache[module] = e
c.cacheMu.Unlock()
e.setOwner(cc)
e.globals, e.err = c.doLoad(cc, module)
e.setOwner(nil)
// Broadcast that the entry is now ready.
close(e.ready)
}
return e.globals, e.err
}
func (c *cache) doLoad(cc *cycleChecker, module string) (starlark.StringDict, error) {
thread := &starlark.Thread{
Name: "exec " + module,
Print: func(_ *starlark.Thread, msg string) { fmt.Println(msg) },
Load: func(_ *starlark.Thread, module string) (starlark.StringDict, error) {
// Tunnel the cycle-checker state for this "thread of loading".
return c.get(cc, module)
},
}
data := c.fakeFilesystem[module]
return starlark.ExecFile(thread, module, data, nil)
}
// -- concurrent cycle checking --
// A cycleChecker is used for concurrent deadlock detection.
// Each top-level call to Load creates its own cycleChecker,
// which is passed to all recursive calls it makes.
// It corresponds to a logical thread in the deadlock detection literature.
type cycleChecker struct {
waitsFor unsafe.Pointer // an *entry; see cycleCheck
}
func (cc *cycleChecker) setWaitsFor(e *entry) {
atomic.StorePointer(&cc.waitsFor, unsafe.Pointer(e))
}
func (e *entry) setOwner(cc *cycleChecker) {
atomic.StorePointer(&e.owner, unsafe.Pointer(cc))
}
// cycleCheck reports whether there is a path in the waits-for graph
// from resource 'e' to thread 'me'.
//
// The waits-for graph (WFG) is a bipartite graph whose nodes are
// alternately of type entry and cycleChecker. Each node has at most
// one outgoing edge. An entry has an "owner" edge to a cycleChecker
// while it is being readied by that cycleChecker, and a cycleChecker
// has a "waits-for" edge to an entry while it is waiting for that entry
// to become ready.
//
// Before adding a waits-for edge, the cache checks whether the new edge
// would form a cycle. If so, this indicates that the load graph is
// cyclic and that the following wait operation would deadlock.
func cycleCheck(e *entry, me *cycleChecker) error {
for e != nil {
cc := (*cycleChecker)(atomic.LoadPointer(&e.owner))
if cc == nil {
break
}
if cc == me {
return fmt.Errorf("cycle in load graph")
}
e = (*entry)(atomic.LoadPointer(&cc.waitsFor))
}
return nil
}
|