1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
// This file defines a recursive-descent parser for Starlark.
// The LL(1) grammar of Starlark and the names of many productions follow Python 2.7.
//
// TODO(adonovan): use syntax.Error more systematically throughout the
// package. Verify that error positions are correct using the
// chunkedfile mechanism.
import "log"
// Enable this flag to print the token stream and log.Fatal on the first error.
const debug = false
// A Mode value is a set of flags (or 0) that controls optional parser functionality.
type Mode uint
const (
RetainComments Mode = 1 << iota // retain comments in AST; see Node.Comments
)
// Parse calls the Parse method of LegacyFileOptions().
//
// Deprecated: use [FileOptions.Parse] instead,
// because this function relies on legacy global variables.
func Parse(filename string, src interface{}, mode Mode) (f *File, err error) {
return LegacyFileOptions().Parse(filename, src, mode)
}
// Parse parses the input data and returns the corresponding parse tree.
//
// If src != nil, Parse parses the source from src and the filename
// is only used when recording position information.
// The type of the argument for the src parameter must be string,
// []byte, io.Reader, or FilePortion.
// If src == nil, Parse parses the file specified by filename.
func (opts *FileOptions) Parse(filename string, src interface{}, mode Mode) (f *File, err error) {
in, err := newScanner(filename, src, mode&RetainComments != 0)
if err != nil {
return nil, err
}
p := parser{options: opts, in: in}
defer p.in.recover(&err)
p.nextToken() // read first lookahead token
f = p.parseFile()
if f != nil {
f.Path = filename
}
p.assignComments(f)
return f, nil
}
// ParseCompoundStmt calls the ParseCompoundStmt method of LegacyFileOptions().
//
// Deprecated: use [FileOptions.ParseCompoundStmt] instead,
// because this function relies on legacy global variables.
func ParseCompoundStmt(filename string, readline func() ([]byte, error)) (f *File, err error) {
return LegacyFileOptions().ParseCompoundStmt(filename, readline)
}
// ParseCompoundStmt parses a single compound statement:
// a blank line, a def, for, while, or if statement, or a
// semicolon-separated list of simple statements followed
// by a newline. These are the units on which the REPL operates.
// ParseCompoundStmt does not consume any following input.
// The parser calls the readline function each
// time it needs a new line of input.
func (opts *FileOptions) ParseCompoundStmt(filename string, readline func() ([]byte, error)) (f *File, err error) {
in, err := newScanner(filename, readline, false)
if err != nil {
return nil, err
}
p := parser{options: opts, in: in}
defer p.in.recover(&err)
p.nextToken() // read first lookahead token
var stmts []Stmt
switch p.tok {
case DEF, IF, FOR, WHILE:
stmts = p.parseStmt(stmts)
case NEWLINE:
// blank line
default:
stmts = p.parseSimpleStmt(stmts, false)
// Require but don't consume newline, to avoid blocking again.
if p.tok != NEWLINE {
p.in.errorf(p.in.pos, "invalid syntax")
}
}
return &File{Options: opts, Path: filename, Stmts: stmts}, nil
}
// ParseExpr calls the ParseExpr method of LegacyFileOptions().
//
// Deprecated: use [FileOptions.ParseExpr] instead,
// because this function relies on legacy global variables.
func ParseExpr(filename string, src interface{}, mode Mode) (expr Expr, err error) {
return LegacyFileOptions().ParseExpr(filename, src, mode)
}
// ParseExpr parses a Starlark expression.
// A comma-separated list of expressions is parsed as a tuple.
// See Parse for explanation of parameters.
func (opts *FileOptions) ParseExpr(filename string, src interface{}, mode Mode) (expr Expr, err error) {
in, err := newScanner(filename, src, mode&RetainComments != 0)
if err != nil {
return nil, err
}
p := parser{options: opts, in: in}
defer p.in.recover(&err)
p.nextToken() // read first lookahead token
// Use parseExpr, not parseTest, to permit an unparenthesized tuple.
expr = p.parseExpr(false)
// A following newline (e.g. "f()\n") appears outside any brackets,
// on a non-blank line, and thus results in a NEWLINE token.
if p.tok == NEWLINE {
p.nextToken()
}
if p.tok != EOF {
p.in.errorf(p.in.pos, "got %#v after expression, want EOF", p.tok)
}
p.assignComments(expr)
return expr, nil
}
type parser struct {
options *FileOptions
in *scanner
tok Token
tokval tokenValue
}
// nextToken advances the scanner and returns the position of the
// previous token.
func (p *parser) nextToken() Position {
oldpos := p.tokval.pos
p.tok = p.in.nextToken(&p.tokval)
// enable to see the token stream
if debug {
log.Printf("nextToken: %-20s%+v\n", p.tok, p.tokval.pos)
}
return oldpos
}
// file_input = (NEWLINE | stmt)* EOF
func (p *parser) parseFile() *File {
var stmts []Stmt
for p.tok != EOF {
if p.tok == NEWLINE {
p.nextToken()
continue
}
stmts = p.parseStmt(stmts)
}
return &File{Options: p.options, Stmts: stmts}
}
func (p *parser) parseStmt(stmts []Stmt) []Stmt {
if p.tok == DEF {
return append(stmts, p.parseDefStmt())
} else if p.tok == IF {
return append(stmts, p.parseIfStmt())
} else if p.tok == FOR {
return append(stmts, p.parseForStmt())
} else if p.tok == WHILE {
return append(stmts, p.parseWhileStmt())
}
return p.parseSimpleStmt(stmts, true)
}
func (p *parser) parseDefStmt() Stmt {
defpos := p.nextToken() // consume DEF
id := p.parseIdent()
lparen := p.consume(LPAREN)
params := p.parseParams()
rparen := p.consume(RPAREN)
p.consume(COLON)
body := p.parseSuite()
return &DefStmt{
Def: defpos,
Name: id,
Lparen: lparen,
Params: params,
Rparen: rparen,
Body: body,
}
}
func (p *parser) parseIfStmt() Stmt {
ifpos := p.nextToken() // consume IF
cond := p.parseTest()
p.consume(COLON)
body := p.parseSuite()
ifStmt := &IfStmt{
If: ifpos,
Cond: cond,
True: body,
}
tail := ifStmt
for p.tok == ELIF {
elifpos := p.nextToken() // consume ELIF
cond := p.parseTest()
p.consume(COLON)
body := p.parseSuite()
elif := &IfStmt{
If: elifpos,
Cond: cond,
True: body,
}
tail.ElsePos = elifpos
tail.False = []Stmt{elif}
tail = elif
}
if p.tok == ELSE {
tail.ElsePos = p.nextToken() // consume ELSE
p.consume(COLON)
tail.False = p.parseSuite()
}
return ifStmt
}
func (p *parser) parseForStmt() Stmt {
forpos := p.nextToken() // consume FOR
vars := p.parseForLoopVariables()
p.consume(IN)
x := p.parseExpr(false)
p.consume(COLON)
body := p.parseSuite()
return &ForStmt{
For: forpos,
Vars: vars,
X: x,
Body: body,
}
}
func (p *parser) parseWhileStmt() Stmt {
whilepos := p.nextToken() // consume WHILE
cond := p.parseTest()
p.consume(COLON)
body := p.parseSuite()
return &WhileStmt{
While: whilepos,
Cond: cond,
Body: body,
}
}
// Equivalent to 'exprlist' production in Python grammar.
//
// loop_variables = primary_with_suffix (COMMA primary_with_suffix)* COMMA?
func (p *parser) parseForLoopVariables() Expr {
// Avoid parseExpr because it would consume the IN token
// following x in "for x in y: ...".
v := p.parsePrimaryWithSuffix()
if p.tok != COMMA {
return v
}
list := []Expr{v}
for p.tok == COMMA {
p.nextToken()
if terminatesExprList(p.tok) {
break
}
list = append(list, p.parsePrimaryWithSuffix())
}
return &TupleExpr{List: list}
}
// simple_stmt = small_stmt (SEMI small_stmt)* SEMI? NEWLINE
// In REPL mode, it does not consume the NEWLINE.
func (p *parser) parseSimpleStmt(stmts []Stmt, consumeNL bool) []Stmt {
for {
stmts = append(stmts, p.parseSmallStmt())
if p.tok != SEMI {
break
}
p.nextToken() // consume SEMI
if p.tok == NEWLINE || p.tok == EOF {
break
}
}
// EOF without NEWLINE occurs in `if x: pass`, for example.
if p.tok != EOF && consumeNL {
p.consume(NEWLINE)
}
return stmts
}
// small_stmt = RETURN expr?
//
// | PASS | BREAK | CONTINUE
// | LOAD ...
// | expr ('=' | '+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' | '<<=' | '>>=') expr // assign
// | expr
func (p *parser) parseSmallStmt() Stmt {
switch p.tok {
case RETURN:
pos := p.nextToken() // consume RETURN
var result Expr
if p.tok != EOF && p.tok != NEWLINE && p.tok != SEMI {
result = p.parseExpr(false)
}
return &ReturnStmt{Return: pos, Result: result}
case BREAK, CONTINUE, PASS:
tok := p.tok
pos := p.nextToken() // consume it
return &BranchStmt{Token: tok, TokenPos: pos}
case LOAD:
return p.parseLoadStmt()
}
// Assignment
x := p.parseExpr(false)
switch p.tok {
case EQ, PLUS_EQ, MINUS_EQ, STAR_EQ, SLASH_EQ, SLASHSLASH_EQ, PERCENT_EQ, AMP_EQ, PIPE_EQ, CIRCUMFLEX_EQ, LTLT_EQ, GTGT_EQ:
op := p.tok
pos := p.nextToken() // consume op
rhs := p.parseExpr(false)
return &AssignStmt{OpPos: pos, Op: op, LHS: x, RHS: rhs}
}
// Expression statement (e.g. function call, doc string).
return &ExprStmt{X: x}
}
// stmt = LOAD '(' STRING {',' (IDENT '=')? STRING} [','] ')'
func (p *parser) parseLoadStmt() *LoadStmt {
loadPos := p.nextToken() // consume LOAD
lparen := p.consume(LPAREN)
if p.tok != STRING {
p.in.errorf(p.in.pos, "first operand of load statement must be a string literal")
}
module := p.parsePrimary().(*Literal)
var from, to []*Ident
for p.tok != RPAREN && p.tok != EOF {
p.consume(COMMA)
if p.tok == RPAREN {
break // allow trailing comma
}
switch p.tok {
case STRING:
// load("module", "id")
// To name is same as original.
lit := p.parsePrimary().(*Literal)
id := &Ident{
NamePos: lit.TokenPos.add(`"`),
Name: lit.Value.(string),
}
to = append(to, id)
from = append(from, id)
case IDENT:
// load("module", to="from")
id := p.parseIdent()
to = append(to, id)
if p.tok != EQ {
p.in.errorf(p.in.pos, `load operand must be "%[1]s" or %[1]s="originalname" (want '=' after %[1]s)`, id.Name)
}
p.consume(EQ)
if p.tok != STRING {
p.in.errorf(p.in.pos, `original name of loaded symbol must be quoted: %s="originalname"`, id.Name)
}
lit := p.parsePrimary().(*Literal)
from = append(from, &Ident{
NamePos: lit.TokenPos.add(`"`),
Name: lit.Value.(string),
})
default:
p.in.errorf(p.in.pos, `load operand must be "name" or localname="name" (got %#v)`, p.tok)
}
}
rparen := p.consume(RPAREN)
if len(to) == 0 {
p.in.errorf(lparen, "load statement must import at least 1 symbol")
}
return &LoadStmt{
Load: loadPos,
Module: module,
To: to,
From: from,
Rparen: rparen,
}
}
// suite is typically what follows a COLON (e.g. after DEF or FOR).
// suite = simple_stmt | NEWLINE INDENT stmt+ OUTDENT
func (p *parser) parseSuite() []Stmt {
if p.tok == NEWLINE {
p.nextToken() // consume NEWLINE
p.consume(INDENT)
var stmts []Stmt
for p.tok != OUTDENT && p.tok != EOF {
stmts = p.parseStmt(stmts)
}
p.consume(OUTDENT)
return stmts
}
return p.parseSimpleStmt(nil, true)
}
func (p *parser) parseIdent() *Ident {
if p.tok != IDENT {
p.in.error(p.in.pos, "not an identifier")
}
id := &Ident{
NamePos: p.tokval.pos,
Name: p.tokval.raw,
}
p.nextToken()
return id
}
func (p *parser) consume(t Token) Position {
if p.tok != t {
p.in.errorf(p.in.pos, "got %#v, want %#v", p.tok, t)
}
return p.nextToken()
}
// params = (param COMMA)* param COMMA?
//
// |
//
// param = IDENT
//
// | IDENT EQ test
// | STAR
// | STAR IDENT
// | STARSTAR IDENT
//
// parseParams parses a parameter list. The resulting expressions are of the form:
//
// *Ident x
// *Binary{Op: EQ, X: *Ident, Y: Expr} x=y
// *Unary{Op: STAR} *
// *Unary{Op: STAR, X: *Ident} *args
// *Unary{Op: STARSTAR, X: *Ident} **kwargs
func (p *parser) parseParams() []Expr {
var params []Expr
for p.tok != RPAREN && p.tok != COLON && p.tok != EOF {
if len(params) > 0 {
p.consume(COMMA)
}
if p.tok == RPAREN {
break
}
// * or *args or **kwargs
if p.tok == STAR || p.tok == STARSTAR {
op := p.tok
pos := p.nextToken()
var x Expr
if op == STARSTAR || p.tok == IDENT {
x = p.parseIdent()
}
params = append(params, &UnaryExpr{
OpPos: pos,
Op: op,
X: x,
})
continue
}
// IDENT
// IDENT = test
id := p.parseIdent()
if p.tok == EQ { // default value
eq := p.nextToken()
dflt := p.parseTest()
params = append(params, &BinaryExpr{
X: id,
OpPos: eq,
Op: EQ,
Y: dflt,
})
continue
}
params = append(params, id)
}
return params
}
// parseExpr parses an expression, possible consisting of a
// comma-separated list of 'test' expressions.
//
// In many cases we must use parseTest to avoid ambiguity such as
// f(x, y) vs. f((x, y)).
func (p *parser) parseExpr(inParens bool) Expr {
x := p.parseTest()
if p.tok != COMMA {
return x
}
// tuple
exprs := p.parseExprs([]Expr{x}, inParens)
return &TupleExpr{List: exprs}
}
// parseExprs parses a comma-separated list of expressions, starting with the comma.
// It is used to parse tuples and list elements.
// expr_list = (',' expr)* ','?
func (p *parser) parseExprs(exprs []Expr, allowTrailingComma bool) []Expr {
for p.tok == COMMA {
pos := p.nextToken()
if terminatesExprList(p.tok) {
if !allowTrailingComma {
p.in.error(pos, "unparenthesized tuple with trailing comma")
}
break
}
exprs = append(exprs, p.parseTest())
}
return exprs
}
// parseTest parses a 'test', a single-component expression.
func (p *parser) parseTest() Expr {
if p.tok == LAMBDA {
return p.parseLambda(true)
}
x := p.parseTestPrec(0)
// conditional expression (t IF cond ELSE f)
if p.tok == IF {
ifpos := p.nextToken()
cond := p.parseTestPrec(0)
if p.tok != ELSE {
p.in.error(ifpos, "conditional expression without else clause")
}
elsepos := p.nextToken()
else_ := p.parseTest()
return &CondExpr{If: ifpos, Cond: cond, True: x, ElsePos: elsepos, False: else_}
}
return x
}
// parseTestNoCond parses a single-component expression without
// consuming a trailing 'if expr else expr'.
func (p *parser) parseTestNoCond() Expr {
if p.tok == LAMBDA {
return p.parseLambda(false)
}
return p.parseTestPrec(0)
}
// parseLambda parses a lambda expression.
// The allowCond flag allows the body to be an 'a if b else c' conditional.
func (p *parser) parseLambda(allowCond bool) Expr {
lambda := p.nextToken()
var params []Expr
if p.tok != COLON {
params = p.parseParams()
}
p.consume(COLON)
var body Expr
if allowCond {
body = p.parseTest()
} else {
body = p.parseTestNoCond()
}
return &LambdaExpr{
Lambda: lambda,
Params: params,
Body: body,
}
}
func (p *parser) parseTestPrec(prec int) Expr {
if prec >= len(preclevels) {
return p.parsePrimaryWithSuffix()
}
// expr = NOT expr
if p.tok == NOT && prec == int(precedence[NOT]) {
pos := p.nextToken()
x := p.parseTestPrec(prec)
return &UnaryExpr{
OpPos: pos,
Op: NOT,
X: x,
}
}
return p.parseBinopExpr(prec)
}
// expr = test (OP test)*
// Uses precedence climbing; see http://www.engr.mun.ca/~theo/Misc/exp_parsing.htm#climbing.
func (p *parser) parseBinopExpr(prec int) Expr {
x := p.parseTestPrec(prec + 1)
for first := true; ; first = false {
if p.tok == NOT {
p.nextToken() // consume NOT
// In this context, NOT must be followed by IN.
// Replace NOT IN by a single NOT_IN token.
if p.tok != IN {
p.in.errorf(p.in.pos, "got %#v, want in", p.tok)
}
p.tok = NOT_IN
}
// Binary operator of specified precedence?
opprec := int(precedence[p.tok])
if opprec < prec {
return x
}
// Comparisons are non-associative.
if !first && opprec == int(precedence[EQL]) {
p.in.errorf(p.in.pos, "%s does not associate with %s (use parens)",
x.(*BinaryExpr).Op, p.tok)
}
op := p.tok
pos := p.nextToken()
y := p.parseTestPrec(opprec + 1)
x = &BinaryExpr{OpPos: pos, Op: op, X: x, Y: y}
}
}
// precedence maps each operator to its precedence (0-7), or -1 for other tokens.
var precedence [maxToken]int8
// preclevels groups operators of equal precedence.
// Comparisons are nonassociative; other binary operators associate to the left.
// Unary MINUS, unary PLUS, and TILDE have higher precedence so are handled in parsePrimary.
// See https://github.com/google/starlark-go/blob/master/doc/spec.md#binary-operators
var preclevels = [...][]Token{
{OR}, // or
{AND}, // and
{NOT}, // not (unary)
{EQL, NEQ, LT, GT, LE, GE, IN, NOT_IN}, // == != < > <= >= in not in
{PIPE}, // |
{CIRCUMFLEX}, // ^
{AMP}, // &
{LTLT, GTGT}, // << >>
{MINUS, PLUS}, // -
{STAR, PERCENT, SLASH, SLASHSLASH}, // * % / //
}
func init() {
// populate precedence table
for i := range precedence {
precedence[i] = -1
}
for level, tokens := range preclevels {
for _, tok := range tokens {
precedence[tok] = int8(level)
}
}
}
// primary_with_suffix = primary
//
// | primary '.' IDENT
// | primary slice_suffix
// | primary call_suffix
func (p *parser) parsePrimaryWithSuffix() Expr {
x := p.parsePrimary()
for {
switch p.tok {
case DOT:
dot := p.nextToken()
id := p.parseIdent()
x = &DotExpr{Dot: dot, X: x, Name: id}
case LBRACK:
x = p.parseSliceSuffix(x)
case LPAREN:
x = p.parseCallSuffix(x)
default:
return x
}
}
}
// slice_suffix = '[' expr? ':' expr? ':' expr? ']'
func (p *parser) parseSliceSuffix(x Expr) Expr {
lbrack := p.nextToken()
var lo, hi, step Expr
if p.tok != COLON {
y := p.parseExpr(false)
// index x[y]
if p.tok == RBRACK {
rbrack := p.nextToken()
return &IndexExpr{X: x, Lbrack: lbrack, Y: y, Rbrack: rbrack}
}
lo = y
}
// slice or substring x[lo:hi:step]
if p.tok == COLON {
p.nextToken()
if p.tok != COLON && p.tok != RBRACK {
hi = p.parseTest()
}
}
if p.tok == COLON {
p.nextToken()
if p.tok != RBRACK {
step = p.parseTest()
}
}
rbrack := p.consume(RBRACK)
return &SliceExpr{X: x, Lbrack: lbrack, Lo: lo, Hi: hi, Step: step, Rbrack: rbrack}
}
// call_suffix = '(' arg_list? ')'
func (p *parser) parseCallSuffix(fn Expr) Expr {
lparen := p.consume(LPAREN)
var rparen Position
var args []Expr
if p.tok == RPAREN {
rparen = p.nextToken()
} else {
args = p.parseArgs()
rparen = p.consume(RPAREN)
}
return &CallExpr{Fn: fn, Lparen: lparen, Args: args, Rparen: rparen}
}
// parseArgs parses a list of actual parameter values (arguments).
// It mirrors the structure of parseParams.
// arg_list = ((arg COMMA)* arg COMMA?)?
func (p *parser) parseArgs() []Expr {
var args []Expr
for p.tok != RPAREN && p.tok != EOF {
if len(args) > 0 {
p.consume(COMMA)
}
if p.tok == RPAREN {
break
}
// *args or **kwargs
if p.tok == STAR || p.tok == STARSTAR {
op := p.tok
pos := p.nextToken()
x := p.parseTest()
args = append(args, &UnaryExpr{
OpPos: pos,
Op: op,
X: x,
})
continue
}
// We use a different strategy from Bazel here to stay within LL(1).
// Instead of looking ahead two tokens (IDENT, EQ) we parse
// 'test = test' then check that the first was an IDENT.
x := p.parseTest()
if p.tok == EQ {
// name = value
if _, ok := x.(*Ident); !ok {
p.in.errorf(p.in.pos, "keyword argument must have form name=expr")
}
eq := p.nextToken()
y := p.parseTest()
x = &BinaryExpr{
X: x,
OpPos: eq,
Op: EQ,
Y: y,
}
}
args = append(args, x)
}
return args
}
// primary = IDENT
//
// | INT | FLOAT | STRING | BYTES
// | '[' ... // list literal or comprehension
// | '{' ... // dict literal or comprehension
// | '(' ... // tuple or parenthesized expression
// | ('-'|'+'|'~') primary_with_suffix
func (p *parser) parsePrimary() Expr {
switch p.tok {
case IDENT:
return p.parseIdent()
case INT, FLOAT, STRING, BYTES:
var val interface{}
tok := p.tok
switch tok {
case INT:
if p.tokval.bigInt != nil {
val = p.tokval.bigInt
} else {
val = p.tokval.int
}
case FLOAT:
val = p.tokval.float
case STRING, BYTES:
val = p.tokval.string
}
raw := p.tokval.raw
pos := p.nextToken()
return &Literal{Token: tok, TokenPos: pos, Raw: raw, Value: val}
case LBRACK:
return p.parseList()
case LBRACE:
return p.parseDict()
case LPAREN:
lparen := p.nextToken()
if p.tok == RPAREN {
// empty tuple
rparen := p.nextToken()
return &TupleExpr{Lparen: lparen, Rparen: rparen}
}
e := p.parseExpr(true) // allow trailing comma
rparen := p.consume(RPAREN)
return &ParenExpr{
Lparen: lparen,
X: e,
Rparen: rparen,
}
case MINUS, PLUS, TILDE: // unary
tok := p.tok
pos := p.nextToken()
x := p.parsePrimaryWithSuffix()
return &UnaryExpr{
OpPos: pos,
Op: tok,
X: x,
}
}
// Report start pos of final token as it may be a NEWLINE (#532).
p.in.errorf(p.tokval.pos, "got %#v, want primary expression", p.tok)
panic("unreachable")
}
// list = '[' ']'
//
// | '[' expr ']'
// | '[' expr expr_list ']'
// | '[' expr (FOR loop_variables IN expr)+ ']'
func (p *parser) parseList() Expr {
lbrack := p.nextToken()
if p.tok == RBRACK {
// empty List
rbrack := p.nextToken()
return &ListExpr{Lbrack: lbrack, Rbrack: rbrack}
}
x := p.parseTest()
if p.tok == FOR {
// list comprehension
return p.parseComprehensionSuffix(lbrack, x, RBRACK)
}
exprs := []Expr{x}
if p.tok == COMMA {
// multi-item list literal
exprs = p.parseExprs(exprs, true) // allow trailing comma
}
rbrack := p.consume(RBRACK)
return &ListExpr{Lbrack: lbrack, List: exprs, Rbrack: rbrack}
}
// dict = '{' '}'
//
// | '{' dict_entry_list '}'
// | '{' dict_entry FOR loop_variables IN expr '}'
func (p *parser) parseDict() Expr {
lbrace := p.nextToken()
if p.tok == RBRACE {
// empty dict
rbrace := p.nextToken()
return &DictExpr{Lbrace: lbrace, Rbrace: rbrace}
}
x := p.parseDictEntry()
if p.tok == FOR {
// dict comprehension
return p.parseComprehensionSuffix(lbrace, x, RBRACE)
}
entries := []Expr{x}
for p.tok == COMMA {
p.nextToken()
if p.tok == RBRACE {
break
}
entries = append(entries, p.parseDictEntry())
}
rbrace := p.consume(RBRACE)
return &DictExpr{Lbrace: lbrace, List: entries, Rbrace: rbrace}
}
// dict_entry = test ':' test
func (p *parser) parseDictEntry() *DictEntry {
k := p.parseTest()
colon := p.consume(COLON)
v := p.parseTest()
return &DictEntry{Key: k, Colon: colon, Value: v}
}
// comp_suffix = FOR loopvars IN expr comp_suffix
//
// | IF expr comp_suffix
// | ']' or ')' (end)
//
// There can be multiple FOR/IF clauses; the first is always a FOR.
func (p *parser) parseComprehensionSuffix(lbrace Position, body Expr, endBrace Token) Expr {
var clauses []Node
for p.tok != endBrace {
if p.tok == FOR {
pos := p.nextToken()
vars := p.parseForLoopVariables()
in := p.consume(IN)
// Following Python 3, the operand of IN cannot be:
// - a conditional expression ('x if y else z'),
// due to conflicts in Python grammar
// ('if' is used by the comprehension);
// - a lambda expression
// - an unparenthesized tuple.
x := p.parseTestPrec(0)
clauses = append(clauses, &ForClause{For: pos, Vars: vars, In: in, X: x})
} else if p.tok == IF {
pos := p.nextToken()
cond := p.parseTestNoCond()
clauses = append(clauses, &IfClause{If: pos, Cond: cond})
} else {
p.in.errorf(p.in.pos, "got %#v, want '%s', for, or if", p.tok, endBrace)
}
}
rbrace := p.nextToken()
return &Comprehension{
Curly: endBrace == RBRACE,
Lbrack: lbrace,
Body: body,
Clauses: clauses,
Rbrack: rbrace,
}
}
func terminatesExprList(tok Token) bool {
switch tok {
case EOF, NEWLINE, EQ, RBRACE, RBRACK, RPAREN, SEMI:
return true
}
return false
}
// Comment assignment.
// We build two lists of all subnodes, preorder and postorder.
// The preorder list is ordered by start location, with outer nodes first.
// The postorder list is ordered by end location, with outer nodes last.
// We use the preorder list to assign each whole-line comment to the syntax
// immediately following it, and we use the postorder list to assign each
// end-of-line comment to the syntax immediately preceding it.
// flattenAST returns the list of AST nodes, both in prefix order and in postfix
// order.
func flattenAST(root Node) (pre, post []Node) {
stack := []Node{}
Walk(root, func(n Node) bool {
if n != nil {
pre = append(pre, n)
stack = append(stack, n)
} else {
post = append(post, stack[len(stack)-1])
stack = stack[:len(stack)-1]
}
return true
})
return pre, post
}
// assignComments attaches comments to nearby syntax.
func (p *parser) assignComments(n Node) {
// Leave early if there are no comments
if len(p.in.lineComments)+len(p.in.suffixComments) == 0 {
return
}
pre, post := flattenAST(n)
// Assign line comments to syntax immediately following.
line := p.in.lineComments
for _, x := range pre {
start, _ := x.Span()
switch x.(type) {
case *File:
continue
}
for len(line) > 0 && !start.isBefore(line[0].Start) {
x.AllocComments()
x.Comments().Before = append(x.Comments().Before, line[0])
line = line[1:]
}
}
// Remaining line comments go at end of file.
if len(line) > 0 {
n.AllocComments()
n.Comments().After = append(n.Comments().After, line...)
}
// Assign suffix comments to syntax immediately before.
suffix := p.in.suffixComments
for i := len(post) - 1; i >= 0; i-- {
x := post[i]
// Do not assign suffix comments to file
switch x.(type) {
case *File:
continue
}
_, end := x.Span()
if len(suffix) > 0 && end.isBefore(suffix[len(suffix)-1].Start) {
x.AllocComments()
x.Comments().Suffix = append(x.Comments().Suffix, suffix[len(suffix)-1])
suffix = suffix[:len(suffix)-1]
}
}
}
|