1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
<!--{
"Title": "Data Race Detector",
"Template": true
}-->
<h2 id="Introduction">Introduction</h2>
<p>
Data races are among the most common and hardest to debug types of bugs in concurrent systems.
A data race occurs when two goroutines access the same variable concurrently and at least one of the accesses is a write.
See the <a href="/ref/mem/">The Go Memory Model</a> for details.
</p>
<p>
Here is an example of a data race that can lead to crashes and memory corruption:
</p>
<pre>
func main() {
c := make(chan bool)
m := make(map[string]string)
go func() {
m["1"] = "a" // First conflicting access.
c <- true
}()
m["2"] = "b" // Second conflicting access.
<-c
for k, v := range m {
fmt.Println(k, v)
}
}
</pre>
<h2 id="Usage">Usage</h2>
<p>
To help diagnose such bugs, Go includes a built-in data race detector.
To use it, add the <code>-race</code> flag to the go command:
</p>
<pre>
$ go test -race mypkg // to test the package
$ go run -race mysrc.go // to run the source file
$ go build -race mycmd // to build the command
$ go install -race mypkg // to install the package
</pre>
<h2 id="Report_Format">Report Format</h2>
<p>
When the race detector finds a data race in the program, it prints a report.
The report contains stack traces for conflicting accesses, as well as stacks where the involved goroutines were created.
Here is an example:
</p>
<pre>
WARNING: DATA RACE
Read by goroutine 185:
net.(*pollServer).AddFD()
src/net/fd_unix.go:89 +0x398
net.(*pollServer).WaitWrite()
src/net/fd_unix.go:247 +0x45
net.(*netFD).Write()
src/net/fd_unix.go:540 +0x4d4
net.(*conn).Write()
src/net/net.go:129 +0x101
net.func·060()
src/net/timeout_test.go:603 +0xaf
Previous write by goroutine 184:
net.setWriteDeadline()
src/net/sockopt_posix.go:135 +0xdf
net.setDeadline()
src/net/sockopt_posix.go:144 +0x9c
net.(*conn).SetDeadline()
src/net/net.go:161 +0xe3
net.func·061()
src/net/timeout_test.go:616 +0x3ed
Goroutine 185 (running) created at:
net.func·061()
src/net/timeout_test.go:609 +0x288
Goroutine 184 (running) created at:
net.TestProlongTimeout()
src/net/timeout_test.go:618 +0x298
testing.tRunner()
src/testing/testing.go:301 +0xe8
</pre>
<h2 id="Options">Options</h2>
<p>
The <code>GORACE</code> environment variable sets race detector options.
The format is:
</p>
<pre>
GORACE="option1=val1 option2=val2"
</pre>
<p>
The options are:
</p>
<ul>
<li>
<code>log_path</code> (default <code>stderr</code>): The race detector writes
its report to a file named <code>log_path.<em>pid</em></code>.
The special names <code>stdout</code>
and <code>stderr</code> cause reports to be written to standard output and
standard error, respectively.
</li>
<li>
<code>exitcode</code> (default <code>66</code>): The exit status to use when
exiting after a detected race.
</li>
<li>
<code>strip_path_prefix</code> (default <code>""</code>): Strip this prefix
from all reported file paths, to make reports more concise.
</li>
<li>
<code>history_size</code> (default <code>1</code>): The per-goroutine memory
access history is <code>32K * 2**history_size elements</code>.
Increasing this value can avoid a "failed to restore the stack" error in reports, at the
cost of increased memory usage.
</li>
<li>
<code>halt_on_error</code> (default <code>0</code>): Controls whether the program
exits after reporting first data race.
</li>
</ul>
<p>
Example:
</p>
<pre>
$ GORACE="log_path=/tmp/race/report strip_path_prefix=/my/go/sources/" go test -race
</pre>
<h2 id="Excluding_Tests">Excluding Tests</h2>
<p>
When you build with <code>-race</code> flag, the <code>go</code> command defines additional
<a href="/pkg/go/build/#hdr-Build_Constraints">build tag</a> <code>race</code>.
You can use the tag to exclude some code and tests when running the race detector.
Some examples:
</p>
<pre>
// +build !race
package foo
// The test contains a data race. See issue 123.
func TestFoo(t *testing.T) {
// ...
}
// The test fails under the race detector due to timeouts.
func TestBar(t *testing.T) {
// ...
}
// The test takes too long under the race detector.
func TestBaz(t *testing.T) {
// ...
}
</pre>
<h2 id="How_To_Use">How To Use</h2>
<p>
To start, run your tests using the race detector (<code>go test -race</code>).
The race detector only finds races that happen at runtime, so it can't find
races in code paths that are not executed.
If your tests have incomplete coverage,
you may find more races by running a binary built with <code>-race</code> under a realistic
workload.
</p>
<h2 id="Typical_Data_Races">Typical Data Races</h2>
<p>
Here are some typical data races. All of them can be detected with the race detector.
</p>
<h3 id="Race_on_loop_counter">Race on loop counter</h3>
<pre>
func main() {
var wg sync.WaitGroup
wg.Add(5)
for i := 0; i < 5; i++ {
go func() {
fmt.Println(i) // Not the 'i' you are looking for.
wg.Done()
}()
}
wg.Wait()
}
</pre>
<p>
The variable <code>i</code> in the function literal is the same variable used by the loop, so
the read in the goroutine races with the loop increment.
(This program typically prints 55555, not 01234.)
The program can be fixed by making a copy of the variable:
</p>
<pre>
func main() {
var wg sync.WaitGroup
wg.Add(5)
for i := 0; i < 5; i++ {
go func(j int) {
fmt.Println(j) // Good. Read local copy of the loop counter.
wg.Done()
}(i)
}
wg.Wait()
}
</pre>
<h3 id="Accidentally_shared_variable">Accidentally shared variable</h3>
<pre>
// ParallelWrite writes data to file1 and file2, returns the errors.
func ParallelWrite(data []byte) chan error {
res := make(chan error, 2)
f1, err := os.Create("file1")
if err != nil {
res <- err
} else {
go func() {
// This err is shared with the main goroutine,
// so the write races with the write below.
_, err = f1.Write(data)
res <- err
f1.Close()
}()
}
f2, err := os.Create("file2") // The second conflicting write to err.
if err != nil {
res <- err
} else {
go func() {
_, err = f2.Write(data)
res <- err
f2.Close()
}()
}
return res
}
</pre>
<p>
The fix is to introduce new variables in the goroutines (note the use of <code>:=</code>):
</p>
<pre>
...
_, err := f1.Write(data)
...
_, err := f2.Write(data)
...
</pre>
<h3 id="Unprotected_global_variable">Unprotected global variable</h3>
<p>
If the following code is called from several goroutines, it leads to races on the <code>service</code> map.
Concurrent reads and writes of the same map are not safe:
</p>
<pre>
var service map[string]net.Addr
func RegisterService(name string, addr net.Addr) {
service[name] = addr
}
func LookupService(name string) net.Addr {
return service[name]
}
</pre>
<p>
To make the code safe, protect the accesses with a mutex:
</p>
<pre>
var (
service map[string]net.Addr
serviceMu sync.Mutex
)
func RegisterService(name string, addr net.Addr) {
serviceMu.Lock()
defer serviceMu.Unlock()
service[name] = addr
}
func LookupService(name string) net.Addr {
serviceMu.Lock()
defer serviceMu.Unlock()
return service[name]
}
</pre>
<h3 id="Primitive_unprotected_variable">Primitive unprotected variable</h3>
<p>
Data races can happen on variables of primitive types as well (<code>bool</code>, <code>int</code>, <code>int64</code>, etc.),
as in this example:
</p>
<pre>
type Watchdog struct{ last int64 }
func (w *Watchdog) KeepAlive() {
w.last = time.Now().UnixNano() // First conflicting access.
}
func (w *Watchdog) Start() {
go func() {
for {
time.Sleep(time.Second)
// Second conflicting access.
if w.last < time.Now().Add(-10*time.Second).UnixNano() {
fmt.Println("No keepalives for 10 seconds. Dying.")
os.Exit(1)
}
}
}()
}
</pre>
<p>
Even such "innocent" data races can lead to hard-to-debug problems caused by
non-atomicity of the memory accesses,
interference with compiler optimizations,
or reordering issues accessing processor memory .
</p>
<p>
A typical fix for this race is to use a channel or a mutex.
To preserve the lock-free behavior, one can also use the
<a href="/pkg/sync/atomic/"><code>sync/atomic</code></a> package.
</p>
<pre>
type Watchdog struct{ last int64 }
func (w *Watchdog) KeepAlive() {
atomic.StoreInt64(&w.last, time.Now().UnixNano())
}
func (w *Watchdog) Start() {
go func() {
for {
time.Sleep(time.Second)
if atomic.LoadInt64(&w.last) < time.Now().Add(-10*time.Second).UnixNano() {
fmt.Println("No keepalives for 10 seconds. Dying.")
os.Exit(1)
}
}
}()
}
</pre>
<h2 id="Supported_Systems">Supported Systems</h2>
<p>
The race detector runs on <code>darwin/amd64</code>, <code>freebsd/amd64</code>,
<code>linux/amd64</code>, and <code>windows/amd64</code>.
</p>
<h2 id="Runtime_Overheads">Runtime Overhead</h2>
<p>
The cost of race detection varies by program, but for a typical program, memory
usage may increase by 5-10x and execution time by 2-20x.
</p>
|