1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "stack.h"
#include "malloc.h"
#include "textflag.h"
// Code related to defer, panic and recover.
// TODO: remove once code is moved to Go
extern Defer* runtime·newdefer(int32 siz);
extern runtime·freedefer(Defer *d);
uint32 runtime·panicking;
static Mutex paniclk;
void
runtime·deferproc_m(void)
{
int32 siz;
FuncVal *fn;
uintptr argp;
uintptr callerpc;
Defer *d;
siz = g->m->scalararg[0];
fn = g->m->ptrarg[0];
argp = g->m->scalararg[1];
callerpc = g->m->scalararg[2];
g->m->ptrarg[0] = nil;
g->m->scalararg[1] = 0;
d = runtime·newdefer(siz);
if(d->panic != nil)
runtime·throw("deferproc: d->panic != nil after newdefer");
d->fn = fn;
d->pc = callerpc;
d->argp = argp;
runtime·memmove(d+1, (void*)argp, siz);
}
// Unwind the stack after a deferred function calls recover
// after a panic. Then arrange to continue running as though
// the caller of the deferred function returned normally.
void
runtime·recovery_m(G *gp)
{
void *argp;
uintptr pc;
// Info about defer passed in G struct.
argp = (void*)gp->sigcode0;
pc = (uintptr)gp->sigcode1;
// d's arguments need to be in the stack.
if(argp != nil && ((uintptr)argp < gp->stack.lo || gp->stack.hi < (uintptr)argp)) {
runtime·printf("recover: %p not in [%p, %p]\n", argp, gp->stack.lo, gp->stack.hi);
runtime·throw("bad recovery");
}
// Make the deferproc for this d return again,
// this time returning 1. The calling function will
// jump to the standard return epilogue.
// The -2*sizeof(uintptr) makes up for the
// two extra words that are on the stack at
// each call to deferproc.
// (The pc we're returning to does pop pop
// before it tests the return value.)
// On the arm there are 2 saved LRs mixed in too.
if(thechar == '5')
gp->sched.sp = (uintptr)argp - 4*sizeof(uintptr);
else
gp->sched.sp = (uintptr)argp - 2*sizeof(uintptr);
gp->sched.pc = pc;
gp->sched.lr = 0;
gp->sched.ret = 1;
runtime·gogo(&gp->sched);
}
void
runtime·startpanic_m(void)
{
if(runtime·mheap.cachealloc.size == 0) { // very early
runtime·printf("runtime: panic before malloc heap initialized\n");
g->m->mallocing = 1; // tell rest of panic not to try to malloc
} else if(g->m->mcache == nil) // can happen if called from signal handler or throw
g->m->mcache = runtime·allocmcache();
switch(g->m->dying) {
case 0:
g->m->dying = 1;
if(g != nil) {
g->writebuf.array = nil;
g->writebuf.len = 0;
g->writebuf.cap = 0;
}
runtime·xadd(&runtime·panicking, 1);
runtime·lock(&paniclk);
if(runtime·debug.schedtrace > 0 || runtime·debug.scheddetail > 0)
runtime·schedtrace(true);
runtime·freezetheworld();
return;
case 1:
// Something failed while panicing, probably the print of the
// argument to panic(). Just print a stack trace and exit.
g->m->dying = 2;
runtime·printf("panic during panic\n");
runtime·dopanic(0);
runtime·exit(3);
case 2:
// This is a genuine bug in the runtime, we couldn't even
// print the stack trace successfully.
g->m->dying = 3;
runtime·printf("stack trace unavailable\n");
runtime·exit(4);
default:
// Can't even print! Just exit.
runtime·exit(5);
}
}
void
runtime·dopanic_m(void)
{
G *gp;
uintptr sp, pc;
static bool didothers;
bool crash;
int32 t;
gp = g->m->ptrarg[0];
g->m->ptrarg[0] = nil;
pc = g->m->scalararg[0];
sp = g->m->scalararg[1];
g->m->scalararg[1] = 0;
if(gp->sig != 0)
runtime·printf("[signal %x code=%p addr=%p pc=%p]\n",
gp->sig, gp->sigcode0, gp->sigcode1, gp->sigpc);
if((t = runtime·gotraceback(&crash)) > 0){
if(gp != gp->m->g0) {
runtime·printf("\n");
runtime·goroutineheader(gp);
runtime·traceback(pc, sp, 0, gp);
} else if(t >= 2 || g->m->throwing > 0) {
runtime·printf("\nruntime stack:\n");
runtime·traceback(pc, sp, 0, gp);
}
if(!didothers) {
didothers = true;
runtime·tracebackothers(gp);
}
}
runtime·unlock(&paniclk);
if(runtime·xadd(&runtime·panicking, -1) != 0) {
// Some other m is panicking too.
// Let it print what it needs to print.
// Wait forever without chewing up cpu.
// It will exit when it's done.
static Mutex deadlock;
runtime·lock(&deadlock);
runtime·lock(&deadlock);
}
if(crash)
runtime·crash();
runtime·exit(2);
}
#pragma textflag NOSPLIT
bool
runtime·canpanic(G *gp)
{
M *m;
uint32 status;
// Note that g is m->gsignal, different from gp.
// Note also that g->m can change at preemption, so m can go stale
// if this function ever makes a function call.
m = g->m;
// Is it okay for gp to panic instead of crashing the program?
// Yes, as long as it is running Go code, not runtime code,
// and not stuck in a system call.
if(gp == nil || gp != m->curg)
return false;
if(m->locks-m->softfloat != 0 || m->mallocing != 0 || m->throwing != 0 || m->gcing != 0 || m->dying != 0)
return false;
status = runtime·readgstatus(gp);
if((status&~Gscan) != Grunning || gp->syscallsp != 0)
return false;
#ifdef GOOS_windows
if(m->libcallsp != 0)
return false;
#endif
return true;
}
|