File: sec.c

package info (click to toggle)
golf 601.4.41-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,824 kB
  • sloc: ansic: 20,020; sh: 1,171; makefile: 292
file content (526 lines) | stat: -rw-r--r-- 19,935 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
// SPDX-License-Identifier: Apache-2.0
// Copyright 2018-2025 Gliim LLC. 
// Licensed under Apache License v2. See LICENSE file.
// On the web http://golf-lang.com/ - this file is part of Golf framework.

// 
// Security-related functions for GOLF and run-time
// (getting db credentials, encryption etc)
//


#include "golf.h"
#include <openssl/err.h>

#if OPENSSL_VERSION_MAJOR  >= 3
typedef EVP_MD gg_type_dig;
#else
typedef const EVP_MD gg_type_dig;
#endif

// Prototypes
void gg_sec_err (char *err);
gg_type_dig *gg_get_digest(char *digest_name);

//
// Get digest based on digest_name, accounts for various OpenSSL versions
//
gg_type_dig *gg_get_digest(char *digest_name)
{
    GG_TRACE("");
    gg_type_dig *md = NULL;
#if OPENSSL_VERSION_MAJOR  >= 3
// in OpenSSL3, only if the implementation of digest exists, it will be non-NULL, while EV_get_digestbyname may return non-NULL
// even if not existing
    md = EVP_MD_fetch(NULL, digest_name, NULL);
#else
    md = EVP_get_digestbyname(digest_name);
#endif
    if (md == NULL) gg_sec_err ("Unknown digest");
    return md;
}


//
// Generate HMAC (hash-based message authentication code) for data based on key and hash algo digest_name
// Returns the HMAC.
// If binary is true, then output binary data (otherwise it's hex human readable by default)
//
char *gg_hmac (char *key, char *data, char *digest_name, bool binary)
{
    GG_TRACE("");
    unsigned char hmac[EVP_MAX_MD_SIZE + 1]; // result

    // final result, which may be hex, so it would be double size
    char *out = gg_malloc (binary ? (EVP_MAX_MD_SIZE + 1) : ((EVP_MAX_MD_SIZE + 1)*2)+ 2) ; // +2 is just in case for null

    // get digest
    gg_type_dig *md = gg_get_digest(digest_name);

    // do hmac
    int key_len = (int)gg_mem_get_len(gg_mem_get_id( key) );
    int data_len = (int)gg_mem_get_len(gg_mem_get_id( data) );
    unsigned int res_len;
    if (HMAC(md, key, key_len, (unsigned char*)data, data_len, binary?(unsigned char*)out:hmac, &res_len) == NULL) gg_sec_err ("Cannot create HMAC");

#if OPENSSL_VERSION_MAJOR  >= 3
    EVP_MD_free(md); // EVP_get_digestbyname doesn't need freeing
#endif

    // if binary the output is done, set the output length
    if (binary) { gg_mem_set_len (gg_mem_get_id(out), (gg_num)res_len+1); return out; }

    char *p = out;
    // This is if not binary, convert hash to out, which is hexstring
    gg_num i;
    for ( i = 0; i < res_len; i++, p += 2 ) 
    {
        GG_HEX_FROM_BYTE (p, (unsigned int)hmac[i]);
    }
    *p = 0;
    gg_mem_set_len (gg_mem_get_id(out), p - out+1); 
    return out;
}

//
// CSPRNG random data generator. buf is the pre-allocated buffer,
// gg_num is the space available. Returns 1 if okay, otherwise couldn't do it
//
int gg_RAND_bytes(unsigned char *buf, int num) 
{
    GG_TRACE("");
    return RAND_bytes (buf, num);
}

//
// Load crypto cipher and digest algos on startup, called from generated stub for main
//
void gg_sec_load_algos(void) 
{
    GG_TRACE("");
    OpenSSL_add_all_algorithms(); // so algos are available when asked for
}

// 
// Errors out.
// 'err' is golf messsage, which is supplemented with crypto-provider's message
// it doesn't return, rather ends with fatal error
//
void gg_sec_err (char *err)
{
    GG_TRACE("");
    BIO *bio = BIO_new (BIO_s_mem ()); // this can fail with NULL
    if (bio == NULL) gg_report_error ("%s [could not obtain error message]", err);
    ERR_print_errors (bio); // cannot fail
    char *buf = NULL;
    size_t len = BIO_get_mem_data (bio, &buf); // returns buf, len
    // to get the earliest error: ERR_error_string(ERR_get_error(), NULL)
    gg_report_error ("%s [%.*s]", err, (int)len, buf);
    BIO_free (bio); // never really gets here, but no matter, the program is gone
}


// 
// Return hash value of 'val'.
// 'digest_name' is the name of digest algorithm, see 'openssl list cipher-algorithm'
// The result is a zero-terminated string in hex representation - XX bytes + zero byte.
// XX can be 64, 96 or some other number depending on digest.
// if 'binary' is true, the output is binary.
//
char *gg_hash_data( char *val, char *digest_name, bool binary)
{
    GG_TRACE("");
    unsigned char hash[EVP_MAX_MD_SIZE + 1];

    EVP_MD_CTX *mdctx;
    if ((mdctx = EVP_MD_CTX_new()) == NULL) gg_sec_err ("Cannot allocate digest context");

    // get digest
    gg_type_dig *md = gg_get_digest(digest_name);

    EVP_MD_CTX_init(mdctx);
    EVP_DigestInit_ex(mdctx, md, NULL);

    gg_num msg_length = gg_mem_get_len(gg_mem_get_id( val) );

    char *out = (char *) gg_malloc( binary ? (EVP_MAX_MD_SIZE + 1) : ((EVP_MAX_MD_SIZE + 1)*2)+ 2) ; // +2 is just in case for null
    gg_num id = gg_mem_get_id (out);

    char *p = out;
    EVP_DigestUpdate(mdctx, val,(unsigned int) msg_length);
    EVP_DigestFinal_ex(mdctx,binary?(unsigned char*)out:hash, (unsigned int*)&msg_length);
    EVP_MD_CTX_free (mdctx);
    out[msg_length] = 0; // place null after useful data anyway

#if OPENSSL_VERSION_MAJOR  >= 3
    EVP_MD_free(md); // EVP_get_digestbyname doesn't need freeing
#endif    

    // if binary the output is done, set the output length
    if (binary) { gg_mem_set_len (id, msg_length+1); return out; }

    // This is if not binary, convert hash to out, which is hexstring
    gg_num i;
    for ( i = 0; i < msg_length; i++, p += 2 ) 
    {
        GG_HEX_FROM_BYTE (p, (unsigned int)hash[i]);
    }
    *p = 0;
    gg_mem_set_len (id, p - out+1); 
    return out;
}


// 
// Return KD (key derivation) of 'val'. Uses PBKDF2. val_len is length of val or -1 if null-terminated.
// 'digest_name' is the name of digest algorithm, see 'openssl list cipher-algorithm'
// iter_count is gg_num of iterations, salt/salt_len is salt and its length (0 for salt_len if null-terminated)
// key_len is the desired length of output (though string is not of that length)
// if binary is true, the output is binary of key_len length
// The result is a zero-terminated string in hex representation.
//
char *gg_derive_key( char *val, gg_num val_len, char *digest_name, gg_num iter_count, char *salt, gg_num salt_len, gg_num key_len, bool binary )
{
    GG_TRACE("");
    // +1 as 0 is placed after each
    unsigned char *key = gg_malloc (key_len + 1);

    // get digest
    gg_type_dig *dgst = gg_get_digest(digest_name);


    if (iter_count == -1) iter_count=1000; 
    if (salt != NULL) 
    {
        gg_num id = gg_mem_get_id(salt);
        if (salt_len == 0) salt_len = gg_mem_get_len(id);
        else if (salt_len > gg_mem_get_len(id))  gg_report_error ("Memory read requested salt of length [%ld] but only [%ld] allocated", salt_len, gg_mem_get_len(id));

    }
    gg_num vl;
    gg_num id = gg_mem_get_id(val);
    if (val_len != -1)
    {
        if (val_len > gg_mem_get_len(id)) gg_report_error ("Memory read requested value of length [%ld] but only [%ld] allocated", val_len, gg_mem_get_len(id));
        vl = val_len;
    } else vl = gg_mem_get_len(id); 
    if (!PKCS5_PBKDF2_HMAC (val, (size_t)vl, (const unsigned char *)salt, salt_len, iter_count, dgst, key_len, key))
    {
        gg_sec_err ("Cannot generate key");
    }
#if OPENSSL_VERSION_MAJOR  >= 3
    EVP_MD_free(dgst); // EVP_get_digestbyname doesn't need freeing
#endif

    if (binary) 
    {
        key[key_len] = 0; // this has the exact length from malloc above
        return (char*)key;
    }
    else
    {
        char *out = (char *) gg_malloc( sizeof(char) * (((key_len + 1)*2)+1) );
        gg_num id = gg_mem_get_id (out);
        char *p = out;
        gg_num i;
        for ( i = 0; i < key_len; i++, p += 2 ) 
        {
            GG_HEX_FROM_BYTE (p, (unsigned int)key[i]);
        }
        *p = 0;
        gg_mem_set_len (id, p - out+1); // set exact memory length
        gg_free_int (key);
        return out;
    }

}


// 
// Produce a key and IV out of password
// Then use this key/IV to actually encrypt or decrypt.
// 'password' is the password to encrypt with. 'e_ctx' is encrypt context
// (used to encrypt) and 'd_ctx' is decrypt context (used to decrypt).
// 'salt' is the salt used. salt_len is the length of salt, if 0 then strlen(salt), also if salt is NULL, salt_len must be 0.
// iter_count is the number of iterations in generating key and IV, if -1 then it's 1000
// 'cipher' is the cipher algorithm name. This is something one can see with 'openssl list cipher-algorithm'
// Golf does not restrict what this may be - which depends on what providers are present on the system,
// it only supplies the default, which is currently aes256.
// 'digest_name' is the digest algo name. This is something one can see with 'openssl list digest-algorithm'
// Golf does not restrict what this may be - which depends on what providers are present on the system,
// it only supplies the default, which is currently sha256
// Either e_ctx or d_ctx can be NULL (if we're only encrypting or decrypting).
// Returns 0 if cannot produce the context, 1 if okay.
//
gg_num gg_get_enc_key(char *password, char *salt, gg_num salt_len, gg_num iter_count, EVP_CIPHER_CTX *e_ctx, 
             EVP_CIPHER_CTX *d_ctx, char *cipher_name, char *digest_name)
{
    GG_TRACE("");


    // +1 as 0 is placed after each
    unsigned char key[EVP_MAX_KEY_LENGTH+EVP_MAX_IV_LENGTH+1];

#if OPENSSL_VERSION_MAJOR  >= 3
// in OpenSSL3, only if the implementation of cipher exists, it will be non-NULL, while EV_get_cipherbyname may return non-NULL
// even if not existing
    EVP_CIPHER *cipher;
    cipher = EVP_CIPHER_fetch(NULL, cipher_name, NULL);
#else
    const EVP_CIPHER *cipher;
    cipher = EVP_get_cipherbyname(cipher_name);
#endif
    if(!cipher) { 
        GG_TRACE("Cipher name [%s]", cipher_name);
        gg_sec_err ("Cipher not found");
    }

    // get digest
    gg_type_dig *dgst = gg_get_digest(digest_name);

    if (salt != NULL && salt_len == 0) salt_len = gg_mem_get_len(gg_mem_get_id(salt));
    if (iter_count == -1) iter_count=1000; 

    int key_len = EVP_CIPHER_key_length(cipher);
    int iv_len = EVP_CIPHER_iv_length(cipher);

    if (!PKCS5_PBKDF2_HMAC (password, gg_mem_get_len(gg_mem_get_id(password)), (const unsigned char *)salt, salt_len, iter_count, dgst, key_len + iv_len, key))
    {
        gg_sec_err ("Cannot convert password to keyring");
    }

    // This is the reason for encrypt/decrypt in new-key: if we didn't have that
    // then these two would have to repeat for every encryption/decryption, which would
    // make it slower
    if (e_ctx != NULL)
    {
        EVP_CIPHER_CTX_init(e_ctx);
#if OPENSSL_VERSION_MAJOR  >= 3
        if (EVP_EncryptInit_ex2(e_ctx, cipher, key, key+key_len, NULL) !=1) 
#else
        if (EVP_EncryptInit_ex(e_ctx, cipher, NULL, key, key+key_len) !=1) 
#endif
        {
            gg_sec_err ("Cannot encrypt");
        }
    }
    if (d_ctx != NULL)
    {
        EVP_CIPHER_CTX_init(d_ctx);
#if OPENSSL_VERSION_MAJOR  >= 3
        if (EVP_DecryptInit_ex2(d_ctx, cipher, key, key+key_len, NULL) != 1) 
#else
        if (EVP_DecryptInit_ex(d_ctx, cipher, NULL, key, key+key_len) != 1) 
#endif
        {
            gg_sec_err ("Cannot decrypt");
        }
    }
#if OPENSSL_VERSION_MAJOR  >= 3
    EVP_MD_free(dgst); // EVP_get_digestbyname doesn't need freeing
    EVP_CIPHER_free(cipher); // EVP_get_cipherbyname doesn't need freeing
#endif

    return 1;
             
}

// 
// Encrypt string 'plaintext' and return encrypted value, with output parameter 
// 'len' being the length of this encrypted value returned by the function. *len is
// the length of data to encrypt, and also the output length after being done (excluding zero byte at the end).
// is_binary is 1 if the encrypted value is binary and not hex-string, otherwise 0.
// We allocate new memory for encrypted value - caller must de-allocate (this is gg_
// allocation, so you may just leave it to be collected by GOLF memory garbage collector.
// 'e' is the encryption context, produced as e_ctx in gg_get_enc_key().
// iv is the nonce (IV), the length of which should be sufficient for the algorithm
// The maximum length of encrypted data is 2*(input_len+AES_BLOCK_SIZE)+1. Note that 
// AES_BLOCK_SIZE is always 16 bytes. So the maximum is 2*(input_len+16)+1 for the purposes
// of sizing.
//
char *gg_encrypt(EVP_CIPHER_CTX *e, const unsigned char *plaintext, gg_num *len, gg_num is_binary, unsigned char *iv)
{
    gg_num id = gg_mem_get_id((char*)plaintext);
    if (*len == -1) *len = gg_mem_get_len(id);
    else if (*len > gg_mem_get_len(id)) gg_report_error ("Memory used is of length [%ld] but only [%ld] allocated", *len, gg_mem_get_len(id));

    /* maximum length for encrypted value is *len + BLOCK_SIZE -1 
      and block size depends on cipher with EVP_MAX_IV_LENGTH being the max for all if this ever fails*/
    int p_len = *len + EVP_CIPHER_CTX_block_size (e);
    int f_len = 0;
    unsigned char *ciphertext = gg_malloc(p_len+1);  // even for binary, there's +1 allocated
           
    // reuse the values already set, so same context can be reused for multiple encryptions
    // except nonce (IV), which is unique each time
    // if iv is NULL, Golf allows that only if cache is not used. In that case, the password is
    // computed each time and salt must be different each time, so new iv is generated every time.
    if (iv != NULL)
    {
        // make sure IV length is sufficient, or otherwise EVP_EncryptInit_ex2 will SIGSEG trying to copy nonexistent bytes
#if OPENSSL_VERSION_MAJOR  >= 3
        int req_ivlen = EVP_CIPHER_CTX_get_iv_length(e);
#else
        int req_ivlen = EVP_CIPHER_CTX_iv_length(e);
#endif
        gg_num iv_len = gg_mem_get_len (gg_mem_get_id(iv)); 
        if (iv_len < req_ivlen) gg_report_error ("Length of Initialization Vector (IV) must be [%d] but only [%ld] allocated", req_ivlen, iv_len);
    }
#if OPENSSL_VERSION_MAJOR  >= 3
    EVP_EncryptInit_ex2(e, NULL, NULL, iv, NULL);
#else
    EVP_EncryptInit_ex(e, NULL, NULL, NULL, iv);
#endif
                
    /* update ciphertext, p_len is filled with the length of encrypted text
      len is the size of plaintext in bytes */
    EVP_EncryptUpdate(e, ciphertext, &p_len, plaintext, *len);
                     
    /* add to ciphertext the final remaining bytes */
    EVP_EncryptFinal_ex(e, ciphertext+p_len, &f_len);
                          
    *len = p_len + f_len;

    if (is_binary == 0)
    {
        //
        // Make encrypted text as hex-string for db storage
        //
        char *hex_ciphertext = gg_malloc(2*(*len)+1); 
        gg_num id = gg_mem_get_id (hex_ciphertext);
        gg_num i;
        //
        // Update progress by 2 bytes in hex-string mode
        //
        gg_num tot_len = 0;

        for (i = 0; i < *len; i++)
        {
            GG_HEX_FROM_BYTE (hex_ciphertext+tot_len, (unsigned int)ciphertext[i]);
            tot_len += 2;
        }

        hex_ciphertext[*len = tot_len] = 0;
        gg_mem_set_len (id, tot_len+1);
        gg_free_int (ciphertext); // free binary encrypted value
        return hex_ciphertext; // return hex value
    }
    else
    {
        //
        // The encrypted value is binary, not a hex-string, typically for files
        //
        gg_num id = gg_mem_get_id (ciphertext);
        ciphertext[p_len + f_len] =0; // add 0 at the end
        gg_mem_set_len (id, p_len+f_len+1);
        return (char*)ciphertext;
    }

    return GG_EMPTY_STRING; // no purpose, eliminate compiler warning about non-return from function
}


// 
// Decrypt string 'ciphertext' and return decrypted value, with output parameter 
// 'len' being the length of this decrypted value returned by the function (excluding zero byte at the end -
// the decrypted value doesn't have to be a string, but it will have a zero byte at the end).
// 'len' is also input parameter - it's the length of input data to decrypt (-1 if not given).
// We allocate new memory for decrypted value - caller must de-allocate (this is gg_
// allocation, so you may just leave it to be collected by GOLF memory garbage collector.
// 'e' is the encryption context, produced as d_ctx in gg_get_enc_key().
// iv is the nonce (IV), the length of which should be sufficient for the algorithm
// 'is_binary' is 1 if encrypted value was encrypted in binary mode, and 0 if as a hex string.
// Note that ciphertext must be the result of gg_encrypt() 
//
char *gg_decrypt(EVP_CIPHER_CTX *e, unsigned char *ciphertext, gg_num *len, gg_num is_binary, unsigned char *iv)
{
   unsigned char *cipher_bin;
   gg_num id = gg_mem_get_id(ciphertext);
   if (*len == -1) *len = gg_mem_get_len(id);
   else if (*len > gg_mem_get_len(id)) gg_report_error ("Memory used is of length [%ld] but only [%ld] allocated", *len, gg_mem_get_len(id));
   if (is_binary == 0)
   {
       cipher_bin = gg_malloc (*len/2 + 2); // actually needs only *len/2, 1 for odd, 1 for null just in case
       //
       // convert ciphertext from hex back to binary
       // (if the encrypted value is hex-string)
       //
       gg_num i;
       gg_num curr_byte = 0;
       for (i = 0; i < *len; i+=2)
       {
           cipher_bin[curr_byte] = ((unsigned int)(GG_CHAR_FROM_HEX(ciphertext[i]))<<4) + (unsigned int)GG_CHAR_FROM_HEX(ciphertext[i+1]);
           curr_byte++;
       }
       cipher_bin[*len = curr_byte] = 0;
   } else cipher_bin = ciphertext;


   /* plaintext is equal or lesser length than that of cipher_bin*/
   int p_len = *len, f_len = 0;
   unsigned char *plaintext = gg_malloc(p_len);
   gg_num pid = gg_mem_get_id (plaintext);
           
   // reuse decryption context in case multiple decryptions done with the same context
#if OPENSSL_VERSION_MAJOR  >= 3
   EVP_DecryptInit_ex2(e, NULL, NULL, iv, NULL);
#else
   EVP_DecryptInit_ex(e, NULL, NULL, NULL, iv);
#endif
   // decrypt data
   EVP_DecryptUpdate(e, plaintext, &p_len, cipher_bin, *len);
   EVP_DecryptFinal_ex(e, plaintext+p_len, &f_len);
                  
   *len = p_len + f_len;
   plaintext[*len] = 0; 
   gg_mem_set_len (pid, *len+1);

   if (is_binary == 0) gg_free_int (cipher_bin); // deallocate binary encrypted if allocated
   return (char*)plaintext;
}





// 
// Encode data in Base64. 'in' is the input, of length in_len. 'out' is allocated
// here and is the result of encoding.
// Note: all b64 data must be produced on a single line, per openssl docs.
// If in_len is -1, then it become the length of string in.
//
void gg_b64_encode(char* in, gg_num in_len, char** out)
{ 
    GG_TRACE("");
    gg_num id = gg_mem_get_id(in);
    if (in_len == -1) in_len = gg_mem_get_len(id);
    else if (in_len > gg_mem_get_len(id)) gg_report_error ("Memory read requested of length [%ld] but only [%ld] allocated", in_len, gg_mem_get_len(id));

    *out = gg_malloc(4*((in_len+2)/3)+2); 
    gg_num oid = gg_mem_get_id (*out);
    gg_num out_len = EVP_EncodeBlock((unsigned char*)(*out), (unsigned char*)in, in_len);
    gg_mem_set_len (oid, out_len+1);
}
 
// 
// Decode Base64 data. 'in' is b64 data of length 'in_len', and the output is allocated
// as 'out'.
// Note: all b64 data must be on a single line, per openssl docs.
// If in_len is -1, then it become the length of string in.
//
void gg_b64_decode (char* in, gg_num ilen, char** out)
{
    GG_TRACE("");
    gg_num id = gg_mem_get_id(in);
    if (ilen == -1) ilen = gg_mem_get_len(id);
    else if (ilen > gg_mem_get_len(id)) gg_report_error ("Memory read requested of length [%ld] but only [%ld] allocated", ilen, gg_mem_get_len(id));

    *out = gg_malloc(3*ilen/4+4 + 1);
    gg_num oid = gg_mem_get_id (*out);
    // remove trailing =s because they are added if the original input is not of size multiple of 3
    gg_num final = 0;
    while (in[ilen-1-final] == '=') final++;
    gg_num out_len = EVP_DecodeBlock((unsigned char*)(*out), (unsigned char*)in, ilen);
    (*out)[out_len - final] = 0; // we added +1 in gg_malloc above to account for 0 always at the end (not part of output length)
    gg_mem_set_len (oid, out_len - final+1);
}