1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (K)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">
<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<font size=-1><b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b></font>
</center>
<hr>
<p><a name=keys>:</a><b>keys</b> See <a href="lex_s.htm#shortkeys">short keys</a>, <a href="lex_b.htm#bentkeys">bent keys</a> and <a href="lex_o.htm#oddkeys">odd keys</a>.
<p><a name=kickbackreaction>:</a><b>kickback reaction</b> The following collision of two <a href="lex_g.htm#glider">gliders</a> whose
product is a single glider travelling in the opposite direction
to one of the original gliders. This is important in the proof
of the existence of a <a href="lex_u.htm#universalconstructor">universal constructor</a>, and in Bill Gosper's
<a href="lex_t.htm#totalaperiodic">total aperiodic</a>, as well as a number of other constructions.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:">
.....O..
......OO
.OO..OO.
O.O.....
..O.....
</a></pre></td></tr></table></center>
<p><a name=kidney>:</a><b>kidney</b> A Gosperism for <a href="lex_c.htm#century">century</a>. See also <a href="lex_d.htm#diuresis">diuresis</a>.
<p><a name=killertoads>:</a><b>killer toads</b> A pair of <a href="lex_t.htm#toad">toads</a> acting together so that they can eat
things. Here, for example, are some killer toads eating a <a href="lex_h.htm#hwss">HWSS</a>.
Similarly they can eat a <a href="lex_m.htm#mwss">MWSS</a> (but not a <a href="lex_l.htm#lwss">LWSS</a>). For another
example see <a href="lex_t.htm#twirlingttetsonsii">twirling T-tetsons II</a>. See also <a href="lex_c.htm#candlefrobra">candlefrobra</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:">
..OO.......OOO
O....O....OOO.
......O.......
O.....O.......
.OOOOOO.......
..........OOO.
...........OOO
</a></pre></td></tr></table></center>
<p><a name=kleinbottle>:</a><b>Klein bottle</b> As an alternative to a <a href="lex_t.htm#torus">torus</a>, it's possible to make
a finite Life universe in the form of a Klein bottle. The simplest
way to do this is to use an <i>m</i> x <i>n</i> rectangle with the top edge joined
to the bottom edge (as for a torus) and the left edge twisted and
joined to the right.
<p><a name=knightship>:</a><b>knightship</b> Any <a href="lex_s.htm#spaceship">spaceship</a> of type (2<i>m</i>,<i>m</i>)/<i>n</i>. Such spaceships do
exist (see <a href="lex_u.htm#universalconstructor">universal constructor</a>), but no concrete example is
known. A knightship must be asymmetric and its period must be at
least 6, which makes searching for them using programs like <a href="lex_l.htm#lifesrc">lifesrc</a>
very difficult.
<p>By analogy with the corresponding fairy chess pieces, spaceships of
types (3<i>m</i>,<i>m</i>)/<i>n</i>, (3<i>m</i>,2<i>m</i>)/<i>n</i> and (4<i>m</i>,<i>m</i>)/<i>n</i> would presumably be called
camelships, zebraships and giraffeships, respectively. But no
examples of these are known either, and they are even more difficult
to search for.
<p><a name=koksgalaxy>:</a><b>Kok's galaxy</b> (p8) Found by Jan Kok in 1971. See <a href="lex_c.htm#converter">converter</a> for a
use of this <a href="lex_s.htm#sparker">sparker</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:">
OOOOOO.OO
OOOOOO.OO
.......OO
OO.....OO
OO.....OO
OO.....OO
OO.......
OO.OOOOOO
OO.OOOOOO
</a></pre></td></tr></table></center>
<hr>
<center>
<font size=-1><b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b></font>
</center>
<hr>
</body>
|