1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
/*** /
This file is part of Golly, a Game of Life Simulator.
Copyright (C) 2008 Andrew Trevorrow and Tomas Rokicki.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
Web site: http://sourceforge.net/projects/golly
Authors: rokicki@gmail.com andrew@trevorrow.com
/ ***/
#include <math.h>
#include <time.h>
#include <iostream>
#include <set>
#include <fstream>
#include <vector>
#include <map>
#include <sstream>
#include <algorithm>
using namespace std;
/*
Makes a rule-table for your transition function.
To compile:
g++ -O5 -o make-ruletable make-ruletable.cpp
or in Microsoft Visual Studio, add to an empty CLR project.
To use:
1) fill slowcalc with your own transition function.
2) set the parameters in main() at the bottom.
3) execute the program from the command line (no options taken)
For a 32-state 5-neighbourhood rule it took 16mins on a 2.2GHz machine.
For a 4-state 9-neighbourhood rule it took 4s.
The merging is very simple - if a transition is compatible with the first rule,
then merge the transition into the rule. If not, try the next rule. If there are
no more rules, add a new rule containing just the transition.
=== Worked example: ===
Transitions:
1,0,0->3
1,2,0->3
2,0,0->3
2,2,0->1
Start. First transition taken as first rule:
rule 1: 1,0,0->3
Next transition - is it compatible with rule 1?
i.e. is 1,[0,2],0->3 valid for all permutations? Yes.
rule 1 now: 1,[0,2],0->3
Next transition - is it compatible with rule 1?
i.e. is [1,2],[0,2],0->3 valid for all permutations?
no - because 2,2,0 ->1, not ->3. so add the transition as a new rule:
rule 1 still: 1,[0,2],0 -> 3
rule 2 now : 2,0,0->3
Next transition - is it compatible with rule 1? no - output is different.
Is it compatible with rule 2? no - output is different.
Final output:
1,[0,2],0 -> 3
2,0,0 -> 3
2,2,0 -> 1
Written with variables:
var a={0,2}
1,a,0,3
2,0,0,3
2,2,0,1
===============
In the function produce_rule_table, the state space is exhaustively traversed.
If your transition function consists of transition rules already then you can
optimise by running through the transitions instead. You might also want to
turn off the optimisation in rule::can_merge, to see if it gives you better
compression.
Also note: I feel sure there are better ways to compress rule tables than this...
Contact: Tim Hutton <tim.hutton@gmail.com>
*/
// some typedefs and compile-time constants
typedef unsigned short state;
enum TSymm { none, rotate4, rotate8, reflect, rotate4reflect, rotate8reflect };
static const string symmetry_strings[] = {"none","rotate4","rotate8","reflect","rotate4reflect","rotate8reflect"};
// fill in this function with your desired transition rules
// (for von Neumann neighbourhoods, just ignore the nw,se,sw,ne inputs)
state slowcalc(state nw,state n,state ne,state w,state c,state e,state sw,state s,state se)
{
// wireworld:
switch (c)
{
case 0: return 0 ;
case 1: return 2 ;
case 2: return 3 ;
case 3:
if ((((1+(nw==1)+(n==1)+(ne==1)+(w==1)+(e==1)+(sw==1)+
(s==1)+(se==1))) | 1) == 3)
return 1 ;
else
return 3 ;
default:
return 0 ; // should throw an error here
}
}
vector<state> rotate_inputs(const vector<state>& inputs,int rot)
{
vector<state> rotinp(inputs);
rotate_copy(inputs.begin()+1,inputs.begin()+1+rot,inputs.end(),rotinp.begin()+1);
return rotinp;
}
vector<state> reflect_inputs(const vector<state>& inputs,int neighbourhood_size)
{
vector<state> refinp(inputs);
if(neighbourhood_size==5) // CNESW
{
refinp[2]=inputs[4]; // swap E and W
refinp[4]=inputs[2];
}
else // neighbourhood_size==9 (C,N,NE,E,SE,S,SW,W,NW)
{
refinp[2]=inputs[8];
refinp[8]=inputs[2];
refinp[3]=inputs[7];
refinp[7]=inputs[3];
refinp[4]=inputs[6];
refinp[6]=inputs[4]; // swap all E and W
}
return refinp;
}
// simple rule structure, e.g. 1,2,[4,5],8,2 -> 0
class rule {
public:
set<state> inputs[9]; // c,n,ne,e,se,s,sw,w,nw or c,n,e,s,w
state ns; // new state
int n_inputs; // 5: von Neumann; 9: Moore
TSymm symm;
public:
// constructors
rule(const rule& r) : ns(r.ns),n_inputs(r.n_inputs),symm(r.symm)
{
for(int i=0;i<n_inputs;i++)
inputs[i]=r.inputs[i];
}
rule& operator=(const rule& r)
{
n_inputs=r.n_inputs;
symm = r.symm;
ns = r.ns;
for(int i=0;i<n_inputs;i++)
inputs[i]=r.inputs[i];
return *this;
}
rule(const vector<state>& inputs,int n_inputs,state ns1,TSymm symm1)
: ns(ns1),n_inputs(n_inputs),symm(symm1)
{
merge(inputs);
}
// if we merge the rule and the supplied transition, will the rule remain true for all cases?
bool can_merge(const vector<state>& test_inputs,state ns1) const
{
if(ns1!=ns) return false; // can't merge if the outputs are different
// If you are running through your own transitions, or for small state spaces,
// you might want to turn off this optimisation, to get better compression.
// On JvN29 it doesn't make any difference but on Nobili32 it does.
const bool forbid_multiple_input_differences = true;
if(forbid_multiple_input_differences)
{
// optimisation: we skip this rule if more than 2 entries are different, we
// assume we will have considered the relevant one-change rules before this.
int n_different=0;
for(int i=0;i<n_inputs;i++)
if(inputs[i].find(test_inputs[i])==inputs[i].end())
if(++n_different>1)
return false;
// just check the new permutations
for(int i=0;i<n_inputs;i++)
{
if(inputs[i].find(test_inputs[i])==inputs[i].end())
{
rule r1(*this);
r1.inputs[i].clear(); // (since we don't need to re-test all the other permutations)
r1.inputs[i].insert(test_inputs[i]);
if(!r1.all_true()) return false;
}
}
}
else
{
// need to check all combinations - this can be very slow for large state spaces
for(int i=0;i<n_inputs;i++)
{
if(inputs[i].find(test_inputs[i])==inputs[i].end())
{
rule r1(*this);
r1.merge(test_inputs); // this is what makes it slow, we may introduce many new permutations
r1.inputs[i].clear(); // (since we don't need to re-test all the old permutations)
r1.inputs[i].insert(test_inputs[i]);
if(!r1.all_true()) return false;
}
}
}
return true;
}
// merge the inputs with this rule
void merge(const vector<state>& new_inputs)
{
for(int i=0;i<n_inputs;i++)
inputs[i].insert(new_inputs[i]); // may already exist, set ignores if so
}
// is this set of inputs a match for the rule, for the given symmetry?
bool matches(const vector<state>& test_inputs) const
{
int n_rotations,rotation_skip;
bool do_reflect;
switch(symm)
{
default:
case none: n_rotations=1; rotation_skip=1; do_reflect=false; break;
case rotate4:
if(n_inputs==5)
{
n_rotations=4; rotation_skip=1; do_reflect=false;
}
else
{
n_rotations=4; rotation_skip=2; do_reflect=false;
}
break;
case rotate8: n_rotations=8; rotation_skip=1; do_reflect=false; break;
case reflect: n_rotations=1; rotation_skip=1; do_reflect=true; break;
case rotate4reflect:
if(n_inputs==5)
{
n_rotations=4; rotation_skip=1; do_reflect=true;
}
else
{
n_rotations=4; rotation_skip=2; do_reflect=true;
}
break;
case rotate8reflect: n_rotations=8; rotation_skip=1; do_reflect=true; break;
}
for(int iRot=0;iRot<n_rotations;iRot++)
{
if(nosymm_matches(rotate_inputs(test_inputs,iRot*rotation_skip)))
return true;
if(do_reflect && nosymm_matches(reflect_inputs(rotate_inputs(test_inputs,iRot*rotation_skip),n_inputs)))
return true;
}
return false; // no match found
}
protected:
// ignoring symmetry, does this set of inputs match the rule?
bool nosymm_matches(const vector<state>& test_inputs) const
{
for(int i=0;i<n_inputs;i++)
if(inputs[i].find(test_inputs[i])==inputs[i].end())
return false;
return true;
}
// is the rule true in all permutations?
bool all_true() const
{
set<state>::const_iterator c_it,n_it,ne_it,e_it,se_it,s_it,sw_it,w_it,nw_it;
if(n_inputs==9)
{
for(c_it = inputs[0].begin();c_it!=inputs[0].end();c_it++)
for(n_it = inputs[1].begin();n_it!=inputs[1].end();n_it++)
for(ne_it = inputs[2].begin();ne_it!=inputs[2].end();ne_it++)
for(e_it = inputs[3].begin();e_it!=inputs[3].end();e_it++)
for(se_it = inputs[4].begin();se_it!=inputs[4].end();se_it++)
for(s_it = inputs[5].begin();s_it!=inputs[5].end();s_it++)
for(sw_it = inputs[6].begin();sw_it!=inputs[6].end();sw_it++)
for(w_it = inputs[7].begin();w_it!=inputs[7].end();w_it++)
for(nw_it = inputs[8].begin();nw_it!=inputs[8].end();nw_it++)
if(slowcalc(*nw_it,*n_it,*ne_it,*w_it,*c_it,*e_it,*sw_it,*s_it,*se_it)!=ns)
return false;
}
else
{
for(c_it = inputs[0].begin();c_it!=inputs[0].end();c_it++)
for(n_it = inputs[1].begin();n_it!=inputs[1].end();n_it++)
for(e_it = inputs[2].begin();e_it!=inputs[2].end();e_it++)
for(s_it = inputs[3].begin();s_it!=inputs[3].end();s_it++)
for(w_it = inputs[4].begin();w_it!=inputs[4].end();w_it++)
if(slowcalc(0,*n_it,0,*w_it,*c_it,*e_it,0,*s_it,0)!=ns)
return false;
}
return true;
}
};
// makes a unique variable name for a given value
string get_variable_name(unsigned int iVar)
{
const char VARS[52]={'a','b','c','d','e','f','g','h','i','j',
'k','l','m','n','o','p','q','r','s','t','u','v','w','x',
'y','z','A','B','C','D','E','F','G','H','I','J','K','L',
'M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'};
ostringstream oss;
if(iVar<52)
oss << VARS[iVar];
else if(iVar<52*52)
oss << VARS[(iVar-(iVar%52))/52 - 1] << VARS[iVar%52];
else
oss << "!"; // we have a 52*52 limit ("should be enough for anyone")
return oss.str();
}
void print_rules(const vector<rule>& rules,ostream& out)
{
// first collect all variables (makes reading easier)
map< string , set<state> > vars;
ostringstream rules_out;
for(vector<rule>::const_iterator r_it=rules.begin();r_it!=rules.end();r_it++)
{
vector<string> variables_used;
for(int i=0;i<r_it->n_inputs;i++)
{
// if more than one state for this input, we need a variable
if(r_it->inputs[i].size()>1)
{
string var;
// is there a variable that matches these inputs, and that we haven't used?
bool found_unused_var=false;
for(map<string, set<state> >::const_iterator v_it=vars.begin();v_it!=vars.end();v_it++)
{
if(v_it->second==r_it->inputs[i] && find(variables_used.begin(),variables_used.end(),v_it->first)==variables_used.end())
{
found_unused_var = true;
var = v_it->first;
break;
}
}
if(!found_unused_var)
{
// we need to make a new one for this set of inputs
var = get_variable_name(vars.size());
// add it to the list of made variables
vars[var] = r_it->inputs[i];
// print it
out << "var " << var << "={";
set<state>::const_iterator it=r_it->inputs[i].begin();
while(true)
{
out << (int)*it;
it++;
if(it!=r_it->inputs[i].end()) out << ",";
else break;
}
out << "}\n";
}
// add the variable to the list of used ones
variables_used.push_back(var);
rules_out << var << ",";
}
else
{
// just a state, output it
rules_out << (int)*r_it->inputs[i].begin() << ",";
}
}
rules_out << (int)r_it->ns << endl;
}
out << rules_out.str();
}
void produce_rule_table(vector<rule>& rules,int N,int nhood_size,TSymm symm,bool remove_stasis)
{
int n_rotations,rotation_skip;
bool do_reflect;
switch(symm)
{
default:
case none: n_rotations=1; rotation_skip=1; do_reflect=false; break;
case rotate4:
if(nhood_size==5)
{
n_rotations=4; rotation_skip=1; do_reflect=false;
}
else
{
n_rotations=4; rotation_skip=2; do_reflect=false;
}
break;
case rotate8: n_rotations=8; rotation_skip=1; do_reflect=false; break;
case reflect: n_rotations=1; rotation_skip=1; do_reflect=true; break;
case rotate4reflect:
if(nhood_size==5)
{
n_rotations=4; rotation_skip=1; do_reflect=true;
}
else
{
n_rotations=4; rotation_skip=2; do_reflect=true;
}
break;
case rotate8reflect: n_rotations=8; rotation_skip=1; do_reflect=true; break;
}
state c,n,ne,nw,sw,s,se,e,w,ns;
vector<rule>::iterator it;
bool merged;
for(c=0;c<N;c++)
{
cout << "\nProcessing for c=" << (int)c << ", " << rules.size() << " rules so far." << endl;
if(nhood_size==9)
{
vector<state> inputs(9);
inputs[0]=c;
for(n=0;n<N;n++)
{
cout << ".";
cout.flush();
inputs[1]=n;
for(ne=0;ne<N;ne++)
{
inputs[2]=ne;
for(e=0;e<N;e++)
{
inputs[3]=e;
for(se=0;se<N;se++)
{
inputs[4]=se;
for(s=0;s<N;s++)
{
inputs[5]=s;
for(sw=0;sw<N;sw++)
{
inputs[6]=sw;
for(w=0;w<N;w++)
{
inputs[7]=w;
for(nw=0;nw<N;nw++)
{
ns = slowcalc(nw,n,ne,w,c,e,sw,s,se);
if(remove_stasis && ns == c)
continue; // we can ignore stasis transitions
// can we merge this transition with any existing rule?
inputs[8]=nw;
merged = false;
for(it=rules.begin();!merged && it!=rules.end();it++)
{
rule &r = *it;
for(int iRot=0;!merged && iRot<n_rotations;iRot++)
{
if(r.can_merge(rotate_inputs(inputs,iRot*rotation_skip),ns))
{
r.merge(rotate_inputs(inputs,iRot*rotation_skip));
merged = true;
}
else if(do_reflect && r.can_merge(reflect_inputs(rotate_inputs(inputs,iRot*rotation_skip),nhood_size),ns))
{
r.merge(reflect_inputs(rotate_inputs(inputs,iRot*rotation_skip),nhood_size));
merged = true;
}
}
}
if(!merged)
{
// need to make a new rule starting with this transition
rule r(inputs,nhood_size,ns,symm);
rules.push_back(r);
}
}
}
}
}
}
}
}
}
}
else // nhood_size==5
{
vector<state> inputs(5);
inputs[0]=c;
for(n=0;n<N;n++)
{
cout << ".";
cout.flush();
inputs[1]=n;
for(e=0;e<N;e++)
{
inputs[2]=e;
for(s=0;s<N;s++)
{
inputs[3]=s;
for(w=0;w<N;w++)
{
ns = slowcalc(0,n,0,w,c,e,0,s,0);
if(remove_stasis && ns == c)
continue; // we can ignore stasis transitions
// can we merge this transition with any existing rule?
inputs[4]=w;
merged = false;
for(it=rules.begin();!merged && it!=rules.end();it++)
{
rule &r = *it;
for(int iRot=0;!merged && iRot<n_rotations;iRot++)
{
if(r.can_merge(rotate_inputs(inputs,iRot*rotation_skip),ns))
{
r.merge(rotate_inputs(inputs,iRot*rotation_skip));
merged = true;
}
else if(do_reflect && r.can_merge(reflect_inputs(rotate_inputs(inputs,iRot*rotation_skip),nhood_size),ns))
{
r.merge(reflect_inputs(rotate_inputs(inputs,iRot*rotation_skip),nhood_size));
merged = true;
}
}
}
if(!merged)
{
// need to make a new rule starting with this transition
rule r(inputs,nhood_size,ns,symm);
rules.push_back(r);
}
}
}
}
}
}
}
}
// here we use the computed rule table as a replacement slowcalc, for checking correctness
state new_slowcalc(const vector<rule>& rules,const vector<state>& inputs)
{
for(vector<rule>::const_iterator it=rules.begin();it!=rules.end();it++)
if(it->matches(inputs))
return it->ns;
return inputs[0]; // default: no change
}
bool is_correct(const vector<rule>&rules,int N,int neighbourhood_size)
{
// exhaustive check
state c,n,ne,nw,sw,s,se,e,w;
if(neighbourhood_size==9)
{
vector<state> inputs(9);
for(c=0;c<N;c++)
{
inputs[0]=c;
for(n=0;n<N;n++)
{
inputs[1]=n;
for(ne=0;ne<N;ne++)
{
inputs[2]=ne;
for(e=0;e<N;e++)
{
inputs[3]=e;
for(se=0;se<N;se++)
{
inputs[4]=se;
for(s=0;s<N;s++)
{
inputs[5]=s;
for(sw=0;sw<N;sw++)
{
inputs[6]=sw;
for(w=0;w<N;w++)
{
inputs[7]=w;
for(nw=0;nw<N;nw++)
{
inputs[8]=nw;
if(new_slowcalc(rules,inputs)
!= slowcalc(nw,n,ne,w,c,e,sw,s,se))
return false;
}
}
}
}
}
}
}
}
}
}
else
{
vector<state> inputs(5);
for(c=0;c<N;c++)
{
inputs[0]=c;
for(n=0;n<N;n++)
{
inputs[1]=n;
for(e=0;e<N;e++)
{
inputs[2]=e;
for(s=0;s<N;s++)
{
inputs[3]=s;
for(w=0;w<N;w++)
{
inputs[4]=w;
if(new_slowcalc(rules,inputs)
!= slowcalc(0,n,0,w,c,e,0,s,0))
return false;
}
}
}
}
}
}
return true;
}
int main()
{
// parameters for use:
const int N_STATES = 4;
const TSymm symmetry = rotate8;
const int nhood_size = 9;
const string output_filename = "wireworld.table";
const bool remove_stasis_transitions = true;
vector<rule> rules;
time_t t1,t2;
time(&t1);
produce_rule_table(rules,N_STATES,nhood_size,symmetry,remove_stasis_transitions);
time(&t2);
int n_secs = (int)difftime(t2,t1);
cout << "\nProcessing took: " << n_secs << " seconds." << endl;
{
ofstream out(output_filename.c_str());
out << "# rules: " << rules.size() << "\n#";
out << "\n# Golly rule-table format.\n# Each rule: C,";
if(nhood_size==5)
out << "N,E,S,W";
else
out << "N,NE,E,SE,S,SW,W,NW";
out << ",C'";
out << "\n# N.B. Where the same variable appears multiple times in a transition,\n# it takes the same value each time.\n#";
if(remove_stasis_transitions)
out << "\n# Default for transitions not listed: no change\n#";
else
out << "\n# All transitions should be included below, including no-change ones.\n#";
out << "\nn_states:" << N_STATES;
out << "\nneighborhood:" << ((nhood_size==5)?("vonNeumann"):("Moore"));
out << "\nsymmetries:" << symmetry_strings[symmetry] << "\n";
print_rules(rules,out);
}
cout << rules.size() << " rules written." << endl;
// optional: run through the entire state space, checking that new_slowcalc matches slowcalc
cout << "Verifying is correct (can abort if you're confident)...";
cout.flush();
if(is_correct(rules,N_STATES,nhood_size))
cout << "yes." << endl;
else
cout << "no! Either there's a bug in the code, or the transition function does not have the symmetry you selected." << endl;
}
|