File: ruletable_algo.cpp

package info (click to toggle)
golly 2.1-1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 9,560 kB
  • ctags: 5,064
  • sloc: cpp: 38,119; python: 3,203; perl: 1,121; makefile: 58; java: 49; sh: 22
file content (616 lines) | stat: -rw-r--r-- 24,397 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
                        /*** /

This file is part of Golly, a Game of Life Simulator.
Copyright (C) 2009 Andrew Trevorrow and Tomas Rokicki.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

 Web site:  http://sourceforge.net/projects/golly
 Authors:   rokicki@gmail.com  andrew@trevorrow.com

                        / ***/
#include "ruletable_algo.h"

#include "util.h"      // for lifegetuserrules, lifegetrulesdir, lifewarning

// for case-insensitive string comparison
#include <string.h>
#ifndef WIN32
   #define stricmp strcasecmp
   #define strnicmp strncasecmp
#endif

#include <algorithm>
#include <map>
#include <sstream>
using namespace std ;

int ruletable_algo::NumCellStates()
{
   return this->n_states;
}

bool starts_with(const string& line,const string& keyword)
{
   return strnicmp(line.c_str(),keyword.c_str(),keyword.length())==0;
}

const char* ruletable_algo::setrule(const char* s)
{
   string ret = LoadRuleTable(s) ;
   if(!ret.empty())
   {
      // if the file exists and we've got an error then it must be a file format issue
      if(!starts_with(ret,"Failed to open file: "))
         lifewarning(ret.c_str());

      return "error";
   }

   this->current_rule = s;
   maxCellStates = this->n_states;
   ghashbase::setrule(s);
   return NULL;
}

vector<string> tokenize(const string& str,const string& delimiters)
{
   vector<string> tokens;

   // skip delimiters at beginning.
   string::size_type lastPos = str.find_first_not_of(delimiters, 0);

   // find first "non-delimiter".
   string::size_type pos = str.find_first_of(delimiters, lastPos);

   while (string::npos != pos || string::npos != lastPos)
   {
      // found a token, add it to the vector.
      tokens.push_back(str.substr(lastPos, pos - lastPos));

      // skip delimiters.  Note the "not_of"
      lastPos = str.find_first_not_of(delimiters, pos);

      // find next "non-delimiter"
      pos = str.find_first_of(delimiters, lastPos);
   }

   return tokens;
}

const char *defaultRuleData[] = {
   "n_states:8", "neighborhood:vonNeumann", "symmetries:rotate4",
   "000000", "000012", "000020", "000030", "000050", "000063", "000071",
   "000112", "000122", "000132", "000212", "000220", "000230", "000262",
   "000272", "000320", "000525", "000622", "000722", "001022", "001120",
   "002020", "002030", "002050", "002125", "002220", "002322", "005222",
   "012321", "012421", "012525", "012621", "012721", "012751", "014221",
   "014321", "014421", "014721", "016251", "017221", "017255", "017521",
   "017621", "017721", "025271", "100011", "100061", "100077", "100111",
   "100121", "100211", "100244", "100277", "100511", "101011", "101111",
   "101244", "101277", "102026", "102121", "102211", "102244", "102263",
   "102277", "102327", "102424", "102626", "102644", "102677", "102710",
   "102727", "105427", "111121", "111221", "111244", "111251", "111261",
   "111277", "111522", "112121", "112221", "112244", "112251", "112277",
   "112321", "112424", "112621", "112727", "113221", "122244", "122277",
   "122434", "122547", "123244", "123277", "124255", "124267", "125275",
   "200012", "200022", "200042", "200071", "200122", "200152", "200212",
   "200222", "200232", "200242", "200250", "200262", "200272", "200326",
   "200423", "200517", "200522", "200575", "200722", "201022", "201122",
   "201222", "201422", "201722", "202022", "202032", "202052", "202073",
   "202122", "202152", "202212", "202222", "202272", "202321", "202422",
   "202452", "202520", "202552", "202622", "202722", "203122", "203216",
   "203226", "203422", "204222", "205122", "205212", "205222", "205521",
   "205725", "206222", "206722", "207122", "207222", "207422", "207722",
   "211222", "211261", "212222", "212242", "212262", "212272", "214222",
   "215222", "216222", "217222", "222272", "222442", "222462", "222762",
   "222772", "300013", "300022", "300041", "300076", "300123", "300421",
   "300622", "301021", "301220", "302511", "401120", "401220", "401250",
   "402120", "402221", "402326", "402520", "403221", "500022", "500215",
   "500225", "500232", "500272", "500520", "502022", "502122", "502152",
   "502220", "502244", "502722", "512122", "512220", "512422", "512722",
   "600011", "600021", "602120", "612125", "612131", "612225", "700077",
   "701120", "701220", "701250", "702120", "702221", "702251", "702321",
   "702525", "702720", 0 } ;

static FILE *OpenTableFile(string &rule, const char *dir, string &path)
{
   // look for rule.table in given dir and set path
   path = dir;
   int istart = path.size();
   path += rule + ".table";
   // change "dangerous" characters to underscores
   for (unsigned int i=istart; i<path.size(); i++)
      if (path[i] == '/' || path[i] == '\\' || path[i] == ':')
         path[i] = '_';
   return fopen(path.c_str(), "rt");
}

string ruletable_algo::LoadRuleTable(string rule)
{
   const string comment_keyword = "#";
   const string symmetries_keyword = "symmetries:";
   const string neighborhood_keyword = "neighborhood:";
   const string neighborhood_value_keywords[2]={"vonNeumann","Moore"};
   const string n_states_keyword = "n_states:";
   const string variable_keyword = "var ";
   const string symmetry_keywords[6] = {"none","rotate4","rotate8","reflect","rotate4reflect","rotate8reflect"};

   int isDefaultRule = (strcmp(rule.c_str(), DefaultRule()) == 0) ;
   string line ;
   const int MAX_LINE_LEN=1000;
   char line_buffer[MAX_LINE_LEN];
   FILE *in = 0 ;
   linereader line_reader(0) ;
   int lineno = 0 ;
   string full_filename;
   if (!isDefaultRule) 
   {
      // look for rule.table in user's rules dir then in Golly's rules dir
      in = OpenTableFile(rule, lifegetuserrules(), full_filename);
      if (!in)
         in = OpenTableFile(rule, lifegetrulesdir(), full_filename);
      if (!in) 
         return "Failed to open file: "+full_filename;
      line_reader.setfile(in) ;
      line_reader.setcloseonfree() ; // make sure it goes away if we return with an error
   }
   else {   }

   this->symmetries = rotate4; // default
   this->n_states = 8;  // default

   map< string, vector<state> > variables;
   vector< pair<vector< vector<state> >, state > > transition_table;

   unsigned int n_inputs=0;

   // these line must have been read before the rest of the file
   bool n_states_parsed=false,neighborhood_parsed=false,symmetries_parsed=false;

   for (;;) 
   {
      if (isDefaultRule) {
         if (defaultRuleData[lineno] == 0)
            break ;
         line = defaultRuleData[lineno] ;
      } else {
         if(!line_reader.fgets(line_buffer,MAX_LINE_LEN))
            break ;
         line = line_buffer;
      }
      lineno++ ;
      int allws = 1 ;
      for (unsigned int i=0; i<line.size(); i++)
         if (line[i] > ' ') {
            allws = 0 ;
            break ;
         }
      if(starts_with(line,comment_keyword) || allws)
         continue; // comment line
      else if(starts_with(line,n_states_keyword))
      {
         // parse the rest of the line
         if(sscanf(line.c_str()+n_states_keyword.length(),"%d",&this->n_states)!=1)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
            return oss.str();
         }
         n_states_parsed = true;
      }
      else if(starts_with(line,symmetries_keyword))
      {
         string remaining(line.begin()+symmetries_keyword.length(),line.end());
         bool found_symmetry=false;
         for(int iS=0;iS<6;iS++)
            if(starts_with(remaining,symmetry_keywords[iS]))
            {
               this->symmetries = (TSymmetry)iS;
               found_symmetry = true;
            }
         if(!found_symmetry)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
            return oss.str();
         }
         symmetries_parsed = true;
      }
      else if(starts_with(line,neighborhood_keyword))
      {
         // parse the rest of the line
         string remaining(line.begin()+neighborhood_keyword.length(),line.end());
         bool found_neighborhood=false;
         for(int iN=0;iN<2;iN++)
            if(starts_with(remaining,neighborhood_value_keywords[iN]))
            {
               this->neighborhood = (TNeighborhood)iN;
               found_neighborhood = true;
            }
         if(!found_neighborhood)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
            return oss.str();
         }
         switch(this->neighborhood) {
            default:
            case vonNeumann: n_inputs=5; break;
            case Moore: n_inputs=9; break;
         }
         neighborhood_parsed=true;
      }
      else if(starts_with(line,variable_keyword))
      {
         if(!n_states_parsed || !neighborhood_parsed || !symmetries_parsed)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << ": one or more of n_states, neighborhood or symmetries missing\nbefore first variable";
            return oss.str();
         }
         // parse the rest of the line for the variable
         vector<string> tokens = tokenize(line,"= {,}");
         string variable_name = tokens[1];
         vector<state> states;
         if(tokens.size()<3)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
            return oss.str();
         }  
         for(unsigned int i=2;i<tokens.size();i++)
         {
            unsigned int s;
            if(sscanf(tokens[i].c_str(),"%d",&s)!=1)
            {
               ostringstream oss;
               oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
               return oss.str();
            }
            if(s<0 || s>=this->n_states)
            {
               ostringstream oss;
               oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state value out of range";
               return oss.str();
            }
            states.push_back((state)s);
         }
         variables[variable_name] = states;
      }
      else
      {
         // must be a transitions line
         if(!n_states_parsed || !neighborhood_parsed || !symmetries_parsed)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << ": one or more of n_states, neighborhood or symmetries missing\nbefore first transition";
            return oss.str();
         }
         if(this->n_states<=10 && variables.empty())
         {
            vector< vector<state> > inputs;
            state output;
            // if there are single-digit states and no variables then use compressed form
            // e.g. 012345 for 0,1,2,3,4 -> 5
            if(line.length() < n_inputs+1) // we allow for comments after the rule
            {
               ostringstream oss;
               oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - too few entries";
               return oss.str();
            }
            for(unsigned int i=0;i<n_inputs;i++)
            {
               char c = line[i];
               if(c<'0' || c>'9')
               {
                  ostringstream oss;
                  oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
                  return oss.str();
               }
               inputs.push_back(vector<state>(1,c-'0'));
            }
            unsigned char c = line[n_inputs];
            if(c<'0' || c>'9')
            {
               ostringstream oss;
               oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
               return oss.str();
            }
            output = c-'0';
            transition_table.push_back(make_pair(inputs,output));
         }
         else 
         {  
            vector<string> tokens = tokenize(line,", #\t");
            if(tokens.size() < n_inputs+1)
            {
               ostringstream oss;
               oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - too few entries";
               return oss.str();
            }
            // first pass: which variables appear more than once? these are "bound" (must take the same value each time they appear in this transition)
            vector<string> bound_variables;
            for(map< string, vector<state> >::const_iterator var_it=variables.begin();var_it!=variables.end();var_it++)
               if(count(tokens.begin(),tokens.begin()+n_inputs+1,var_it->first)>1)
                  bound_variables.push_back(var_it->first);
            unsigned int n_bound_variables = bound_variables.size();
            // second pass: iterate through the possible states for the bound variables, adding a transition for each combination
            vector< vector<state> > inputs(n_inputs);
            state output;
            map<string,unsigned int> bound_variable_indices; // each is an index into vector<state> of 'variables' map
            for(unsigned int i=0;i<n_bound_variables;i++)
               bound_variable_indices[bound_variables[i]]=0;
            for(;;)
            {
               // output the transition for the current set of bound variables
               for(unsigned int i=0;i<n_inputs;i++) // collect the inputs
               {
                  if(!bound_variables.empty() && find(bound_variables.begin(),bound_variables.end(),tokens[i])!=bound_variables.end())
                    inputs[i] = vector<state>(1,variables[tokens[i]][bound_variable_indices[tokens[i]]]); // this input is a bound variable
                  else if(variables.find(tokens[i])!=variables.end())
                     inputs[i] = variables[tokens[i]]; // this input is an unbound variable
                  else 
                  {
                     unsigned int s;
                     if(sscanf(tokens[i].c_str(),"%d",&s)!=1) // this input is a state
                     {
                        ostringstream oss;
                        oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
                        return oss.str();
                     }
                     if(s<0 || s>=this->n_states)
                     {
                        ostringstream oss;
                        oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state out of range";
                        return oss.str();
                     }
                     inputs[i] = vector<state>(1,s);
                  }
               }
               // collect the output
               if(!bound_variables.empty() && 
                  find(bound_variables.begin(),bound_variables.end(),tokens[n_inputs])!=bound_variables.end())
                     output = variables[tokens[n_inputs]][bound_variable_indices[tokens[n_inputs]]];
               else 
               {
                  unsigned int s;
                  if(sscanf(tokens[n_inputs].c_str(),"%d",&s)!=1) // if not a bound variable, output must be a state
                  {
                     ostringstream oss;
                     oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
                     return oss.str();
                  }
                  if(s<0 || s>=this->n_states)
                  {
                     ostringstream oss;
                     oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state out of range";
                     return oss.str();
                  }
                  output = s;
               }
               transition_table.push_back(make_pair(inputs,output));
               // move on to the next value of bound variables
               {
                  unsigned int iChanging=0;
                  for(;iChanging<n_bound_variables;iChanging++)
                  {
                     if(bound_variable_indices[bound_variables[iChanging]] < variables[bound_variables[iChanging]].size()-1)
                     {
                        bound_variable_indices[bound_variables[iChanging]]++;
                        break;
                     }
                     else
                     {
                        bound_variable_indices[bound_variables[iChanging]]=0;
                     }
                  }
                  if(iChanging>=n_bound_variables)
                     break;
               }
            }
         }
      }
   }
   if(!n_states_parsed || !neighborhood_parsed || !symmetries_parsed)
   {
      ostringstream oss;
      oss << "Error reading " << full_filename << ": one or more of n_states, neighborhood or symmetries missing";
      return oss.str();
   }
   // now convert transition table to bitmask lookup
   {
      unsigned int n_bits = sizeof(TBits)*8;
      int n_rotations,rotation_skip,n_reflections;
      vector<int> reflect_remap[2];
      if(this->neighborhood==vonNeumann)
      {
         reflect_remap[0].resize(5);
         reflect_remap[0][0]=0;
         reflect_remap[0][1]=1;
         reflect_remap[0][2]=2;
         reflect_remap[0][3]=3;
         reflect_remap[0][4]=4;
         reflect_remap[1].resize(5);
         reflect_remap[1][0]=0;
         reflect_remap[1][1]=1;
         reflect_remap[1][2]=4;
         reflect_remap[1][3]=3;
         reflect_remap[1][4]=2;  // we swap E and W
      }
      else // this->neighborhood==Moore
      {
         reflect_remap[0].resize(9);
         reflect_remap[0][0]=0;
         reflect_remap[0][1]=1;
         reflect_remap[0][2]=2;
         reflect_remap[0][3]=3;
         reflect_remap[0][4]=4;
         reflect_remap[0][5]=5;
         reflect_remap[0][6]=6;
         reflect_remap[0][7]=7;
         reflect_remap[0][8]=8;
         reflect_remap[1].resize(9);
         reflect_remap[1][0]=0;
         reflect_remap[1][1]=1;
         reflect_remap[1][2]=8;
         reflect_remap[1][3]=7;
         reflect_remap[1][4]=6;
         reflect_remap[1][5]=5;
         reflect_remap[1][6]=4;
         reflect_remap[1][7]=3;
         reflect_remap[1][8]=2; // all E and W swapped
      }
      switch(this->symmetries)
      {
         default:
         case none: n_rotations=1; rotation_skip=1; n_reflections=1; 
            break;
         case rotate4: n_rotations=4; n_reflections=1; 
            if(this->neighborhood==vonNeumann)
               rotation_skip=1;
            else // neighborhood==Moore
               rotation_skip=2;
            break;
         case rotate8: n_rotations=8; rotation_skip=1; n_reflections=1; 
            break;
         case reflect: n_rotations=1; rotation_skip=1; n_reflections=2; 
            break;
         case rotate4reflect: n_rotations=4; n_reflections=2; 
            if(this->neighborhood==vonNeumann)
               rotation_skip=1;
            else // neighborhood==Moore
               rotation_skip=2;
            break;
         case rotate8reflect: n_rotations=8; rotation_skip=1; n_reflections=2; 
            break;
      }
      unsigned int M = transition_table.size() * n_rotations * n_reflections; // (we need to expand out symmetry)
      this->n_compressed_rules = (M+n_bits-1) / n_bits; // the rule table is compressed down to 1 bit each
      // initialize lookup table to all bits turned off 
      this->lut.assign(n_inputs,vector< vector<TBits> >(this->n_states,vector<TBits>(this->n_compressed_rules,0))); 
      this->output.resize(M);
      // work through the rules, filling the bit masks
      unsigned int iRule=0,iRuleC,iBit,iNbor,iExpandedNbor;
      TBits mask;
      // (each transition rule looks like, e.g. 1,[2,3,5],4,[0,1],3 -> 0 )
      for(vector<pair<vector< vector<state> >,state> >::const_iterator rule_it = transition_table.begin();rule_it!=transition_table.end();rule_it++)
      {
         const vector< vector<state> >& rule_inputs = rule_it->first;
         for(int iRot=0;iRot<n_rotations;iRot++)
         {
            for(int iRef=0;iRef<n_reflections;iRef++)
            {
               this->output[iRule] = rule_it->second;
               iBit = iRule % n_bits;
               iRuleC = (iRule-iBit)/n_bits; // the compressed index of the rule
               mask = (TBits)1 << iBit; // (cast needed to ensure this is a 64-bit shift, not a 32-bit shift)
               for(iNbor=0;iNbor<n_inputs;iNbor++)
               {
                  const vector<state>& possibles = rule_inputs[iNbor];
                  for(vector<state>::const_iterator poss_it=possibles.begin();poss_it!=possibles.end();poss_it++)
                  {
                     // apply the necessary rotation to the non-centre cells
                     if(iNbor>0)
                        iExpandedNbor = 1+((iNbor-1+iRot*rotation_skip)%(n_inputs-1));
                     else
                        iExpandedNbor = iNbor;
                     // apply any reflection
                     iExpandedNbor = reflect_remap[iRef][iExpandedNbor];
                     // apply the resulting bit mask
                     this->lut[iExpandedNbor][*poss_it][iRuleC] |= mask;
                  }
               }
               iRule++; // this is the index of the rule after expansion for symmetry
            }
         }
      }
   }
   return string(""); // success
}

const char* ruletable_algo::getrule() {
   return this->current_rule.c_str();
}

const char* ruletable_algo::DefaultRule() {
   return "Langtons-Loops";
}

ruletable_algo::ruletable_algo()
{
}

ruletable_algo::~ruletable_algo()
{
}

// --- the update function ---
state ruletable_algo::slowcalc(state nw, state n, state ne, state w, state c, state e,
                        state sw, state s, state se) 
{
   unsigned int iRule;
   TBits is_match;

   for(iRule=0;iRule<this->n_compressed_rules;iRule++)
   {
      // is there a match for any of the (e.g.) 64 rules within iRule?
      // (we don't have to worry about symmetries here since they were expanded out in LoadRuleTable)
      if(this->neighborhood==vonNeumann)
         is_match = this->lut[0][c][iRule] & this->lut[1][n][iRule] & this->lut[2][e][iRule] & 
            this->lut[3][s][iRule] & this->lut[4][w][iRule];
      else // this->neighborhood==Moore
         is_match = this->lut[0][c][iRule] & this->lut[1][n][iRule] & this->lut[2][ne][iRule] & 
            this->lut[3][e][iRule] & this->lut[4][se][iRule] & this->lut[5][s][iRule] & this->lut[6][sw][iRule] & 
            this->lut[7][w][iRule] & this->lut[8][nw][iRule];
      // if any of them matched, return the output of the first
      if(is_match)
      {
         // find the least significant bit of is_match
         unsigned int iBit=0;
         TBits mask=1;
         while(!(is_match&mask))
         {
            ++iBit;
            mask <<= 1;
         }
         return this->output[ iRule*sizeof(TBits)*8 + iBit ];
      }
   }
   return c; // default: no change
}

static lifealgo *creator() { return new ruletable_algo() ; }

void ruletable_algo::doInitializeAlgoInfo(staticAlgoInfo &ai) 
{
   ghashbase::doInitializeAlgoInfo(ai) ;
   ai.setAlgorithmName("RuleTable") ;
   ai.setAlgorithmCreator(&creator) ;
   ai.minstates = 2 ;
   ai.maxstates = 256 ;
   // init default color scheme
   ai.defgradient = true;              // use gradient
   ai.defr1 = 255;                     // start color = red
   ai.defg1 = 0;
   ai.defb1 = 0;
   ai.defr2 = 255;                     // end color = yellow
   ai.defg2 = 255;
   ai.defb2 = 0;
   // if not using gradient then set all states to white
   for (int i=0; i<256; i++) {
      ai.defr[i] = ai.defg[i] = ai.defb[i] = 255;
   }
}