1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
# Run the current pattern for a given number of steps (using current
# step size) and create a plot of population vs time in separate layer.
# Author: Andrew Trevorrow (andrew@trevorrow.com), May 2007.
import golly as g
from glife import getminbox, rect, rccw
from glife.text import make_text
from time import time
# --------------------------------------------------------------------
# size of plot
xlen = 500 # length of x axis
ylen = 500 # length of y axis
# --------------------------------------------------------------------
# draw a line of cells from x1,y1 to x2,y2 using Bresenham's algorithm
def draw_line(x1, y1, x2, y2):
g.setcell(x1, y1, 1)
if x1 == x2 and y1 == y2: return
dx = x2 - x1
ax = abs(dx) * 2
sx = 1
if dx < 0: sx = -1
dy = y2 - y1
ay = abs(dy) * 2
sy = 1
if dy < 0: sy = -1
if ax > ay:
d = ay - (ax / 2)
while x1 != x2:
g.setcell(x1, y1, 1)
if d >= 0:
y1 += sy
d -= ax
x1 += sx
d += ay
else:
d = ax - (ay / 2)
while y1 != y2:
g.setcell(x1, y1, 1)
if d >= 0:
x1 += sx
d -= ay
y1 += sy
d += ax
g.setcell(x2, y2, 1)
# --------------------------------------------------------------------
# fit pattern in viewport if not empty and not completely visible
def fit_if_not_visible():
try:
r = rect(g.getrect())
if (not r.empty) and (not r.visible()): g.fit()
except:
# getrect failed because pattern is too big
g.fit()
# --------------------------------------------------------------------
if g.empty(): g.exit("There is no pattern.")
# check that a layer is available for population plot
layername = "population plot"
poplayer = -1
for i in xrange(g.numlayers()):
if g.getname(i) == layername:
poplayer = i
break
if poplayer == -1 and g.numlayers() == g.maxlayers():
g.exit("You need to delete a layer.")
# prompt user for number of steps
numsteps = xlen
s = g.getstring("Enter the number of steps:",
str(numsteps), "Population plotter")
if len(s) > 0: numsteps = int(s)
if numsteps <= 0: g.exit()
# generate pattern for given number of steps
poplist = [ int(g.getpop()) ]
genlist = [ int(g.getgen()) ]
oldsecs = time()
for i in xrange(numsteps):
g.step()
poplist.append( int(g.getpop()) )
genlist.append( int(g.getgen()) )
newsecs = time()
if newsecs - oldsecs >= 1.0: # show pattern every second
oldsecs = newsecs
fit_if_not_visible()
g.update()
g.show("Step %i of %i" % (i+1, numsteps))
fit_if_not_visible()
# save some info before we switch layers
stepsize = "%i^%i" % (g.getbase(), g.getstep())
pattname = g.getname()
# create population plot in separate layer
g.setoption("stacklayers", 0)
g.setoption("tilelayers", 0)
g.setoption("showlayerbar", 1)
if poplayer == -1:
poplayer = g.addlayer()
else:
g.setlayer(poplayer)
g.new(layername)
# use same rule but without any suffix (we don't want a bounded grid)
g.setrule(g.getrule().split(":")[0])
deadr, deadg, deadb = g.getcolor("deadcells")
if (deadr + deadg + deadb) / 3 > 128:
# use black if light background
g.setcolors([1,0,0,0])
else:
# use white if dark background
g.setcolors([1,255,255,255])
minpop = min(poplist)
maxpop = max(poplist)
if minpop == maxpop:
# avoid division by zero
minpop -= 1
popscale = float(maxpop - minpop) / float(ylen)
mingen = min(genlist)
maxgen = max(genlist)
genscale = float(maxgen - mingen) / float(xlen)
# draw axes with origin at 0,0
draw_line(0, 0, xlen, 0)
draw_line(0, 0, 0, -ylen)
# add annotation using mono-spaced ASCII font
t = make_text(pattname.upper(), "mono")
bbox = getminbox(t)
t.put((xlen - bbox.wd) / 2, -ylen - 10 - bbox.ht)
t = make_text("POPULATION", "mono")
bbox = getminbox(t)
t.put(-10 - bbox.ht, -(ylen - bbox.wd) / 2, rccw)
t = make_text(str(minpop), "mono")
bbox = getminbox(t)
t.put(-bbox.wd - 10, -bbox.ht / 2)
t = make_text(str(maxpop), "mono")
bbox = getminbox(t)
t.put(-bbox.wd - 10, -ylen - bbox.ht / 2)
t = make_text("GENERATION (step=%s)" % stepsize, "mono")
bbox = getminbox(t)
t.put((xlen - bbox.wd) / 2, 10)
t = make_text(str(mingen), "mono")
bbox = getminbox(t)
t.put(-bbox.wd / 2, 10)
t = make_text(str(maxgen), "mono")
bbox = getminbox(t)
t.put(xlen - bbox.wd / 2, 10)
# display result at scale 1:1
g.fit()
g.setmag(0)
g.show("")
# plot the data (do last because it could take a while if numsteps is huge)
x = int(float(genlist[0] - mingen) / genscale)
y = int(float(poplist[0] - minpop) / popscale)
oldsecs = time()
for i in xrange(numsteps):
newx = int(float(genlist[i+1] - mingen) / genscale)
newy = int(float(poplist[i+1] - minpop) / popscale)
draw_line(x, -y, newx, -newy)
x = newx
y = newy
newsecs = time()
if newsecs - oldsecs >= 1.0: # update plot every second
oldsecs = newsecs
g.update()
|