1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
# Generator for AbsoluteTurmites rules. Also known as 2D Turing machines.
#
# contact: tim.hutton@gmail.com
import golly
import random
from glife.RuleTree import *
dirs=['N','E','S','W']
opposite_dirs = [ 2, 3, 0, 1 ]
prefix = 'AbsoluteTurmite'
# N.B. All 'relative' Turmites (including Langton's ant and the n-Color family)
# can be expressed as Absolute Turmites but require 4n states instead of n.
# e.g. {{{1,'E',1},{0,'W',3}},{{1,'S',2},{0,'N',0}},{{1,'W',3},{0,'E',1}},{{1,'N',0},{0,'S',2}}}
# is a 4-state 2-color Absolute Turmite that matches Langton's ant
# Likewise all normal 1D Turing machines can be expressed as Absolute Turmites in a
# straightforward fashion.
# e.g. {{{1,'E',1},{1,'W',1}},{{1,'W',0},{1,'',0}}}
# is a 2-state 2-color busy beaver
# In both cases the opposite transform is usually not possible. Thus Absolute Turmites
# are a deeper generalization.
# http://bytes.com/topic/python/answers/25176-list-subsets
get_subsets = lambda items: [[x for (pos,x) in zip(range(len(items)), items) if (2**pos) & switches] for switches in range(2**len(items))]
example_spec = "{{{1,'E',1},{1,'W',1}},{{1,'W',0},{1,'',0}}}"
# Generate a random rule, filtering out the most boring
import random
ns = 3
nc = 2
while True: # (we break out if ok)
example_spec = '{'
for state in range(ns):
if state > 0:
example_spec += ','
example_spec += '{'
for color in range(nc):
if color > 0:
example_spec += ','
new_state = random.randint(0,ns-1)
new_color = random.randint(0,nc-1)
dir_to_move = dirs[random.randint(0,3)]
example_spec += '{' + str(new_color) + ",'" + dir_to_move + "'," + str(new_state) + '}'
example_spec += '}'
example_spec += '}'
# is rule acceptable?
is_rule_acceptable = True
action_table = eval(example_spec.replace('{','[').replace('}',']'))
# does Turmite change at least one color?
changes_one = False
for state in range(ns):
for color in range(nc):
if not action_table[state][color][0] == color:
changes_one = True
if not changes_one:
is_rule_acceptable = False
# does turmite get stuck in any subset of states?
for subset in get_subsets(range(ns)):
if len(subset)==0 or len(subset)==ns: # (just an optimisation)
continue
leaves_subset = False
for state in subset:
for color in range(nc):
if not action_table[state][color][2] in subset:
leaves_subset = True
if not leaves_subset:
is_rule_acceptable = False
break # (just an optimisation)
# 1-move lookahead: will turmite zip off when placed on 0?
for state in range(ns):
if action_table[state][0][2] == state:
is_rule_acceptable = False
# turmite must write each colour at least once
for color in range(nc):
if not "{"+str(color)+"," in example_spec:
is_rule_acceptable = False
# does turmite move in all directions?
for dir in dirs:
if not "'"+dir+"'" in example_spec:
is_rule_acceptable = False
if is_rule_acceptable:
break
spec = golly.getstring(
'''This script will create an AbsoluteTurmite CA for a given specification.
Enter a specification string: a curly-bracketed table of n_states rows
and n_colors columns, where each entry is a triple of integers.
The elements of each triple are:
a: the new color of the square
b: the direction(s) for the turmite to move: 'NESW'
c: the new internal state of the turmite
Example:
{{{1,'E',1},{1,'W',1}},{{1,'W',0},{1,'',0}}}
(example pattern #1)
Has 2 states and 2 colors. The triple {1,'W',0} says:
1. set the color of the square to 1
2. move West
3. adopt state 0 and move forward one square
This is a 1D busy beaver
Enter specification string:
(default is a random example)''', example_spec, 'Enter Absolute Turmite specification:')
# convert the specification string into action_table[state][color]
# (convert Mathematica code to Python and run eval)
action_table = eval(spec.replace('{','[').replace('}',']'))
n_states = len(action_table)
n_colors = len(action_table[0])
# (N.B. The terminology 'state' here refers to the internal state of the finite
# state machine that each turmite is using, not the contents of each Golly
# cell. We use the term 'color' to denote the symbol on the 2D 'tape'. The
# actual 'Golly state' in this emulation of turmites is given by the
# "encoding" section below.)
n_dirs = 4
# TODO: check table is full and valid
total_states = n_colors + n_colors*n_states
# problem if we try to export more than 255 states
if total_states > 255:
golly.warn("Number of states required exceeds Golly's limit of 255.")
golly.exit()
# encoding:
# (0-n_colors: empty square)
def encode(c,s):
# turmite on color c in state s
return n_colors + n_states*c + s
# http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html
def flatten(l, ltypes=(list, tuple)):
ltype = type(l)
l = list(l)
i = 0
while i < len(l):
while isinstance(l[i], ltypes):
if not l[i]:
l.pop(i)
i -= 1
break
else:
l[i:i + 1] = l[i]
i += 1
return ltype(l)
# convert the string to a form we can embed in a filename
spec_string = ''.join(map(str,map(str,flatten(action_table))))
# (ambiguous but we have to try something)
rule_name = prefix+'_'+spec_string
remap = [2,1,3,0] # N,E,S,W -> S,E,W,N
not_arriving_from_here = [range(n_colors) for i in range(n_dirs)] # (we're going to modify them)
for color in range(n_colors):
for state in range(n_states):
moveset = action_table[state][color][1]
for iMove,move in enumerate(dirs):
if not move in moveset:
not_arriving_from_here[opposite_dirs[iMove]] += [encode(color,state)]
# What states leave output_color behind?
leaving_color_behind = {}
for output_color in range(n_colors):
leaving_color_behind[output_color] = [output_color] # (no turmite present)
for state in range(n_states):
for color in range(n_colors):
if action_table[state][color][0]==output_color:
leaving_color_behind[output_color] += [encode(color,state)]
tree = RuleTree(total_states,4)
# A single turmite is entering this square:
for s in range(n_states):
# collect all the possibilities for a turmite to arrive in state s...
inputs_sc = []
for state in range(n_states):
for color in range(n_colors):
if action_table[state][color][2]==s:
inputs_sc += [(state,color)]
# ...from direction dir
for dir in range(n_dirs):
inputs = []
for state,color in inputs_sc:
moveset = action_table[state][color][1]
if dirs[opposite_dirs[dir]] in moveset: # e.g. is there one to the S about to move N
inputs += [encode(color,state)]
if len(inputs)==0:
continue
for central_color in range(n_colors):
# output the required transition
### AKT: this code causes syntax error in Python 2.3:
### transition_inputs = [leaving_color_behind[central_color]] + \
### [ inputs if i==dir else not_arriving_from_here[i] for i in remap ]
transition_inputs = [leaving_color_behind[central_color]]
for i in remap:
if i==dir:
transition_inputs.append(inputs)
else:
transition_inputs.append(not_arriving_from_here[i])
transition_output = encode(central_color,s)
tree.add_rule( transition_inputs, transition_output )
# default: square is left with no turmite present
for output_color,inputs in leaving_color_behind.items():
tree.add_rule([inputs]+[range(total_states)]*4,output_color)
tree.write(golly.getdir('rules')+rule_name+'.tree')
# Write some colour icons so we can see what the turmite is doing
# A simple ball drawing, with specular highlights (2) and anti-aliasing (3):
icon31x31 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0],
[0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0],
[0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0],
[0,0,0,0,3,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0],
[0,0,0,0,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0],
[0,0,0,3,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0],
[0,0,0,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
[0,0,0,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
[0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
[0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
[0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
[0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
[0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
[0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
[0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
[0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0],
[0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0],
[0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0],
[0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0],
[0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0],
[0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
icon15x15 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,3,3,3,0,0,0,0,0,0],
[0,0,0,0,3,1,1,1,1,1,3,0,0,0,0],
[0,0,0,3,1,1,1,1,1,1,1,3,0,0,0],
[0,0,3,1,1,2,1,1,1,1,1,1,3,0,0],
[0,0,1,1,2,1,1,1,1,1,1,1,1,0,0],
[0,3,1,1,2,1,1,1,1,1,1,1,1,3,0],
[0,3,1,1,1,1,1,1,1,1,1,1,1,3,0],
[0,3,1,1,1,1,1,1,1,1,1,1,1,3,0],
[0,0,1,1,1,1,1,1,1,1,1,1,1,0,0],
[0,0,3,1,1,1,1,1,1,1,1,1,3,0,0],
[0,0,0,3,1,1,1,1,1,1,1,3,0,0,0],
[0,0,0,0,3,1,1,1,1,1,3,0,0,0,0],
[0,0,0,0,0,0,3,3,3,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
icon7x7 = [ [0,0,3,3,3,0,0],
[0,3,1,1,1,3,0],
[3,1,2,1,1,1,3],
[3,1,1,1,1,1,3],
[3,1,1,1,1,1,3],
[0,3,1,1,1,3,0],
[0,0,3,3,3,0,0] ]
palette=[[0,0,0],[0,155,67],[127,0,255],[128,128,128],[185,184,96],[0,100,255],[196,255,254],
[254,96,255],[126,125,21],[21,126,125],[255,116,116],[116,255,116],[116,116,255],
[228,227,0],[28,255,27],[255,27,28],[0,228,227],[227,0,228],[27,28,255],[59,59,59],
[234,195,176],[175,196,255],[171,194,68],[194,68,171],[68,171,194],[72,184,71],[184,71,72],
[71,72,184],[169,255,188],[252,179,63],[63,252,179],[179,63,252],[80,9,0],[0,80,9],[9,0,80],
[255,175,250],[199,134,213],[115,100,95],[188,163,0],[0,188,163],[163,0,188],[203,73,0],
[0,203,73],[73,0,203],[94,189,0],[189,0,94]]
highlight=(255,255,255)
pixels = [[palette[0] for column in range(total_states)*31] for row in range(53)]
for state in range(n_states):
for color in range(n_colors):
bg_col = palette[color]
fg_col = palette[state+n_colors]
mid = [(f+b)/2 for f,b in zip(fg_col,bg_col)]
for row in range(31):
for column in range(31):
pixels[row][(encode(color,state)-1)*31+column] = [bg_col,fg_col,highlight,mid][icon31x31[row][column]]
for row in range(15):
for column in range(15):
pixels[31+row][(encode(color,state)-1)*31+column] = [bg_col,fg_col,highlight,mid][icon15x15[row][column]]
for row in range(7):
for column in range(7):
pixels[46+row][(encode(color,state)-1)*31+column] = [bg_col,fg_col,highlight,mid][icon7x7[row][column]]
for color in range(n_colors):
bg_col = palette[color]
for row in range(31):
for column in range(31):
pixels[row][(color-1)*31+column] = bg_col
for row in range(15):
for column in range(15):
pixels[31+row][(color-1)*31+column] = bg_col
for row in range(7):
for column in range(7):
pixels[46+row][(color-1)*31+column] = bg_col
# use rule_name.tree and icon info to create rule_name.rule
ConvertTreeToRule(rule_name, total_states, pixels)
# now we can switch to the new rule
golly.new(rule_name+'-demo.rle')
golly.setalgo('RuleLoader')
golly.setrule(rule_name)
golly.setcell(0,0,encode(0,0)) # start with a single turmite
golly.show('Created '+rule_name+'.rule and selected that rule.')
|