File: AbsoluteTurmite-gen.py

package info (click to toggle)
golly 3.2-2
  • links: PTS
  • area: main
  • in suites: buster
  • size: 19,516 kB
  • sloc: cpp: 69,819; ansic: 25,894; python: 7,921; sh: 4,267; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; perl: 69
file content (314 lines) | stat: -rw-r--r-- 13,745 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Generator for AbsoluteTurmites rules. Also known as 2D Turing machines.
#
# contact: tim.hutton@gmail.com

import golly
import random
from glife.RuleTree import *

dirs=['N','E','S','W']
opposite_dirs = [ 2, 3, 0, 1 ]

prefix = 'AbsoluteTurmite'

# N.B. All 'relative' Turmites (including Langton's ant and the n-Color family)
# can be expressed as Absolute Turmites but require 4n states instead of n.
# e.g. {{{1,'E',1},{0,'W',3}},{{1,'S',2},{0,'N',0}},{{1,'W',3},{0,'E',1}},{{1,'N',0},{0,'S',2}}}
#      is a 4-state 2-color Absolute Turmite that matches Langton's ant
# Likewise all normal 1D Turing machines can be expressed as Absolute Turmites in a
# straightforward fashion.
# e.g. {{{1,'E',1},{1,'W',1}},{{1,'W',0},{1,'',0}}}
#      is a 2-state 2-color busy beaver
# In both cases the opposite transform is usually not possible. Thus Absolute Turmites
# are a deeper generalization.

# http://bytes.com/topic/python/answers/25176-list-subsets
get_subsets = lambda items: [[x for (pos,x) in zip(range(len(items)), items) if (2**pos) & switches] for switches in range(2**len(items))]

example_spec = "{{{1,'E',1},{1,'W',1}},{{1,'W',0},{1,'',0}}}"

# Generate a random rule, filtering out the most boring
import random
ns = 3
nc = 2
while True: # (we break out if ok)
    example_spec = '{'
    for state in range(ns):
        if state > 0:
            example_spec += ','
        example_spec += '{'
        for color in range(nc):
            if color > 0:
                example_spec += ','
            new_state = random.randint(0,ns-1)
            new_color = random.randint(0,nc-1)
            dir_to_move = dirs[random.randint(0,3)]
            example_spec += '{' + str(new_color) + ",'" + dir_to_move + "'," + str(new_state) + '}'
        example_spec += '}'
    example_spec += '}'
    # is rule acceptable?
    is_rule_acceptable = True
    action_table = eval(example_spec.replace('{','[').replace('}',']'))
    # does Turmite change at least one color?
    changes_one = False
    for state in range(ns):
        for color in range(nc):
            if not action_table[state][color][0] == color:
                changes_one = True
    if not changes_one:
        is_rule_acceptable = False
    # does turmite get stuck in any subset of states?
    for subset in get_subsets(range(ns)):
        if len(subset)==0 or len(subset)==ns: # (just an optimisation)
            continue
        leaves_subset = False
        for state in subset:
            for color in range(nc):
                if not action_table[state][color][2] in subset:
                    leaves_subset = True
        if not leaves_subset:
            is_rule_acceptable = False
            break # (just an optimisation)
    # 1-move lookahead: will turmite zip off when placed on 0?
    for state in range(ns):
        if action_table[state][0][2] == state:
            is_rule_acceptable = False
    # turmite must write each colour at least once
    for color in range(nc):
        if not "{"+str(color)+"," in example_spec:
            is_rule_acceptable = False
    # does turmite move in all directions?
    for dir in dirs:
        if not "'"+dir+"'" in example_spec:
            is_rule_acceptable = False

    if is_rule_acceptable:
        break

spec = golly.getstring(
'''This script will create an AbsoluteTurmite CA for a given specification.

Enter a specification string: a curly-bracketed table of n_states rows
and n_colors columns, where each entry is a triple of integers.
The elements of each triple are:
a: the new color of the square
b: the direction(s) for the turmite to move: 'NESW'
c: the new internal state of the turmite

Example:
{{{1,'E',1},{1,'W',1}},{{1,'W',0},{1,'',0}}}
(example pattern #1)
Has 2 states and 2 colors. The triple {1,'W',0} says:
1. set the color of the square to 1
2. move West
3. adopt state 0 and move forward one square
This is a 1D busy beaver

Enter specification string:
(default is a random example)''', example_spec, 'Enter Absolute Turmite specification:')

# convert the specification string into action_table[state][color]
# (convert Mathematica code to Python and run eval)
action_table = eval(spec.replace('{','[').replace('}',']'))
n_states = len(action_table)
n_colors = len(action_table[0])
# (N.B. The terminology 'state' here refers to the internal state of the finite
#       state machine that each turmite is using, not the contents of each Golly
#       cell. We use the term 'color' to denote the symbol on the 2D 'tape'. The
#       actual 'Golly state' in this emulation of turmites is given by the
#       "encoding" section below.)
n_dirs = 4

# TODO: check table is full and valid

total_states = n_colors + n_colors*n_states

# problem if we try to export more than 255 states
if total_states > 255:
    golly.warn("Number of states required exceeds Golly's limit of 255.")
    golly.exit()

# encoding:
# (0-n_colors: empty square)
def encode(c,s):
    # turmite on color c in state s
    return n_colors + n_states*c + s

# http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html
def flatten(l, ltypes=(list, tuple)):
    ltype = type(l)
    l = list(l)
    i = 0
    while i < len(l):
        while isinstance(l[i], ltypes):
            if not l[i]:
                l.pop(i)
                i -= 1
                break
            else:
                l[i:i + 1] = l[i]
        i += 1
    return ltype(l)

# convert the string to a form we can embed in a filename
spec_string = ''.join(map(str,map(str,flatten(action_table))))
# (ambiguous but we have to try something)
rule_name = prefix+'_'+spec_string

remap = [2,1,3,0] # N,E,S,W -> S,E,W,N

not_arriving_from_here = [range(n_colors) for i in range(n_dirs)] # (we're going to modify them)
for color in range(n_colors):
    for state in range(n_states):
        moveset = action_table[state][color][1]
        for iMove,move in enumerate(dirs):
            if not move in moveset:
                not_arriving_from_here[opposite_dirs[iMove]] += [encode(color,state)]

# What states leave output_color behind?
leaving_color_behind = {}
for output_color in range(n_colors):
    leaving_color_behind[output_color] = [output_color] # (no turmite present)
    for state in range(n_states):
        for color in range(n_colors):
            if action_table[state][color][0]==output_color:
                leaving_color_behind[output_color] += [encode(color,state)]

tree = RuleTree(total_states,4)

# A single turmite is entering this square:
for s in range(n_states):
    # collect all the possibilities for a turmite to arrive in state s...
    inputs_sc = []
    for state in range(n_states):
        for color in range(n_colors):
            if action_table[state][color][2]==s:
                inputs_sc += [(state,color)]
    # ...from direction dir
    for dir in range(n_dirs):
        inputs = []
        for state,color in inputs_sc:
            moveset = action_table[state][color][1]
            if dirs[opposite_dirs[dir]] in moveset: # e.g. is there one to the S about to move N
                inputs += [encode(color,state)]
        if len(inputs)==0:
            continue
        for central_color in range(n_colors):
            # output the required transition
            ### AKT: this code causes syntax error in Python 2.3:
            ### transition_inputs = [leaving_color_behind[central_color]] + \
            ###     [ inputs if i==dir else not_arriving_from_here[i] for i in remap ]
            transition_inputs = [leaving_color_behind[central_color]]
            for i in remap:
                if i==dir:
                    transition_inputs.append(inputs)
                else:
                    transition_inputs.append(not_arriving_from_here[i])
            transition_output = encode(central_color,s)
            tree.add_rule( transition_inputs, transition_output )

# default: square is left with no turmite present
for output_color,inputs in leaving_color_behind.items():
    tree.add_rule([inputs]+[range(total_states)]*4,output_color)

tree.write(golly.getdir('rules')+rule_name+'.tree')

# Write some colour icons so we can see what the turmite is doing
# A simple ball drawing, with specular highlights (2) and anti-aliasing (3):
icon31x31 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0],
             [0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0],
             [0,0,0,0,3,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0],
             [0,0,0,0,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0],
             [0,0,0,3,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0],
             [0,0,0,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
             [0,0,0,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
             [0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
             [0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
             [0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
             [0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
             [0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0],
             [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
             [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
             [0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0],
             [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0],
             [0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0],
             [0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0],
             [0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,1,1,3,0,0,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
icon15x15 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
             [0,0,0,0,0,0,3,3,3,0,0,0,0,0,0],
             [0,0,0,0,3,1,1,1,1,1,3,0,0,0,0],
             [0,0,0,3,1,1,1,1,1,1,1,3,0,0,0],
             [0,0,3,1,1,2,1,1,1,1,1,1,3,0,0],
             [0,0,1,1,2,1,1,1,1,1,1,1,1,0,0],
             [0,3,1,1,2,1,1,1,1,1,1,1,1,3,0],
             [0,3,1,1,1,1,1,1,1,1,1,1,1,3,0],
             [0,3,1,1,1,1,1,1,1,1,1,1,1,3,0],
             [0,0,1,1,1,1,1,1,1,1,1,1,1,0,0],
             [0,0,3,1,1,1,1,1,1,1,1,1,3,0,0],
             [0,0,0,3,1,1,1,1,1,1,1,3,0,0,0],
             [0,0,0,0,3,1,1,1,1,1,3,0,0,0,0],
             [0,0,0,0,0,0,3,3,3,0,0,0,0,0,0],
             [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
icon7x7 = [ [0,0,3,3,3,0,0],
            [0,3,1,1,1,3,0],
            [3,1,2,1,1,1,3],
            [3,1,1,1,1,1,3],
            [3,1,1,1,1,1,3],
            [0,3,1,1,1,3,0],
            [0,0,3,3,3,0,0] ]
palette=[[0,0,0],[0,155,67],[127,0,255],[128,128,128],[185,184,96],[0,100,255],[196,255,254],
    [254,96,255],[126,125,21],[21,126,125],[255,116,116],[116,255,116],[116,116,255],
    [228,227,0],[28,255,27],[255,27,28],[0,228,227],[227,0,228],[27,28,255],[59,59,59],
    [234,195,176],[175,196,255],[171,194,68],[194,68,171],[68,171,194],[72,184,71],[184,71,72],
    [71,72,184],[169,255,188],[252,179,63],[63,252,179],[179,63,252],[80,9,0],[0,80,9],[9,0,80],
    [255,175,250],[199,134,213],[115,100,95],[188,163,0],[0,188,163],[163,0,188],[203,73,0],
    [0,203,73],[73,0,203],[94,189,0],[189,0,94]]
highlight=(255,255,255)
pixels = [[palette[0] for column in range(total_states)*31] for row in range(53)]
for state in range(n_states):
    for color in range(n_colors):
        bg_col = palette[color]
        fg_col = palette[state+n_colors]
        mid = [(f+b)/2 for f,b in zip(fg_col,bg_col)]
        for row in range(31):
            for column in range(31):
                pixels[row][(encode(color,state)-1)*31+column] = [bg_col,fg_col,highlight,mid][icon31x31[row][column]]
        for row in range(15):
            for column in range(15):
                pixels[31+row][(encode(color,state)-1)*31+column] = [bg_col,fg_col,highlight,mid][icon15x15[row][column]]
        for row in range(7):
            for column in range(7):
                pixels[46+row][(encode(color,state)-1)*31+column] = [bg_col,fg_col,highlight,mid][icon7x7[row][column]]
for color in range(n_colors):
    bg_col = palette[color]
    for row in range(31):
        for column in range(31):
            pixels[row][(color-1)*31+column] = bg_col
    for row in range(15):
        for column in range(15):
            pixels[31+row][(color-1)*31+column] = bg_col
    for row in range(7):
        for column in range(7):
            pixels[46+row][(color-1)*31+column] = bg_col

# use rule_name.tree and icon info to create rule_name.rule
ConvertTreeToRule(rule_name, total_states, pixels)

# now we can switch to the new rule
golly.new(rule_name+'-demo.rle')
golly.setalgo('RuleLoader')
golly.setrule(rule_name)
golly.setcell(0,0,encode(0,0)) # start with a single turmite
golly.show('Created '+rule_name+'.rule and selected that rule.')