1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
# generator for Langton's Ant rules
# inspired by Aldoaldoz: http://www.youtube.com/watch?v=1X-gtr4pEBU
# contact: tim.hutton@gmail.com
import golly
import random
from glife.RuleTree import *
opposite_dirs=[2,3,0,1] # index of opposite direction
# encoding:
# (0-n_colors: empty square)
def encode(c,s,d):
# turmite on color c in state s facing direction d
return n_colors + n_dirs*(n_states*c+s) + d
prefix = 'LangtonsAnt'
# (We choose a different name to the inbuilt Langtons-Ant rule to avoid
# name collision between the rules we output and the existing icons.)
spec = golly.getstring(
'''This script will create a Langton's Ant CA for a given string of actions.
The string specifies which way to turn when standing on a square of each state.
Examples: RL (Langton's Ant), RLR (Chaos), LLRR (Cardioid), LRRL (structure)
Permitted moves: 'L':Left, 'R':Right, 'U':U-turn, 'N':No turn
Enter string:''', 'RL', 'Enter string:')
n_colors = len(spec)
d={'R':'2','L':'8','U':'4','N':'1'} # 1=noturn, 2=right, 4=u-turn, 8=left
turmite_spec = "{{"+','.join(['{'+str((i+1)%n_colors)+','+d[spec[i]]+',0}' for i in range(n_colors)])+"}}"
rule_name = prefix+'_'+spec
action_table = eval(turmite_spec.replace('}',']').replace('{','['))
n_states = len(action_table)
n_dirs=4
# (N.B. The terminology 'state' here refers to the internal state of the finite
# state machine that each Turmite is using, not the contents of each Golly
# cell. We use the term 'color' to denote the symbol on the 2D 'tape'. The
# actual 'Golly state' in this emulation of Turmites is given by the
# "encoding" section below.)
total_states = n_colors+n_colors*n_states*n_dirs
# problem if we try to export more than 255 states
if total_states>255:
golly.warn("Number of states required exceeds Golly's limit of 255\n\nMaximum 51 turns allowed.")
golly.exit()
# what direction would a turmite have been facing to end up here from direction
# d if it turned t: would_have_been_facing[t][d]
would_have_been_facing={
1:[2,3,0,1], # no turn
2:[1,2,3,0], # right
4:[0,1,2,3], # u-turn
8:[3,0,1,2], # left
}
remap = [2,1,3,0] # N,E,S,W -> S,E,W,N
not_arriving_from_here = [range(n_colors) for i in range(n_dirs)] # (we're going to modify them)
for color in range(n_colors):
for state in range(n_states):
turnset = action_table[state][color][1]
for turn in [1,2,4,8]:
if not turn&turnset: # didn't turn this way
for dir in range(n_dirs):
facing = would_have_been_facing[turn][dir]
not_arriving_from_here[dir] += [encode(color,state,facing)]
# What states leave output_color behind?
leaving_color_behind = {}
for output_color in range(n_colors):
leaving_color_behind[output_color] = [output_color] # (no turmite present)
for state in range(n_states):
for color in range(n_colors):
if action_table[state][color][0]==output_color:
leaving_color_behind[output_color] += [encode(color,state,d) for d in range(n_dirs)] # any direction
tree = RuleTree(total_states,4)
# A single turmite is entering this square:
for s in range(n_states):
# collect all the possibilities for a turmite to arrive in state s...
inputs_sc = []
for state in range(n_states):
for color in range(n_colors):
if action_table[state][color][2]==s:
inputs_sc += [(state,color)]
# ...from direction dir
for dir in range(n_dirs):
inputs = []
for state,color in inputs_sc:
turnset = action_table[state][color][1] # sum of all turns
inputs += [encode(color,state,would_have_been_facing[turn][dir]) for turn in [1,2,4,8] if turn&turnset]
if len(inputs)==0:
continue
for central_color in range(n_colors):
# output the required transition
### AKT: this code causes syntax error in Python 2.3:
### transition_inputs = [leaving_color_behind[central_color]] + \
### [ inputs if i==dir else not_arriving_from_here[i] for i in remap ]
transition_inputs = [leaving_color_behind[central_color]]
for i in remap:
if i==dir:
transition_inputs.append(inputs)
else:
transition_inputs.append(not_arriving_from_here[i])
transition_output = encode(central_color,s,opposite_dirs[dir])
tree.add_rule( transition_inputs, transition_output )
# default: square is left with no turmite present
for output_color,inputs in leaving_color_behind.items():
tree.add_rule([inputs]+[range(total_states)]*4,output_color)
tree.write(golly.getdir('rules')+rule_name+'.tree')
# Create some multi-colour icons so we can see what the ant is doing
# Andrew's ant drawing: (with added eyes (2) and anti-aliasing (3))
ant31x31 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,1,1,1,2,2,1,1,1,2,2,1,1,1,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,2,2,1,1,1,2,2,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1,1,0,0,0,3,1,1,1,3,0,0,0,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,1,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
ant15x15 = [[0,0,0,0,1,0,0,0,0,0,1,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,2,1,2,0,0,0,0,0,0],
[0,0,0,1,0,0,1,1,1,0,0,1,0,0,0],
[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0],
[0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,1,1,1,1,1,1,1,0,0,0,0],
[0,0,0,1,0,0,0,1,0,0,0,1,0,0,0],
[0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
[0,0,0,0,1,0,0,1,0,0,1,0,0,0,0],
[0,0,0,1,0,0,3,1,3,0,0,1,0,0,0],
[0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
[0,0,0,0,0,0,3,1,3,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
ant7x7 = [ [0,1,0,0,0,1,0],
[0,0,2,1,2,0,0],
[0,0,0,1,0,0,0],
[0,1,1,1,1,1,0],
[0,0,0,1,0,0,0],
[0,1,1,1,1,1,0],
[0,0,0,1,0,0,0] ]
palette=[[0,0,0],[0,155,67],[127,0,255],[128,128,128],[185,184,96],[0,100,255],[196,255,254],
[254,96,255],[126,125,21],[21,126,125],[255,116,116],[116,255,116],[116,116,255],
[228,227,0],[28,255,27],[255,27,28],[0,228,227],[227,0,228],[27,28,255],[59,59,59],
[234,195,176],[175,196,255],[171,194,68],[194,68,171],[68,171,194],[72,184,71],[184,71,72],
[71,72,184],[169,255,188],[252,179,63],[63,252,179],[179,63,252],[80,9,0],[0,80,9],[9,0,80],
[255,175,250],[199,134,213],[115,100,95],[188,163,0],[0,188,163],[163,0,188],[203,73,0],
[0,203,73],[73,0,203],[94,189,0],[189,0,94]]
eyes = (255,255,255)
rotate4 = [ [[1,0],[0,1]], [[0,-1],[1,0]], [[-1,0],[0,-1]], [[0,1],[-1,0]] ]
offset4 = [ [0,0], [1,0], [1,1], [0,1] ]
pixels = [[palette[0] for column in range(total_states)*31] for row in range(53)]
for state in range(n_states):
for color in range(n_colors):
for dir in range(n_dirs):
bg_col = palette[color]
fg_col = palette[state+n_colors]
mid = [(f+b)/2 for f,b in zip(fg_col,bg_col)]
for x in range(31):
for y in range(31):
column = (encode(color,state,dir)-1)*31 + rotate4[dir][0][0]*x + \
rotate4[dir][0][1]*y + offset4[dir][0]*30
row = rotate4[dir][1][0]*x + rotate4[dir][1][1]*y + offset4[dir][1]*30
pixels[row][column] = [bg_col,fg_col,eyes,mid][ant31x31[y][x]]
for x in range(15):
for y in range(15):
column = (encode(color,state,dir)-1)*31 + rotate4[dir][0][0]*x + \
rotate4[dir][0][1]*y + offset4[dir][0]*14
row = 31 + rotate4[dir][1][0]*x + rotate4[dir][1][1]*y + offset4[dir][1]*14
pixels[row][column] = [bg_col,fg_col,eyes,mid][ant15x15[y][x]]
for x in range(7):
for y in range(7):
column = (encode(color,state,dir)-1)*31 + rotate4[dir][0][0]*x + \
rotate4[dir][0][1]*y + offset4[dir][0]*6
row = 46 + rotate4[dir][1][0]*x + rotate4[dir][1][1]*y + offset4[dir][1]*6
pixels[row][column] = [bg_col,fg_col,eyes,mid][ant7x7[y][x]]
for color in range(n_colors):
bg_col = palette[color]
for row in range(31):
for column in range(31):
pixels[row][(color-1)*31+column] = bg_col
for row in range(15):
for column in range(15):
pixels[31+row][(color-1)*31+column] = bg_col
for row in range(7):
for column in range(7):
pixels[46+row][(color-1)*31+column] = bg_col
# use rule_name.tree and icon info to create rule_name.rule
ConvertTreeToRule(rule_name, total_states, pixels)
# now we can switch to the new rule
golly.new(rule_name+' demo')
golly.setalgo('RuleLoader')
golly.setrule(rule_name)
golly.setcell(0,0,n_colors+3) # start with an ant facing west
golly.show('Created '+rule_name+'.rule and selected that rule.')
|