File: TriTurmite-gen.py

package info (click to toggle)
golly 3.2-2
  • links: PTS
  • area: main
  • in suites: buster
  • size: 19,516 kB
  • sloc: cpp: 69,819; ansic: 25,894; python: 7,921; sh: 4,267; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; perl: 69
file content (548 lines) | stat: -rw-r--r-- 25,133 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# Generator for Triangular Turmite rules

import golly
import random
import string
from glife.EmulateTriangular import *
from glife.WriteRuleTable import *

prefix = 'TriTurmite'

# http://bytes.com/topic/python/answers/25176-list-subsets
get_subsets = lambda items: [[x for (pos,x) in zip(range(len(items)), items) if (2**pos) & switches] for switches in range(2**len(items))]

# Generate a random rule, while filtering out the dull ones.
# More to try:
# - if turmite can get stuck in period-2 cycles then rule is bad (or might it avoid them?)
# - (extending) if turmite has (c,2 (or 8),s) for state s and color c then will loop on the spot (unlikely to avoid?)
example_spec = '{{{1, 2, 0}, {0, 1, 0}}}'
import random
ns = 2
nc = 3
while True: # (we break out if ok)
    example_spec = '{'
    for state in range(ns):
        if state > 0:
            example_spec += ','
        example_spec += '{'
        for color in range(nc):
            if color > 0:
                example_spec += ','
            new_color = random.randint(0,nc-1)
            dir_to_turn = [1,2,4][random.randint(0,2)] # (we don't consider splitting and dying here)
            new_state = random.randint(0,ns-1)
            example_spec += '{' + str(new_color) + "," + str(dir_to_turn) + "," + str(new_state) + '}'
        example_spec += '}'
    example_spec += '}'
    is_rule_acceptable = True
    action_table = eval(string.replace(string.replace(example_spec,'}',']'),'{','['))
    # does Turmite change at least one color?
    changes_one = False
    for state in range(ns):
        for color in range(nc):
            if not action_table[state][color][0] == color:
                changes_one = True
    if not changes_one:
        is_rule_acceptable = False
    # does Turmite write every non-zero color?
    colors_written = set([])
    for state in range(ns):
        for color in range(nc):
            colors_written.add(action_table[state][color][0])
    if not colors_written==set(range(1,nc)):
        is_rule_acceptable = False
    # does Turmite ever turn?
    turmite_turns = False
    for state in range(ns):
        for color in range(nc):
            if not action_table[state][color][0] in [4]: # u-turn
                turmite_turns = True
    if not turmite_turns:
        is_rule_acceptable = False
    # does turmite get stuck in any subset of states?
    for subset in get_subsets(range(ns)):
        if len(subset)==0 or len(subset)==ns: # (just an optimisation)
            continue
        leaves_subset = False
        for state in subset:
            for color in range(nc):
                if not action_table[state][color][2] in subset:
                    leaves_subset = True
        if not leaves_subset:
            is_rule_acceptable = False
            break # (just an optimisation)
    # does turmite wobble on the spot? (u-turn that doesn't change color or state)
    for state in range(ns):
        for color in range(nc):
            if action_table[state][color][0]==color and action_table[state][color][1]==4 and action_table[state][color][2]==state:
                is_rule_acceptable = False
    # so was the rule acceptable, in the end?
    if is_rule_acceptable:
        break

spec = golly.getstring(
'''This script will create a TriTurmite CA for a given specification.

Enter a specification string: a curly-bracketed table of n_states rows
and n_colors columns, where each entry is a triple of integers.
The elements of each triple are:
a: the new color of the square
b: the direction(s) for the Turmite to turn (1=Left, 2=Right, 4=U-turn)
c: the new internal state of the Turmite

Example:
{{{1, 2, 0}, {0, 1, 0}}}
Has 1 state and 2 colors. The triple {1,2,0} says:
1. set the color of the square to 1
2. turn right (2)
3. adopt state 0 (no change) and move forward one square
This is the equivalent of Langton's Ant.

Enter string:
''', example_spec, 'Enter TriTurmite specification:')

'''Some interesting rule found with this script:
{{{2,4,0},{2,4,0},{1,2,1}},{{1,2,1},{2,1,0},{1,4,1}}} - lightning cloud
{{{1,1,1},{1,2,0},{2,1,1}},{{2,2,1},{2,2,1},{1,4,0}}} - makes a highway (seems to be rarer in tri grids compared to square grids?)
{{{2,2,1},{1,2,0},{1,1,1}},{{1,2,0},{2,1,0},{1,4,1}}} - data pyramid
{{{2,1,0},{1,4,1},{1,1,0}},{{2,4,0},{2,2,1},{1,1,1}}} - a filled version of the tri-grid Langton's ant
{{{1,1,0},{2,2,1},{1,1,0}},{{1,4,0},{2,2,0},{2,2,0}}} - hypnodisc
'''

# convert the specification string into action_table[state][color]
# (convert Mathematica code to Python and run eval)
action_table = eval(string.replace(string.replace(spec,'}',']'),'{','['))
n_states = len(action_table)
n_colors = len(action_table[0])
# (N.B. The terminology 'state' here refers to the internal state of the finite
#       state machine that each Turmite is using, not the contents of each Golly
#       cell. We use the term 'color' to denote the symbol on the 2D 'tape'. The
#       actual 'Golly state' in this emulation of Turmites is given by the
#       "encoding" section below.)
n_dirs = 3

# TODO: check table is full and valid

total_states = n_colors+n_colors*n_states*3

# problem if we try to export more than 255 states
if total_states > 128: # max allowed using checkerboard emulation (see EmulateTriangular)
    golly.warn("Number of states required exceeds Golly's limit of 255.")
    golly.exit()

# encoding:
# (0-n_colors: empty square)
def encode(c,s,d):
    # turmite on color c in state s facing away from direction d
    return n_colors + 3*(n_states*c+s) + d

# http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html
def flatten(l, ltypes=(list, tuple)):
    ltype = type(l)
    l = list(l)
    i = 0
    while i < len(l):
        while isinstance(l[i], ltypes):
            if not l[i]:
                l.pop(i)
                i -= 1
                break
            else:
                l[i:i + 1] = l[i]
        i += 1
    return ltype(l)

# convert the string to a form we can embed in a filename
spec_string = ''.join(map(str,map(lambda x:hex(x)[2:],flatten(action_table))))
# (ambiguous but we have to try something)

# what direction would a turmite have been facing to end up here from direction
# d if it turned t: would_have_been_facing[t][d]
would_have_been_facing={
1:[2,0,1], # left
2:[1,2,0], # right
4:[0,1,2], # u-turn
}

not_arriving_from_here = [range(n_colors) for i in range(n_dirs)] # (we're going to modify them)
for color in range(n_colors):
    for state in range(n_states):
        turnset = action_table[state][color][1]
        for turn in [1,2,4]:
            if not turn&turnset: # didn't turn this way
                for dir in range(n_dirs):
                    facing = would_have_been_facing[turn][dir]
                    not_arriving_from_here[dir] += [encode(color,state,facing)]

# What states leave output_color behind?
leaving_color_behind = {}
for output_color in range(n_colors):
    leaving_color_behind[output_color] = [output_color] # (no turmite present)
    for state in range(n_states):
        for color in range(n_colors):
            if action_table[state][color][0]==output_color:
                leaving_color_behind[output_color] += [encode(color,state,d) for d in range(n_dirs)] # any direction

# we can't build the rule tree directly so we collect the transitions ready for emulation
transitions = []

# A single turmite is entering this square:
for s in range(n_states):
    for dir in range(n_dirs):
        # collect all the possibilities for a turmite to arrive in state s from direction dir
        inputs = []
        for state in range(n_states):
            for color in range(n_colors):
                if action_table[state][color][2]==s:
                    turnset = action_table[state][color][1] # sum of all turns
                    inputs += [encode(color,state,would_have_been_facing[turn][dir]) \
                               for turn in [1,2,4] if turn&turnset]
        if len(inputs)>0:
            for central_color in range(n_colors):
                # output the required transition
                ### AKT: this code causes syntax error in Python 2.3:
                ### transition = [leaving_color_behind[central_color]] + \
                ###     [ inputs if i==dir else not_arriving_from_here[i] for i in range(n_dirs) ] + \
                ###     [ [encode(central_color,s,dir)] ]
                transition = [leaving_color_behind[central_color]]
                for i in range(n_dirs):
                    if i==dir:
                        transition.append(inputs)
                    else:
                        transition.append(not_arriving_from_here[i])
                transition += [ [encode(central_color,s,dir)] ]
                transitions += [transition]

# default: square is left with no turmite present
for output_color,inputs in leaving_color_behind.items():
    transition = [inputs]+[range(total_states)]*n_dirs+[[output_color]]
    transitions += [transition]

rule_name = prefix+'_'+spec_string

# To see the intermediate output as a rule table (can use RuleTableToTree.py to load it):
#WriteRuleTable("triangularVonNeumann",total_states,transitions,golly.getdir('rules')+rule_name+'_asTable.table')

# -- make some icons --

palette=[[0,0,0],[0,155,67],[127,0,255],[128,128,128],[185,184,96],[0,100,255],[196,255,254],
    [254,96,255],[126,125,21],[21,126,125],[255,116,116],[116,255,116],[116,116,255],
    [228,227,0],[28,255,27],[255,27,28],[0,228,227],[227,0,228],[27,28,255],[59,59,59],
    [234,195,176],[175,196,255],[171,194,68],[194,68,171],[68,171,194],[72,184,71],[184,71,72],
    [71,72,184],[169,255,188],[252,179,63],[63,252,179],[179,63,252],[80,9,0],[0,80,9],[9,0,80],
    [255,175,250],[199,134,213],[115,100,95],[188,163,0],[0,188,163],[163,0,188],[203,73,0],
    [0,203,73],[73,0,203],[94,189,0],[189,0,94]]

if total_states<=16:

    TriangularTransitionsToRuleTree_SplittingMethod("triangularVonNeumann",total_states,transitions,rule_name)

    width = 15*(total_states*total_states-1) + 15 # we set the background color
    height = 22
    pixels = [[(0,0,0) for x in range(width)] for y in range(height)]

    # turmite icons: 0=black, 1=background color, 2=turmite color
    turmite_big =  [[[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
                     [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1],
                     [1,1,0,1,1,1,1,1,1,2,2,2,2,1,1],
                     [1,1,1,0,1,1,1,1,1,1,1,2,2,1,1],
                     [1,1,1,1,0,1,1,1,1,1,2,1,2,1,1],
                     [1,1,1,1,1,0,1,1,1,2,1,1,2,1,1],
                     [1,1,1,1,1,1,0,1,2,1,1,1,1,1,1],
                     [1,1,1,1,1,1,1,0,1,1,1,1,1,1,1],
                     [1,1,1,1,1,1,2,1,0,1,1,1,1,1,1],
                     [1,1,2,1,1,2,1,1,1,0,1,1,1,1,1],
                     [1,1,2,1,2,1,1,1,1,1,0,1,1,1,1],
                     [1,1,2,2,1,1,1,1,1,1,1,0,1,1,1],
                     [1,1,2,2,2,2,1,1,1,1,1,1,0,1,1],
                     [1,1,1,1,1,1,1,1,1,1,1,1,1,0,1],
                     [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0]],
                    [[0,1,1,1,1,1,1,1,2,1,1,1,1,1,1],
                     [1,0,1,1,1,1,1,1,2,1,1,1,1,1,1],
                     [1,1,0,1,1,1,1,1,1,2,1,1,1,1,1],
                     [1,1,1,0,1,1,1,1,1,2,1,1,1,1,1],
                     [1,1,1,1,0,1,1,1,1,1,2,1,1,1,1],
                     [1,1,2,1,1,0,1,1,1,1,2,1,2,1,1],
                     [1,1,2,2,1,1,0,1,1,1,1,2,2,1,1],
                     [1,1,2,2,2,1,1,0,1,1,2,2,2,1,1],
                     [1,1,2,2,1,1,1,1,0,1,1,2,2,1,1],
                     [1,1,2,1,2,1,1,1,1,0,1,1,2,1,1],
                     [1,1,1,1,2,1,1,1,1,1,0,1,1,1,1],
                     [1,1,1,1,1,2,1,1,1,1,1,0,1,1,1],
                     [1,1,1,1,1,2,1,1,1,1,1,1,0,1,1],
                     [1,1,1,1,1,1,2,1,1,1,1,1,1,0,1],
                     [1,1,1,1,1,1,2,1,1,1,1,1,1,1,0]],
                    [[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
                     [1,0,1,1,1,1,1,1,1,1,1,1,1,1,1],
                     [1,1,0,1,1,2,2,2,2,2,1,1,1,1,1],
                     [1,1,1,0,1,1,2,2,2,1,1,1,1,1,1],
                     [1,1,1,1,0,1,1,2,1,2,2,1,1,1,1],
                     [1,1,1,1,1,0,1,1,1,1,1,2,2,1,1],
                     [1,1,1,1,1,1,0,1,1,1,1,1,1,2,2],
                     [1,1,1,1,1,1,1,0,1,1,1,1,1,1,1],
                     [2,2,1,1,1,1,1,1,0,1,1,1,1,1,1],
                     [1,1,2,2,1,1,1,1,1,0,1,1,1,1,1],
                     [1,1,1,1,2,2,1,2,1,1,0,1,1,1,1],
                     [1,1,1,1,1,1,2,2,2,1,1,0,1,1,1],
                     [1,1,1,1,1,2,2,2,2,2,1,1,0,1,1],
                     [1,1,1,1,1,1,1,1,1,1,1,1,1,0,1],
                     [1,1,1,1,1,1,1,1,1,1,1,1,1,1,0]]]
    turmite_small = [[[0,1,1,1,1,1,1],
                      [1,0,1,2,2,2,1],
                      [1,1,0,1,1,2,1],
                      [1,2,1,0,1,2,1],
                      [1,2,1,1,0,1,1],
                      [1,2,2,2,1,0,1],
                      [1,1,1,1,1,1,0]],
                     [[0,1,1,1,1,1,1],
                      [1,0,1,1,1,2,1],
                      [1,1,0,1,2,2,1],
                      [1,2,1,0,1,2,1],
                      [1,2,2,1,0,1,1],
                      [1,2,1,1,1,0,1],
                      [1,1,1,1,1,1,0]],
                     [[0,1,1,1,1,1,1],
                      [1,0,1,2,2,2,1],
                      [1,1,0,1,2,1,1],
                      [1,1,1,0,1,1,1],
                      [1,1,2,1,0,1,1],
                      [1,2,2,2,1,0,1],
                      [1,1,1,1,1,1,0]]]

    # TODO: do something about this horrible code
    for lc in range(n_colors):
        for uc in range(n_colors):
            '''draw the cells with no turmites'''
            golly_state = uc * total_states + lc
            for row in range(15):
                for column in range(15):
                    if column>row:
                        # upper
                        pixels[row][(golly_state-1)*15+column] = palette[uc]
                    elif column<row:
                        # lower
                        pixels[row][(golly_state-1)*15+column] = palette[lc]
            for row in range(7):
                for column in range(7):
                    if column>row:
                        # upper
                        pixels[15+row][(golly_state-1)*15+column] = palette[uc]
                    elif column<row:
                        # lower
                        pixels[15+row][(golly_state-1)*15+column] = palette[lc]
            '''draw the cells with a turmite in the upper half'''
            for us in range(n_states):
                for ud in range(n_dirs):
                    upper = encode(uc,us,ud)
                    golly_state = upper * total_states + lc
                    for row in range(15):
                        for column in range(15):
                            if column>row:
                                # upper
                                bg_col = palette[uc]
                                fg_col = palette[n_colors+us]
                                pixels[row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_big[ud][row][column]]
                            elif column<row:
                                # lower
                                pixels[row][(golly_state-1)*15+column] = palette[lc]
                    for row in range(7):
                        for column in range(7):
                            if column>row:
                                # upper
                                bg_col = palette[uc]
                                fg_col = palette[n_colors+us]
                                pixels[15+row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_small[ud][row][column]]
                            elif column<row:
                                # lower
                                pixels[15+row][(golly_state-1)*15+column] = palette[lc]
        for ls in range(n_states):
            for ld in range(n_dirs):
                lower = encode(lc,ls,ld)
                for uc in range(n_colors):
                    '''draw the cells with a turmite in the lower half'''
                    golly_state = uc * total_states + lower
                    for row in range(15):
                        for column in range(15):
                            if row>column:
                                # lower
                                bg_col = palette[lc]
                                fg_col = palette[n_colors+ls]
                                pixels[row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_big[ld][row][column]]
                            elif column>row:
                                # upper
                                pixels[row][(golly_state-1)*15+column] = palette[uc]
                    for row in range(7):
                        for column in range(7):
                            if row>column:
                                # lower
                                bg_col = palette[lc]
                                fg_col = palette[n_colors+ls]
                                pixels[15+row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_small[ld][row][column]]
                            elif column>row:
                                # upper
                                pixels[15+row][(golly_state-1)*15+column] = palette[uc]
                    '''draw the cells with a turmite in both halves'''
                    for us in range(n_states):
                        for ud in range(n_dirs):
                            upper = encode(uc,us,ud)
                            golly_state = upper * total_states + lower
                            for row in range(15):
                                for column in range(15):
                                    if row>column:
                                        # lower
                                        bg_col = palette[lc]
                                        fg_col = palette[n_colors+ls]
                                        pixels[row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_big[ld][row][column]]
                                    elif column>row:
                                        # upper
                                        bg_col = palette[uc]
                                        fg_col = palette[n_colors+us]
                                        pixels[row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_big[ud][row][column]]
                            for row in range(7):
                                for column in range(7):
                                    if row>column:
                                        # lower
                                        bg_col = palette[lc]
                                        fg_col = palette[n_colors+ls]
                                        pixels[15+row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_small[ld][row][column]]
                                    elif column>row:
                                        # upper
                                        bg_col = palette[uc]
                                        fg_col = palette[n_colors+us]
                                        pixels[15+row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_small[ud][row][column]]

    ConvertTreeToRule(rule_name, total_states, pixels)

elif total_states<=128:

    TriangularTransitionsToRuleTree_CheckerboardMethod("triangularVonNeumann",total_states,transitions,rule_name)

    width = 15*(total_states*2-2) + 15 # we set the background color
    height = 22
    pixels = [[(0,0,0) for x in range(width)] for y in range(height)]

    # turmite icons: 0=black, 1=background color, 2=turmite color
    lower = [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
              [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
              [0,0,0,0,1,1,1,1,1,1,2,0,0,0,0],
              [0,0,0,1,1,1,1,1,2,2,1,1,0,0,0],
              [0,0,1,1,2,1,2,2,1,1,1,1,1,0,0],
              [0,1,1,2,2,2,1,1,1,1,1,1,1,1,0],
              [1,1,2,2,2,2,2,1,1,1,1,1,1,1,1],
              [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],
             [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
              [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
              [0,0,0,0,1,1,1,2,1,1,1,0,0,0,0],
              [0,0,0,1,1,1,2,2,2,1,1,1,0,0,0],
              [0,0,1,1,1,2,2,2,2,2,1,1,1,0,0],
              [0,1,1,1,1,1,1,2,1,1,1,1,1,1,0],
              [1,1,1,1,1,1,1,2,1,1,1,1,1,1,1],
              [1,1,1,1,1,1,1,2,1,1,1,1,1,1,1],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],
             [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
              [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
              [0,0,0,0,2,1,1,1,1,1,1,0,0,0,0],
              [0,0,0,1,1,2,2,1,1,1,1,1,0,0,0],
              [0,0,1,1,1,1,1,2,2,1,2,1,1,0,0],
              [0,1,1,1,1,1,1,1,1,2,2,2,1,1,0],
              [1,1,1,1,1,1,1,1,2,2,2,2,2,1,1],
              [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]
    lower7x7 = [[[0,0,0,0,0,0,0],
                 [0,0,0,0,0,0,0],
                 [0,0,0,1,0,0,0],
                 [0,0,1,1,1,0,0],
                 [0,1,2,2,1,1,0],
                 [1,1,1,1,1,1,1],
                 [0,0,0,0,0,0,0]],
                [[0,0,0,0,0,0,0],
                 [0,0,0,0,0,0,0],
                 [0,0,0,1,0,0,0],
                 [0,0,1,2,1,0,0],
                 [0,1,2,1,2,1,0],
                 [1,1,1,1,1,1,1],
                 [0,0,0,0,0,0,0]],
                [[0,0,0,0,0,0,0],
                 [0,0,0,0,0,0,0],
                 [0,0,0,1,0,0,0],
                 [0,0,1,1,1,0,0],
                 [0,1,1,2,2,1,0],
                 [1,1,1,1,1,1,1],
                 [0,0,0,0,0,0,0]]]
    # (we invert the lower triangle to get the upper triangle)

    for color in range(n_colors):
        bg_color = palette[color]
        # draw the 15x15 icon
        for row in range(15):
            for column in range(15):
                # lower triangle
                pixels[row][(color-1)*15+column] = \
                    [palette[0],bg_color,bg_color][lower[0][row][column]]
                # upper triangle
                pixels[row][(color+total_states-2)*15+column] = \
                    [palette[0],bg_color,bg_color][lower[0][13-row][column]]
        # draw the 7x7 icon
        for row in range(7):
            for column in range(7):
                # lower triangle
                pixels[15+row][(color-1)*15+column] = \
                    [palette[0],bg_color,bg_color][lower7x7[0][row][column]]
                # upper triangle
                pixels[15+row][(color+total_states-2)*15+column] = \
                    [palette[0],bg_color,bg_color][lower7x7[0][6-row][column]]
        for state in range(n_states):
            fg_color = palette[n_colors+state]
            for dir in range(n_dirs):
                # draw the 15x15 icon
                for row in range(15):
                    for column in range(15):
                        # lower triangle
                        pixels[row][(encode(color,state,dir)-1)*15+column] = \
                            [palette[0],bg_color,fg_color][lower[dir][row][column]]
                        # upper triangle
                        pixels[row][(encode(color,state,dir)+total_states-2)*15+column] = \
                            [palette[0],bg_color,fg_color][lower[2-dir][13-row][column]]
                # draw the 7x7 icon
                for row in range(7):
                    for column in range(7):
                        # lower triangle
                        pixels[15+row][(encode(color,state,dir)-1)*15+column] = \
                            [palette[0],bg_color,fg_color][lower7x7[dir][row][column]]
                        # upper triangle
                        pixels[15+row][(encode(color,state,dir)+total_states-2)*15+column] = \
                            [palette[0],bg_color,fg_color][lower7x7[2-dir][6-row][column]]

    ConvertTreeToRule(rule_name, total_states, pixels)

else:

    golly.warn('Too many states!')
    golly.exit()

# -- select the rule --

golly.new(rule_name+'-demo.rle')
golly.setalgo('RuleLoader')
golly.setrule(rule_name)
golly.setcell(0,0,encode(0,0,0)) # start with a single turmite
golly.show('Created '+rule_name+'.rule and selected that rule.')