1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
# Generator for Triangular Turmite rules
import golly
import random
import string
from glife.EmulateTriangular import *
from glife.WriteRuleTable import *
prefix = 'TriTurmite'
# http://bytes.com/topic/python/answers/25176-list-subsets
get_subsets = lambda items: [[x for (pos,x) in zip(range(len(items)), items) if (2**pos) & switches] for switches in range(2**len(items))]
# Generate a random rule, while filtering out the dull ones.
# More to try:
# - if turmite can get stuck in period-2 cycles then rule is bad (or might it avoid them?)
# - (extending) if turmite has (c,2 (or 8),s) for state s and color c then will loop on the spot (unlikely to avoid?)
example_spec = '{{{1, 2, 0}, {0, 1, 0}}}'
import random
ns = 2
nc = 3
while True: # (we break out if ok)
example_spec = '{'
for state in range(ns):
if state > 0:
example_spec += ','
example_spec += '{'
for color in range(nc):
if color > 0:
example_spec += ','
new_color = random.randint(0,nc-1)
dir_to_turn = [1,2,4][random.randint(0,2)] # (we don't consider splitting and dying here)
new_state = random.randint(0,ns-1)
example_spec += '{' + str(new_color) + "," + str(dir_to_turn) + "," + str(new_state) + '}'
example_spec += '}'
example_spec += '}'
is_rule_acceptable = True
action_table = eval(string.replace(string.replace(example_spec,'}',']'),'{','['))
# does Turmite change at least one color?
changes_one = False
for state in range(ns):
for color in range(nc):
if not action_table[state][color][0] == color:
changes_one = True
if not changes_one:
is_rule_acceptable = False
# does Turmite write every non-zero color?
colors_written = set([])
for state in range(ns):
for color in range(nc):
colors_written.add(action_table[state][color][0])
if not colors_written==set(range(1,nc)):
is_rule_acceptable = False
# does Turmite ever turn?
turmite_turns = False
for state in range(ns):
for color in range(nc):
if not action_table[state][color][0] in [4]: # u-turn
turmite_turns = True
if not turmite_turns:
is_rule_acceptable = False
# does turmite get stuck in any subset of states?
for subset in get_subsets(range(ns)):
if len(subset)==0 or len(subset)==ns: # (just an optimisation)
continue
leaves_subset = False
for state in subset:
for color in range(nc):
if not action_table[state][color][2] in subset:
leaves_subset = True
if not leaves_subset:
is_rule_acceptable = False
break # (just an optimisation)
# does turmite wobble on the spot? (u-turn that doesn't change color or state)
for state in range(ns):
for color in range(nc):
if action_table[state][color][0]==color and action_table[state][color][1]==4 and action_table[state][color][2]==state:
is_rule_acceptable = False
# so was the rule acceptable, in the end?
if is_rule_acceptable:
break
spec = golly.getstring(
'''This script will create a TriTurmite CA for a given specification.
Enter a specification string: a curly-bracketed table of n_states rows
and n_colors columns, where each entry is a triple of integers.
The elements of each triple are:
a: the new color of the square
b: the direction(s) for the Turmite to turn (1=Left, 2=Right, 4=U-turn)
c: the new internal state of the Turmite
Example:
{{{1, 2, 0}, {0, 1, 0}}}
Has 1 state and 2 colors. The triple {1,2,0} says:
1. set the color of the square to 1
2. turn right (2)
3. adopt state 0 (no change) and move forward one square
This is the equivalent of Langton's Ant.
Enter string:
''', example_spec, 'Enter TriTurmite specification:')
'''Some interesting rule found with this script:
{{{2,4,0},{2,4,0},{1,2,1}},{{1,2,1},{2,1,0},{1,4,1}}} - lightning cloud
{{{1,1,1},{1,2,0},{2,1,1}},{{2,2,1},{2,2,1},{1,4,0}}} - makes a highway (seems to be rarer in tri grids compared to square grids?)
{{{2,2,1},{1,2,0},{1,1,1}},{{1,2,0},{2,1,0},{1,4,1}}} - data pyramid
{{{2,1,0},{1,4,1},{1,1,0}},{{2,4,0},{2,2,1},{1,1,1}}} - a filled version of the tri-grid Langton's ant
{{{1,1,0},{2,2,1},{1,1,0}},{{1,4,0},{2,2,0},{2,2,0}}} - hypnodisc
'''
# convert the specification string into action_table[state][color]
# (convert Mathematica code to Python and run eval)
action_table = eval(string.replace(string.replace(spec,'}',']'),'{','['))
n_states = len(action_table)
n_colors = len(action_table[0])
# (N.B. The terminology 'state' here refers to the internal state of the finite
# state machine that each Turmite is using, not the contents of each Golly
# cell. We use the term 'color' to denote the symbol on the 2D 'tape'. The
# actual 'Golly state' in this emulation of Turmites is given by the
# "encoding" section below.)
n_dirs = 3
# TODO: check table is full and valid
total_states = n_colors+n_colors*n_states*3
# problem if we try to export more than 255 states
if total_states > 128: # max allowed using checkerboard emulation (see EmulateTriangular)
golly.warn("Number of states required exceeds Golly's limit of 255.")
golly.exit()
# encoding:
# (0-n_colors: empty square)
def encode(c,s,d):
# turmite on color c in state s facing away from direction d
return n_colors + 3*(n_states*c+s) + d
# http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html
def flatten(l, ltypes=(list, tuple)):
ltype = type(l)
l = list(l)
i = 0
while i < len(l):
while isinstance(l[i], ltypes):
if not l[i]:
l.pop(i)
i -= 1
break
else:
l[i:i + 1] = l[i]
i += 1
return ltype(l)
# convert the string to a form we can embed in a filename
spec_string = ''.join(map(str,map(lambda x:hex(x)[2:],flatten(action_table))))
# (ambiguous but we have to try something)
# what direction would a turmite have been facing to end up here from direction
# d if it turned t: would_have_been_facing[t][d]
would_have_been_facing={
1:[2,0,1], # left
2:[1,2,0], # right
4:[0,1,2], # u-turn
}
not_arriving_from_here = [range(n_colors) for i in range(n_dirs)] # (we're going to modify them)
for color in range(n_colors):
for state in range(n_states):
turnset = action_table[state][color][1]
for turn in [1,2,4]:
if not turn&turnset: # didn't turn this way
for dir in range(n_dirs):
facing = would_have_been_facing[turn][dir]
not_arriving_from_here[dir] += [encode(color,state,facing)]
# What states leave output_color behind?
leaving_color_behind = {}
for output_color in range(n_colors):
leaving_color_behind[output_color] = [output_color] # (no turmite present)
for state in range(n_states):
for color in range(n_colors):
if action_table[state][color][0]==output_color:
leaving_color_behind[output_color] += [encode(color,state,d) for d in range(n_dirs)] # any direction
# we can't build the rule tree directly so we collect the transitions ready for emulation
transitions = []
# A single turmite is entering this square:
for s in range(n_states):
for dir in range(n_dirs):
# collect all the possibilities for a turmite to arrive in state s from direction dir
inputs = []
for state in range(n_states):
for color in range(n_colors):
if action_table[state][color][2]==s:
turnset = action_table[state][color][1] # sum of all turns
inputs += [encode(color,state,would_have_been_facing[turn][dir]) \
for turn in [1,2,4] if turn&turnset]
if len(inputs)>0:
for central_color in range(n_colors):
# output the required transition
### AKT: this code causes syntax error in Python 2.3:
### transition = [leaving_color_behind[central_color]] + \
### [ inputs if i==dir else not_arriving_from_here[i] for i in range(n_dirs) ] + \
### [ [encode(central_color,s,dir)] ]
transition = [leaving_color_behind[central_color]]
for i in range(n_dirs):
if i==dir:
transition.append(inputs)
else:
transition.append(not_arriving_from_here[i])
transition += [ [encode(central_color,s,dir)] ]
transitions += [transition]
# default: square is left with no turmite present
for output_color,inputs in leaving_color_behind.items():
transition = [inputs]+[range(total_states)]*n_dirs+[[output_color]]
transitions += [transition]
rule_name = prefix+'_'+spec_string
# To see the intermediate output as a rule table (can use RuleTableToTree.py to load it):
#WriteRuleTable("triangularVonNeumann",total_states,transitions,golly.getdir('rules')+rule_name+'_asTable.table')
# -- make some icons --
palette=[[0,0,0],[0,155,67],[127,0,255],[128,128,128],[185,184,96],[0,100,255],[196,255,254],
[254,96,255],[126,125,21],[21,126,125],[255,116,116],[116,255,116],[116,116,255],
[228,227,0],[28,255,27],[255,27,28],[0,228,227],[227,0,228],[27,28,255],[59,59,59],
[234,195,176],[175,196,255],[171,194,68],[194,68,171],[68,171,194],[72,184,71],[184,71,72],
[71,72,184],[169,255,188],[252,179,63],[63,252,179],[179,63,252],[80,9,0],[0,80,9],[9,0,80],
[255,175,250],[199,134,213],[115,100,95],[188,163,0],[0,188,163],[163,0,188],[203,73,0],
[0,203,73],[73,0,203],[94,189,0],[189,0,94]]
if total_states<=16:
TriangularTransitionsToRuleTree_SplittingMethod("triangularVonNeumann",total_states,transitions,rule_name)
width = 15*(total_states*total_states-1) + 15 # we set the background color
height = 22
pixels = [[(0,0,0) for x in range(width)] for y in range(height)]
# turmite icons: 0=black, 1=background color, 2=turmite color
turmite_big = [[[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[1,0,1,1,1,1,1,1,1,1,1,1,1,1,1],
[1,1,0,1,1,1,1,1,1,2,2,2,2,1,1],
[1,1,1,0,1,1,1,1,1,1,1,2,2,1,1],
[1,1,1,1,0,1,1,1,1,1,2,1,2,1,1],
[1,1,1,1,1,0,1,1,1,2,1,1,2,1,1],
[1,1,1,1,1,1,0,1,2,1,1,1,1,1,1],
[1,1,1,1,1,1,1,0,1,1,1,1,1,1,1],
[1,1,1,1,1,1,2,1,0,1,1,1,1,1,1],
[1,1,2,1,1,2,1,1,1,0,1,1,1,1,1],
[1,1,2,1,2,1,1,1,1,1,0,1,1,1,1],
[1,1,2,2,1,1,1,1,1,1,1,0,1,1,1],
[1,1,2,2,2,2,1,1,1,1,1,1,0,1,1],
[1,1,1,1,1,1,1,1,1,1,1,1,1,0,1],
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,0]],
[[0,1,1,1,1,1,1,1,2,1,1,1,1,1,1],
[1,0,1,1,1,1,1,1,2,1,1,1,1,1,1],
[1,1,0,1,1,1,1,1,1,2,1,1,1,1,1],
[1,1,1,0,1,1,1,1,1,2,1,1,1,1,1],
[1,1,1,1,0,1,1,1,1,1,2,1,1,1,1],
[1,1,2,1,1,0,1,1,1,1,2,1,2,1,1],
[1,1,2,2,1,1,0,1,1,1,1,2,2,1,1],
[1,1,2,2,2,1,1,0,1,1,2,2,2,1,1],
[1,1,2,2,1,1,1,1,0,1,1,2,2,1,1],
[1,1,2,1,2,1,1,1,1,0,1,1,2,1,1],
[1,1,1,1,2,1,1,1,1,1,0,1,1,1,1],
[1,1,1,1,1,2,1,1,1,1,1,0,1,1,1],
[1,1,1,1,1,2,1,1,1,1,1,1,0,1,1],
[1,1,1,1,1,1,2,1,1,1,1,1,1,0,1],
[1,1,1,1,1,1,2,1,1,1,1,1,1,1,0]],
[[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[1,0,1,1,1,1,1,1,1,1,1,1,1,1,1],
[1,1,0,1,1,2,2,2,2,2,1,1,1,1,1],
[1,1,1,0,1,1,2,2,2,1,1,1,1,1,1],
[1,1,1,1,0,1,1,2,1,2,2,1,1,1,1],
[1,1,1,1,1,0,1,1,1,1,1,2,2,1,1],
[1,1,1,1,1,1,0,1,1,1,1,1,1,2,2],
[1,1,1,1,1,1,1,0,1,1,1,1,1,1,1],
[2,2,1,1,1,1,1,1,0,1,1,1,1,1,1],
[1,1,2,2,1,1,1,1,1,0,1,1,1,1,1],
[1,1,1,1,2,2,1,2,1,1,0,1,1,1,1],
[1,1,1,1,1,1,2,2,2,1,1,0,1,1,1],
[1,1,1,1,1,2,2,2,2,2,1,1,0,1,1],
[1,1,1,1,1,1,1,1,1,1,1,1,1,0,1],
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,0]]]
turmite_small = [[[0,1,1,1,1,1,1],
[1,0,1,2,2,2,1],
[1,1,0,1,1,2,1],
[1,2,1,0,1,2,1],
[1,2,1,1,0,1,1],
[1,2,2,2,1,0,1],
[1,1,1,1,1,1,0]],
[[0,1,1,1,1,1,1],
[1,0,1,1,1,2,1],
[1,1,0,1,2,2,1],
[1,2,1,0,1,2,1],
[1,2,2,1,0,1,1],
[1,2,1,1,1,0,1],
[1,1,1,1,1,1,0]],
[[0,1,1,1,1,1,1],
[1,0,1,2,2,2,1],
[1,1,0,1,2,1,1],
[1,1,1,0,1,1,1],
[1,1,2,1,0,1,1],
[1,2,2,2,1,0,1],
[1,1,1,1,1,1,0]]]
# TODO: do something about this horrible code
for lc in range(n_colors):
for uc in range(n_colors):
'''draw the cells with no turmites'''
golly_state = uc * total_states + lc
for row in range(15):
for column in range(15):
if column>row:
# upper
pixels[row][(golly_state-1)*15+column] = palette[uc]
elif column<row:
# lower
pixels[row][(golly_state-1)*15+column] = palette[lc]
for row in range(7):
for column in range(7):
if column>row:
# upper
pixels[15+row][(golly_state-1)*15+column] = palette[uc]
elif column<row:
# lower
pixels[15+row][(golly_state-1)*15+column] = palette[lc]
'''draw the cells with a turmite in the upper half'''
for us in range(n_states):
for ud in range(n_dirs):
upper = encode(uc,us,ud)
golly_state = upper * total_states + lc
for row in range(15):
for column in range(15):
if column>row:
# upper
bg_col = palette[uc]
fg_col = palette[n_colors+us]
pixels[row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_big[ud][row][column]]
elif column<row:
# lower
pixels[row][(golly_state-1)*15+column] = palette[lc]
for row in range(7):
for column in range(7):
if column>row:
# upper
bg_col = palette[uc]
fg_col = palette[n_colors+us]
pixels[15+row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_small[ud][row][column]]
elif column<row:
# lower
pixels[15+row][(golly_state-1)*15+column] = palette[lc]
for ls in range(n_states):
for ld in range(n_dirs):
lower = encode(lc,ls,ld)
for uc in range(n_colors):
'''draw the cells with a turmite in the lower half'''
golly_state = uc * total_states + lower
for row in range(15):
for column in range(15):
if row>column:
# lower
bg_col = palette[lc]
fg_col = palette[n_colors+ls]
pixels[row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_big[ld][row][column]]
elif column>row:
# upper
pixels[row][(golly_state-1)*15+column] = palette[uc]
for row in range(7):
for column in range(7):
if row>column:
# lower
bg_col = palette[lc]
fg_col = palette[n_colors+ls]
pixels[15+row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_small[ld][row][column]]
elif column>row:
# upper
pixels[15+row][(golly_state-1)*15+column] = palette[uc]
'''draw the cells with a turmite in both halves'''
for us in range(n_states):
for ud in range(n_dirs):
upper = encode(uc,us,ud)
golly_state = upper * total_states + lower
for row in range(15):
for column in range(15):
if row>column:
# lower
bg_col = palette[lc]
fg_col = palette[n_colors+ls]
pixels[row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_big[ld][row][column]]
elif column>row:
# upper
bg_col = palette[uc]
fg_col = palette[n_colors+us]
pixels[row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_big[ud][row][column]]
for row in range(7):
for column in range(7):
if row>column:
# lower
bg_col = palette[lc]
fg_col = palette[n_colors+ls]
pixels[15+row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_small[ld][row][column]]
elif column>row:
# upper
bg_col = palette[uc]
fg_col = palette[n_colors+us]
pixels[15+row][(golly_state-1)*15+column] = [palette[0],bg_col,fg_col][turmite_small[ud][row][column]]
ConvertTreeToRule(rule_name, total_states, pixels)
elif total_states<=128:
TriangularTransitionsToRuleTree_CheckerboardMethod("triangularVonNeumann",total_states,transitions,rule_name)
width = 15*(total_states*2-2) + 15 # we set the background color
height = 22
pixels = [[(0,0,0) for x in range(width)] for y in range(height)]
# turmite icons: 0=black, 1=background color, 2=turmite color
lower = [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
[0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
[0,0,0,0,1,1,1,1,1,1,2,0,0,0,0],
[0,0,0,1,1,1,1,1,2,2,1,1,0,0,0],
[0,0,1,1,2,1,2,2,1,1,1,1,1,0,0],
[0,1,1,2,2,2,1,1,1,1,1,1,1,1,0],
[1,1,2,2,2,2,2,1,1,1,1,1,1,1,1],
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],
[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
[0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
[0,0,0,0,1,1,1,2,1,1,1,0,0,0,0],
[0,0,0,1,1,1,2,2,2,1,1,1,0,0,0],
[0,0,1,1,1,2,2,2,2,2,1,1,1,0,0],
[0,1,1,1,1,1,1,2,1,1,1,1,1,1,0],
[1,1,1,1,1,1,1,2,1,1,1,1,1,1,1],
[1,1,1,1,1,1,1,2,1,1,1,1,1,1,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]],
[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
[0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
[0,0,0,0,2,1,1,1,1,1,1,0,0,0,0],
[0,0,0,1,1,2,2,1,1,1,1,1,0,0,0],
[0,0,1,1,1,1,1,2,2,1,2,1,1,0,0],
[0,1,1,1,1,1,1,1,1,2,2,2,1,1,0],
[1,1,1,1,1,1,1,1,2,2,2,2,2,1,1],
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]]
lower7x7 = [[[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,0,1,0,0,0],
[0,0,1,1,1,0,0],
[0,1,2,2,1,1,0],
[1,1,1,1,1,1,1],
[0,0,0,0,0,0,0]],
[[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,0,1,0,0,0],
[0,0,1,2,1,0,0],
[0,1,2,1,2,1,0],
[1,1,1,1,1,1,1],
[0,0,0,0,0,0,0]],
[[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,0,1,0,0,0],
[0,0,1,1,1,0,0],
[0,1,1,2,2,1,0],
[1,1,1,1,1,1,1],
[0,0,0,0,0,0,0]]]
# (we invert the lower triangle to get the upper triangle)
for color in range(n_colors):
bg_color = palette[color]
# draw the 15x15 icon
for row in range(15):
for column in range(15):
# lower triangle
pixels[row][(color-1)*15+column] = \
[palette[0],bg_color,bg_color][lower[0][row][column]]
# upper triangle
pixels[row][(color+total_states-2)*15+column] = \
[palette[0],bg_color,bg_color][lower[0][13-row][column]]
# draw the 7x7 icon
for row in range(7):
for column in range(7):
# lower triangle
pixels[15+row][(color-1)*15+column] = \
[palette[0],bg_color,bg_color][lower7x7[0][row][column]]
# upper triangle
pixels[15+row][(color+total_states-2)*15+column] = \
[palette[0],bg_color,bg_color][lower7x7[0][6-row][column]]
for state in range(n_states):
fg_color = palette[n_colors+state]
for dir in range(n_dirs):
# draw the 15x15 icon
for row in range(15):
for column in range(15):
# lower triangle
pixels[row][(encode(color,state,dir)-1)*15+column] = \
[palette[0],bg_color,fg_color][lower[dir][row][column]]
# upper triangle
pixels[row][(encode(color,state,dir)+total_states-2)*15+column] = \
[palette[0],bg_color,fg_color][lower[2-dir][13-row][column]]
# draw the 7x7 icon
for row in range(7):
for column in range(7):
# lower triangle
pixels[15+row][(encode(color,state,dir)-1)*15+column] = \
[palette[0],bg_color,fg_color][lower7x7[dir][row][column]]
# upper triangle
pixels[15+row][(encode(color,state,dir)+total_states-2)*15+column] = \
[palette[0],bg_color,fg_color][lower7x7[2-dir][6-row][column]]
ConvertTreeToRule(rule_name, total_states, pixels)
else:
golly.warn('Too many states!')
golly.exit()
# -- select the rule --
golly.new(rule_name+'-demo.rle')
golly.setalgo('RuleLoader')
golly.setrule(rule_name)
golly.setcell(0,0,encode(0,0,0)) # start with a single turmite
golly.show('Created '+rule_name+'.rule and selected that rule.')
|