1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
# Inspired by Andrew Trevorrow's work on TriLife.py
try:
set
except NameError:
# use sets module if Python version is < 2.4
from sets import Set as set
import golly
import os
from glife.RuleTree import *
# We support two emulation methods:
# 1) square-splitting: each square holds two triangles: one up, one down
# 2) checkerboard: each square holds one triangle, either up or down
#
# The first method has better appearance but requires N*N states. The second requires only 2N
# states but user must respect the checkerboard when drawing. For triangularMoore emulation, only
# the first is possible (since Golly only natively supports vonNeumann and Moore). Thus we choose
# the first where possible, only using the second for triangularVonNeumann when N>16.
#
# 1) Square-splitting emulation: (following Andrew Trevorrow's TriLife.py)
#
# triangularVonNeumann -> vonNeumann:
#
# lower upper
# +--+ +--+
# |\ | |\ |
# | \| |2\| (any rotation would work too)
# +--+--+--+ +--+--+--+
# |\3|\1|\ | |\ |\0|\ |
# | \|0\| \| | \|1\|3\|
# +--+--+--+ +--+--+--+
# |\2| |\ |
# | \| | \|
# +--+ +--+
#
# triangularMoore -> Moore:
#
# lower upper
# +--+--+--+ +--+--+--+
# |\B|\ |\ | |\6|\7|\ | where A=10, B=11, C=12
# |A\|C\| \| |5\|2\|8\|
# +--+--+--+ +--+--+--+
# |\3|\1|\ | |\4|\0|\9|
# |9\|0\|4\| | \|1\|3\|
# +--+--+--+ +--+--+--+
# |\8|\2|\5| |\ |\C|\A|
# | \|7\|6\| | \| \|B\|
# +--+--+--+ +--+--+--+
#
# 2) Checkerboard emulation: (drawn using A and V to represent triangles in two orientations)
#
# A V A V A V A V where each A has 3 V neighbors: V A V
# V A V A V A V A V
# A V A V A V A V
# V A V A V A V A and each V has 3 A neighbors: A
# A V A V A V A V A V A
# V A V A V A V A
def TriangularTransitionsToRuleTree_SplittingMethod(neighborhood,n_states,transitions_list,rule_name):
# each square cell is j*N+i where i is the lower triangle, j is the upper triangle
# each i,j in (0,N]
# (lower and upper are lists)
def encode(lower,upper):
return [ up*n_states+low for up in upper for low in lower ]
# what neighbors of the lower triangle overlap neighbors of the upper triangle?
lower2upper = {
"triangularVonNeumann": [(0,1),(1,0)],
"triangularMoore": [(0,1),(1,0),(2,12),(3,4),(4,3),(5,10),(6,11),(10,5),(11,6),(12,2)],
}
numNeighbors = { "triangularVonNeumann":4, "triangularMoore":8 }
# convert transitions to list of list of sets for speed
transitions = [[set(e) for e in t] for t in transitions_list]
tree = RuleTree(n_states*n_states,numNeighbors[neighborhood])
# for each transition pair, see if we can apply them both at once to a square
for i,t1 in enumerate(transitions): # as lower
golly.show("Building rule tree... (pass 1 of 2: "+str(100*i/len(transitions))+"%)")
for t2 in transitions: # as upper
# we can only apply both rules at once if they overlap to some extent
### AKT: any() and isdisjoint() are not available in Python 2.3:
### if any( t1[j].isdisjoint(t2[k]) for j,k in lower2upper[neighborhood] ):
### continue
any_disjoint = False
for j,k in lower2upper[neighborhood]:
if len(t1[j] & t2[k]) == 0:
any_disjoint = True
break
if any_disjoint: continue
# take the intersection of their inputs
if neighborhood=="triangularVonNeumann":
tree.add_rule( [ encode(t1[0]&t2[1],t1[1]&t2[0]), # C
encode(range(n_states),t1[2]), # S
encode(t2[3],range(n_states)), # E
encode(range(n_states),t1[3]), # W
encode(t2[2],range(n_states)) ], # N
encode(t1[4],t2[4])[0] ) # C'
elif neighborhood=="triangularMoore":
tree.add_rule( [ encode(t1[0]&t2[1],t1[1]&t2[0]), # C
encode(t1[7],t1[2]&t2[12]), # S
encode(t1[4]&t2[3],t2[9]), # E
encode(t1[9],t1[3]&t2[4]), # W
encode(t1[12]&t2[2],t2[7]), # N
encode(t1[6]&t2[11],t1[5]&t2[10]), # SE
encode(range(n_states),t1[8]), # SW
encode(t2[8],range(n_states)), # NE
encode(t1[10]&t2[5],t1[11]&t2[6]) ], # NW
encode(t1[13],t2[13])[0] ) # C'
# apply each transition to an individual triangle, leaving the other unchanged
for i,t in enumerate(transitions):
golly.show("Building rule tree... (pass 2 of 2: "+str(100*i/len(transitions))+"%)")
for t_1 in t[1]:
if neighborhood=="triangularVonNeumann":
# as lower triangle:
tree.add_rule( [ encode(t[0],[t_1]), # C
encode(range(n_states),t[2]), # S
range(n_states*n_states), # E
encode(range(n_states),t[3]), # W
range(n_states*n_states) ], # N
encode(t[4],[t_1])[0] ) # C'
# as upper triangle:
tree.add_rule( [ encode([t_1],t[0]), # C
range(n_states*n_states), # S
encode(t[3],range(n_states)), # E
range(n_states*n_states), # W
encode(t[2],range(n_states)) ], # N
encode([t_1],t[4])[0] ) # C'
elif neighborhood=="triangularMoore":
# as lower triangle:
tree.add_rule( [encode(t[0],[t_1]), # C
encode(t[7],t[2]), # S
encode(t[4],range(n_states)), # E
encode(t[9],t[3]), # W
encode(t[12],range(n_states)), # N
encode(t[6],t[5]), # SE
encode(range(n_states),t[8]), # SW
range(n_states*n_states), # NE
encode(t[10],t[11]) ], # NW
encode(t[13],[t_1])[0] ) # C'
# as upper triangle:
tree.add_rule( [encode([t_1],t[0]),
encode(range(n_states),t[12]), # S
encode(t[3],t[9]), # E
encode(range(n_states),t[4]), # W
encode(t[2],t[7]), # N
encode(t[11],t[10]), # SE
range(n_states*n_states), # SW
encode(t[8],range(n_states)), # NE
encode(t[5],t[6]) ], # NW
encode([t_1],t[13])[0] ) # C'
# output the rule tree
golly.show("Compressing rule tree and saving to file...")
tree.write(golly.getdir('rules') + rule_name + '.tree')
def TriangularTransitionsToRuleTree_CheckerboardMethod(neighborhood,n_states,transitions,rule_name):
# Background state 0 has no checkerboard, we infer it from its neighboring cells.
def encode_lower(s):
return s
def encode_upper(s):
### AKT: this code causes syntax error in Python 2.3:
### return [0 if se==0 else n_states+se-1 for se in s]
temp = []
for se in s:
if se==0:
temp.append(0)
else:
temp.append(n_states+se-1)
return temp
total_states = n_states*2 - 1
if total_states>256:
golly.warn("Number of states exceeds Golly's limit of 256!")
golly.exit()
tree = RuleTree(total_states,4)
for t in transitions:
# as lower
tree.add_rule([encode_lower(t[0]), # C
encode_upper(t[2]), # S
encode_upper(t[1]), # E
encode_upper(t[3]), # W
range(total_states)], # N
encode_lower(t[4])[0]) # C'
# as upper
tree.add_rule([encode_upper(t[0]), # C
range(total_states), # S
encode_lower(t[3]), # E
encode_lower(t[1]), # W
encode_lower(t[2])], # N
encode_upper(t[4])[0]) # C'
# output the rule tree
golly.show("Compressing rule tree and saving to file...")
tree.write(golly.getdir('rules') + rule_name + '.tree')
def MakeTriangularIcons_SplittingMethod(n_states,colors,force_background,rule_name):
width = 31*(n_states*n_states-1)
if force_background and n_states>2:
width+=31
height = 53
pixels = [[(0,0,0) for x in range(width)] for y in range(height)]
for row in range(height):
for column in range(width):
if force_background and n_states>2 and column>=width-31:
# add extra 'icon' filled with the intended background color
pixels[row][column] = background_color
else:
# decide if this pixel is a lower or upper triangle
iState = int(column/31)
upper = int((iState+1) / n_states)
lower = (iState+1) - upper*n_states
is_upper = False
is_lower = False
if row<31:
# 31x31 icon
if (column-iState*31) > row:
is_upper = True
elif (column-iState*31) < row:
is_lower = True
elif row<46 and (column-iState*31)<15:
# 15x15 icon
if (column-iState*31) > row-31:
is_upper = True
elif (column-iState*31) < row-31:
is_lower = True
elif (column-iState*31)<7:
# 7x7 icon
if (column-iState*31) > row-46:
is_upper = True
elif (column-iState*31) < row-46:
is_lower = True
if is_upper:
pixels[row][column] = colors[upper]
elif is_lower:
pixels[row][column] = colors[lower]
else:
pixels[row][column] = 0,0,0
return pixels
def MakeTriangularIcons_CheckerboardMethod(n_states,colors,force_background,rule_name):
width = 31*(n_states*2-1)
if force_background and n_states>2:
width+=31
height = 53
pixels = [[(0,0,0) for x in range(width)] for y in range(height)]
lower31x31 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0],
[0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0],
[0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0],
[0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
[0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0],
[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0],
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
lower15x15 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
[0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
[0,0,0,0,1,1,1,1,1,1,1,0,0,0,0],
[0,0,0,1,1,1,1,1,1,1,1,1,0,0,0],
[0,0,1,1,1,1,1,1,1,1,1,1,1,0,0],
[0,1,1,1,1,1,1,1,1,1,1,1,1,1,0],
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
lower7x7 = [[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,0,1,0,0,0],
[0,0,1,1,1,0,0],
[0,1,1,1,1,1,0],
[1,1,1,1,1,1,1],
[0,0,0,0,0,0,0]]
if force_background:
bg_color = colors[0]
else:
bg_color = (0,0,0)
for i in range(1,n_states):
fg_color = colors[i]
# draw 31x31 icons
for row in range(31):
for column in range(31):
# draw lower triangle icons
pixels[row][31*(i-1) + column] = [bg_color,fg_color][lower31x31[row][column]]
# draw upper triangle icons
pixels[row][31*(n_states+i-2) + column] = [bg_color,fg_color][lower31x31[28-row][column]]
# draw 15x15 icons
for row in range(15):
for column in range(15):
# draw lower triangle icons
pixels[31+row][31*(i-1) + column] = [bg_color,fg_color][lower15x15[row][column]]
# draw upper triangle icons
pixels[31+row][31*(n_states+i-2) + column] = [bg_color,fg_color][lower15x15[13-row][column]]
# draw 7x7 icons
for row in range(7):
for column in range(7):
# draw lower triangle icons
pixels[46+row][31*(i-1) + column] = [bg_color,fg_color][lower7x7[row][column]]
# draw upper triangle icons
pixels[46+row][31*(n_states+i-2) + column] = [bg_color,fg_color][lower7x7[6-row][column]]
return pixels
def EmulateTriangular(neighborhood,n_states,transitions_list,input_filename):
'''Emulate a triangularVonNeumann or triangularMoore neighborhood rule table with a rule tree.'''
input_rulename = os.path.splitext(os.path.split(input_filename)[1])[0]
# read rule_name+'.colors' file if it exists
force_background = False
background_color = [0,0,0]
cfn = os.path.split(input_filename)[0] + "/" + input_rulename + ".colors"
try:
cf = open(cfn,'r')
except IOError:
# use Golly's default random colours
random_colors=[[0,0,0],[0,255,127],[127,0,255],[148,148,148],[128,255,0],[255,0,128],[0,128,255],[1,159,0],
[159,0,1],[255,254,96],[0,1,159],[96,255,254],[254,96,255],[126,125,21],[21,126,125],[125,21,126],
[255,116,116],[116,255,116],[116,116,255],[228,227,0],[28,255,27],[255,27,28],[0,228,227],
[227,0,228],[27,28,255],[59,59,59],[234,195,176],[175,196,255],[171,194,68],[194,68,171],
[68,171,194],[72,184,71],[184,71,72],[71,72,184],[169,255,188],[252,179,63],[63,252,179],
[179,63,252],[80,9,0],[0,80,9],[9,0,80],[255,175,250],[199,134,213],[115,100,95],[188,163,0],
[0,188,163],[163,0,188],[203,73,0],[0,203,73],[73,0,203],[94,189,0],[189,0,94]]
colors = dict(zip(range(len(random_colors)),random_colors))
else:
# read from the .colors file
colors = {0:[0,0,0]} # background is black
for line in cf:
if line[0:6]=='color ':
entries = map(int,line[6:].replace('=',' ').replace('\n',' ').split())
if len(entries)<4:
continue # too few entries, ignore
if entries[0]==0:
force_background = True
background_color = [entries[1],entries[2],entries[3]]
else:
colors.update({entries[0]:[entries[1],entries[2],entries[3]]})
# (we don't support gradients in .colors)
rule_name = input_rulename + '_emulated'
# (we use a special suffix to avoid picking up any existing .colors or .icons)
# make a rule tree and some icons
if n_states <= 16:
TriangularTransitionsToRuleTree_SplittingMethod(neighborhood,n_states,transitions_list,rule_name)
pixels = MakeTriangularIcons_SplittingMethod(n_states,colors,force_background,rule_name)
total_states = n_states * n_states
elif neighborhood=='triangularVonNeumann' and n_states <= 128:
TriangularTransitionsToRuleTree_CheckerboardMethod(neighborhood,n_states,transitions_list,rule_name)
pixels = MakeTriangularIcons_CheckerboardMethod(n_states,colors,force_background,rule_name)
total_states = n_states * 2 - 1
else:
golly.warn('Only support triangularMoore with 16 states or fewer, and triangularVonNeumann\n'+\
'with 128 states or fewer.')
golly.exit()
if n_states==2:
# the icons we wrote are monochrome, so we need a .colors file to avoid
# them all having different colors or similar from Golly's preferences
c = open(golly.getdir('rules')+rule_name+".colors",'w')
if force_background:
c.write('color = 0 '+' '.join(map(str,background_color))+'\n')
for i in range(1,total_states):
c.write('color = '+str(i)+' '+' '.join(map(str,colors[1]))+'\n')
c.flush()
c.close()
# use rule_name.tree and rule_name.colors and icon info to create rule_name.rule
ConvertTreeToRule(rule_name, total_states, pixels)
return rule_name
|