File: EmulateTriangular.py

package info (click to toggle)
golly 3.2-2
  • links: PTS
  • area: main
  • in suites: buster
  • size: 19,516 kB
  • sloc: cpp: 69,819; ansic: 25,894; python: 7,921; sh: 4,267; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; perl: 69
file content (406 lines) | stat: -rw-r--r-- 19,475 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Inspired by Andrew Trevorrow's work on TriLife.py

try:
    set
except NameError:
    # use sets module if Python version is < 2.4
    from sets import Set as set

import golly
import os
from glife.RuleTree import *

# We support two emulation methods:
# 1) square-splitting: each square holds two triangles: one up, one down
# 2) checkerboard: each square holds one triangle, either up or down
#
# The first method has better appearance but requires N*N states. The second requires only 2N
# states but user must respect the checkerboard when drawing. For triangularMoore emulation, only
# the first is possible (since Golly only natively supports vonNeumann and Moore). Thus we choose
# the first where possible, only using the second for triangularVonNeumann when N>16.
#
# 1) Square-splitting emulation: (following Andrew Trevorrow's TriLife.py)
#
#  triangularVonNeumann -> vonNeumann:
#
#      lower         upper
#       +--+          +--+
#       |\ |          |\ |
#       | \|          |2\|          (any rotation would work too)
#    +--+--+--+    +--+--+--+
#    |\3|\1|\ |    |\ |\0|\ |
#    | \|0\| \|    | \|1\|3\|
#    +--+--+--+    +--+--+--+
#       |\2|          |\ |
#       | \|          | \|
#       +--+          +--+
#
# triangularMoore -> Moore:
#
#      lower         upper
#    +--+--+--+    +--+--+--+
#    |\B|\ |\ |    |\6|\7|\ |       where A=10, B=11, C=12
#    |A\|C\| \|    |5\|2\|8\|
#    +--+--+--+    +--+--+--+
#    |\3|\1|\ |    |\4|\0|\9|
#    |9\|0\|4\|    | \|1\|3\|
#    +--+--+--+    +--+--+--+
#    |\8|\2|\5|    |\ |\C|\A|
#    | \|7\|6\|    | \| \|B\|
#    +--+--+--+    +--+--+--+
#
# 2) Checkerboard emulation: (drawn using A and V to represent triangles in two orientations)
#
#    A V A V A V A V       where each A has 3 V neighbors:      V A V
#    V A V A V A V A                                              V
#    A V A V A V A V
#    V A V A V A V A       and each V has 3 A neighbors:        A
#    A V A V A V A V                                          A V A
#    V A V A V A V A

def TriangularTransitionsToRuleTree_SplittingMethod(neighborhood,n_states,transitions_list,rule_name):

    # each square cell is j*N+i where i is the lower triangle, j is the upper triangle
    # each i,j in (0,N]
    # (lower and upper are lists)
    def encode(lower,upper):
        return [ up*n_states+low for up in upper for low in lower ]

    # what neighbors of the lower triangle overlap neighbors of the upper triangle?
    lower2upper = {
        "triangularVonNeumann": [(0,1),(1,0)],
        "triangularMoore": [(0,1),(1,0),(2,12),(3,4),(4,3),(5,10),(6,11),(10,5),(11,6),(12,2)],
    }
    numNeighbors = { "triangularVonNeumann":4, "triangularMoore":8 }

    # convert transitions to list of list of sets for speed
    transitions = [[set(e) for e in t] for t in transitions_list]
    tree = RuleTree(n_states*n_states,numNeighbors[neighborhood])
    # for each transition pair, see if we can apply them both at once to a square
    for i,t1 in enumerate(transitions): # as lower
        golly.show("Building rule tree... (pass 1 of 2: "+str(100*i/len(transitions))+"%)")
        for t2 in transitions: # as upper
            # we can only apply both rules at once if they overlap to some extent
            ### AKT: any() and isdisjoint() are not available in Python 2.3:
            ### if any( t1[j].isdisjoint(t2[k]) for j,k in lower2upper[neighborhood] ):
            ###     continue
            any_disjoint = False
            for j,k in lower2upper[neighborhood]:
                if len(t1[j] & t2[k]) == 0:
                    any_disjoint = True
                    break
            if any_disjoint: continue
            # take the intersection of their inputs
            if neighborhood=="triangularVonNeumann":
                tree.add_rule( [ encode(t1[0]&t2[1],t1[1]&t2[0]), # C
                     encode(range(n_states),t1[2]), # S
                     encode(t2[3],range(n_states)), # E
                     encode(range(n_states),t1[3]), # W
                     encode(t2[2],range(n_states)) ], # N
                     encode(t1[4],t2[4])[0] ) # C'
            elif neighborhood=="triangularMoore":
                tree.add_rule( [ encode(t1[0]&t2[1],t1[1]&t2[0]), # C
                             encode(t1[7],t1[2]&t2[12]), # S
                             encode(t1[4]&t2[3],t2[9]), # E
                             encode(t1[9],t1[3]&t2[4]), # W
                             encode(t1[12]&t2[2],t2[7]), # N
                             encode(t1[6]&t2[11],t1[5]&t2[10]), # SE
                             encode(range(n_states),t1[8]), # SW
                             encode(t2[8],range(n_states)), # NE
                             encode(t1[10]&t2[5],t1[11]&t2[6]) ], # NW
                           encode(t1[13],t2[13])[0] ) # C'
    # apply each transition to an individual triangle, leaving the other unchanged
    for i,t in enumerate(transitions):
        golly.show("Building rule tree... (pass 2 of 2: "+str(100*i/len(transitions))+"%)")
        for t_1 in t[1]:
            if neighborhood=="triangularVonNeumann":
                # as lower triangle:
                tree.add_rule( [ encode(t[0],[t_1]), # C
                                 encode(range(n_states),t[2]), # S
                                 range(n_states*n_states), # E
                                 encode(range(n_states),t[3]), # W
                                 range(n_states*n_states) ], # N
                                 encode(t[4],[t_1])[0] ) # C'
                # as upper triangle:
                tree.add_rule( [ encode([t_1],t[0]), # C
                                 range(n_states*n_states), # S
                                 encode(t[3],range(n_states)), # E
                                 range(n_states*n_states), # W
                                 encode(t[2],range(n_states)) ], # N
                                 encode([t_1],t[4])[0] ) # C'
            elif neighborhood=="triangularMoore":
                # as lower triangle:
                tree.add_rule( [encode(t[0],[t_1]), # C
                    encode(t[7],t[2]), # S
                    encode(t[4],range(n_states)), # E
                    encode(t[9],t[3]), # W
                    encode(t[12],range(n_states)), # N
                    encode(t[6],t[5]), # SE
                    encode(range(n_states),t[8]), # SW
                    range(n_states*n_states), # NE
                    encode(t[10],t[11]) ], # NW
                    encode(t[13],[t_1])[0] ) # C'
                # as upper triangle:
                tree.add_rule( [encode([t_1],t[0]),
                    encode(range(n_states),t[12]), # S
                    encode(t[3],t[9]), # E
                    encode(range(n_states),t[4]), # W
                    encode(t[2],t[7]), # N
                    encode(t[11],t[10]), # SE
                    range(n_states*n_states), # SW
                    encode(t[8],range(n_states)), # NE
                    encode(t[5],t[6]) ], # NW
                    encode([t_1],t[13])[0] ) # C'

    # output the rule tree
    golly.show("Compressing rule tree and saving to file...")
    tree.write(golly.getdir('rules') + rule_name + '.tree')

def TriangularTransitionsToRuleTree_CheckerboardMethod(neighborhood,n_states,transitions,rule_name):

    # Background state 0 has no checkerboard, we infer it from its neighboring cells.
    def encode_lower(s):
        return s
    def encode_upper(s):
        ### AKT: this code causes syntax error in Python 2.3:
        ### return [0 if se==0 else n_states+se-1 for se in s]
        temp = []
        for se in s:
            if se==0:
                temp.append(0)
            else:
                temp.append(n_states+se-1)
        return temp

    total_states = n_states*2 - 1
    if total_states>256:
        golly.warn("Number of states exceeds Golly's limit of 256!")
        golly.exit()

    tree = RuleTree(total_states,4)
    for t in transitions:
        # as lower
        tree.add_rule([encode_lower(t[0]),   # C
                       encode_upper(t[2]),   # S
                       encode_upper(t[1]),   # E
                       encode_upper(t[3]),   # W
                       range(total_states)],   # N
                      encode_lower(t[4])[0]) # C'
        # as upper
        tree.add_rule([encode_upper(t[0]),   # C
                       range(total_states),    # S
                       encode_lower(t[3]),   # E
                       encode_lower(t[1]),   # W
                       encode_lower(t[2])],  # N
                      encode_upper(t[4])[0]) # C'

    # output the rule tree
    golly.show("Compressing rule tree and saving to file...")
    tree.write(golly.getdir('rules') + rule_name + '.tree')

def MakeTriangularIcons_SplittingMethod(n_states,colors,force_background,rule_name):
    
    width = 31*(n_states*n_states-1)
    if force_background and n_states>2:
        width+=31
    height = 53
    pixels = [[(0,0,0) for x in range(width)] for y in range(height)]
    
    for row in range(height):
        for column in range(width):
            if force_background and n_states>2 and column>=width-31:
                # add extra 'icon' filled with the intended background color
                pixels[row][column] = background_color
            else:
                # decide if this pixel is a lower or upper triangle
                iState = int(column/31)
                upper = int((iState+1) / n_states)
                lower = (iState+1) - upper*n_states
                is_upper = False
                is_lower = False
                if row<31:
                    # 31x31 icon
                    if (column-iState*31) > row:
                        is_upper = True
                    elif (column-iState*31) < row:
                        is_lower = True
                elif row<46 and (column-iState*31)<15:
                    # 15x15 icon
                    if (column-iState*31) > row-31:
                        is_upper = True
                    elif (column-iState*31) < row-31:
                        is_lower = True
                elif (column-iState*31)<7:
                    # 7x7 icon
                    if (column-iState*31) > row-46:
                        is_upper = True
                    elif (column-iState*31) < row-46:
                        is_lower = True
                if is_upper:
                    pixels[row][column] = colors[upper]
                elif is_lower:
                    pixels[row][column] = colors[lower]
                else:
                    pixels[row][column] = 0,0,0
    
    return pixels

def MakeTriangularIcons_CheckerboardMethod(n_states,colors,force_background,rule_name):
    
    width = 31*(n_states*2-1)
    if force_background and n_states>2:
        width+=31
    height = 53
    pixels = [[(0,0,0) for x in range(width)] for y in range(height)]
    
    lower31x31 =  [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0],
                   [0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0],
                   [0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0],
                   [0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0],
                   [0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0],
                   [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0],
                   [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
                   [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
    lower15x15 =  [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,1,1,1,0,0,0,0,0,0],
                   [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0],
                   [0,0,0,0,1,1,1,1,1,1,1,0,0,0,0],
                   [0,0,0,1,1,1,1,1,1,1,1,1,0,0,0],
                   [0,0,1,1,1,1,1,1,1,1,1,1,1,0,0],
                   [0,1,1,1,1,1,1,1,1,1,1,1,1,1,0],
                   [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
                   [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
    lower7x7 =    [[0,0,0,0,0,0,0],
                   [0,0,0,0,0,0,0],
                   [0,0,0,1,0,0,0],
                   [0,0,1,1,1,0,0],
                   [0,1,1,1,1,1,0],
                   [1,1,1,1,1,1,1],
                   [0,0,0,0,0,0,0]]
    
    if force_background:
        bg_color = colors[0]
    else:
        bg_color = (0,0,0)
    for i in range(1,n_states):
        fg_color = colors[i]
        # draw 31x31 icons
        for row in range(31):
            for column in range(31):
                # draw lower triangle icons
                pixels[row][31*(i-1) + column] = [bg_color,fg_color][lower31x31[row][column]]
                # draw upper triangle icons
                pixels[row][31*(n_states+i-2) + column] = [bg_color,fg_color][lower31x31[28-row][column]]
        # draw 15x15 icons
        for row in range(15):
            for column in range(15):
                # draw lower triangle icons
                pixels[31+row][31*(i-1) + column] = [bg_color,fg_color][lower15x15[row][column]]
                # draw upper triangle icons
                pixels[31+row][31*(n_states+i-2) + column] = [bg_color,fg_color][lower15x15[13-row][column]]
        # draw 7x7 icons
        for row in range(7):
            for column in range(7):
                # draw lower triangle icons
                pixels[46+row][31*(i-1) + column] = [bg_color,fg_color][lower7x7[row][column]]
                # draw upper triangle icons
                pixels[46+row][31*(n_states+i-2) + column] = [bg_color,fg_color][lower7x7[6-row][column]]
    
    return pixels

def EmulateTriangular(neighborhood,n_states,transitions_list,input_filename):
    '''Emulate a triangularVonNeumann or triangularMoore neighborhood rule table with a rule tree.'''

    input_rulename = os.path.splitext(os.path.split(input_filename)[1])[0]

    # read rule_name+'.colors' file if it exists
    force_background = False
    background_color = [0,0,0]
    cfn = os.path.split(input_filename)[0] + "/" + input_rulename + ".colors"
    try:
        cf = open(cfn,'r')
    except IOError:
        # use Golly's default random colours
        random_colors=[[0,0,0],[0,255,127],[127,0,255],[148,148,148],[128,255,0],[255,0,128],[0,128,255],[1,159,0],
            [159,0,1],[255,254,96],[0,1,159],[96,255,254],[254,96,255],[126,125,21],[21,126,125],[125,21,126],
            [255,116,116],[116,255,116],[116,116,255],[228,227,0],[28,255,27],[255,27,28],[0,228,227],
            [227,0,228],[27,28,255],[59,59,59],[234,195,176],[175,196,255],[171,194,68],[194,68,171],
            [68,171,194],[72,184,71],[184,71,72],[71,72,184],[169,255,188],[252,179,63],[63,252,179],
            [179,63,252],[80,9,0],[0,80,9],[9,0,80],[255,175,250],[199,134,213],[115,100,95],[188,163,0],
            [0,188,163],[163,0,188],[203,73,0],[0,203,73],[73,0,203],[94,189,0],[189,0,94]]
        colors = dict(zip(range(len(random_colors)),random_colors))
    else:
        # read from the .colors file
        colors = {0:[0,0,0]} # background is black
        for line in cf:
            if line[0:6]=='color ':
                entries = map(int,line[6:].replace('=',' ').replace('\n',' ').split())
                if len(entries)<4:
                    continue # too few entries, ignore
                if entries[0]==0:
                    force_background = True
                    background_color = [entries[1],entries[2],entries[3]]
                else:
                    colors.update({entries[0]:[entries[1],entries[2],entries[3]]})
        # (we don't support gradients in .colors)

    rule_name = input_rulename + '_emulated'
    # (we use a special suffix to avoid picking up any existing .colors or .icons)

    # make a rule tree and some icons
    if n_states <= 16:
        TriangularTransitionsToRuleTree_SplittingMethod(neighborhood,n_states,transitions_list,rule_name)
        pixels = MakeTriangularIcons_SplittingMethod(n_states,colors,force_background,rule_name)
        total_states = n_states * n_states
    elif neighborhood=='triangularVonNeumann' and n_states <= 128:
        TriangularTransitionsToRuleTree_CheckerboardMethod(neighborhood,n_states,transitions_list,rule_name)
        pixels = MakeTriangularIcons_CheckerboardMethod(n_states,colors,force_background,rule_name)
        total_states = n_states * 2 - 1
    else:
        golly.warn('Only support triangularMoore with 16 states or fewer, and triangularVonNeumann\n'+\
                   'with 128 states or fewer.')
        golly.exit()

    if n_states==2:
        # the icons we wrote are monochrome, so we need a .colors file to avoid
        # them all having different colors or similar from Golly's preferences
        c = open(golly.getdir('rules')+rule_name+".colors",'w')
        if force_background:
            c.write('color = 0 '+' '.join(map(str,background_color))+'\n')
        for i in range(1,total_states):
            c.write('color = '+str(i)+' '+' '.join(map(str,colors[1]))+'\n')
        c.flush()
        c.close()
    
    # use rule_name.tree and rule_name.colors and icon info to create rule_name.rule
    ConvertTreeToRule(rule_name, total_states, pixels)
    return rule_name