File: ReadRuleTable.py

package info (click to toggle)
golly 3.2-2
  • links: PTS
  • area: main
  • in suites: buster
  • size: 19,516 kB
  • sloc: cpp: 69,819; ansic: 25,894; python: 7,921; sh: 4,267; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; perl: 69
file content (243 lines) | stat: -rw-r--r-- 10,964 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
try:
    set
except NameError:
    # use sets module if Python version is < 2.4
    from sets import Set as set

import golly

# generate permutations where the input list may have duplicates
# e.g. [1,2,1] -> [[1, 2, 1], [1, 1, 2], [2, 1, 1]]
# (itertools.permutations would yield 6 and removing duplicates afterwards is less efficient)
# http://code.activestate.com/recipes/496819/ (PSF license)
def permu2(xs):
    if len(xs)<2: yield xs
    else:
        h = []
        for x in xs:
            h.append(x)
            if x in h[:-1]: continue
            ts = xs[:]; ts.remove(x)
            for ps in permu2(ts):
                yield [x]+ps

# With some neighborhoods we permute after building each transition, to avoid
# creating lots of copies of the same rule. The others are permuted explicitly
# because we haven't worked out how to permute the Margolus neighborhood while
# allowing for duplicates.
PermuteLater = ['vonNeumann','Moore','hexagonal','triangularVonNeumann',
    'triangularMoore','oneDimensional']

SupportedSymmetries = {
"vonNeumann":
{
'none':[[0,1,2,3,4,5]],
'rotate4':[[0,1,2,3,4,5],[0,2,3,4,1,5],[0,3,4,1,2,5],[0,4,1,2,3,5]],
'rotate4reflect':[[0,1,2,3,4,5],[0,2,3,4,1,5],[0,3,4,1,2,5],[0,4,1,2,3,5],
    [0,4,3,2,1,5],[0,3,2,1,4,5],[0,2,1,4,3,5],[0,1,4,3,2,5]],
'reflect_horizontal':[[0,1,2,3,4,5],[0,1,4,3,2,5]],
'permute':[[0,1,2,3,4,5]], # (gets done later)
},
"Moore":
{
'none':[[0,1,2,3,4,5,6,7,8,9]],
'rotate4':[[0,1,2,3,4,5,6,7,8,9],[0,3,4,5,6,7,8,1,2,9],[0,5,6,7,8,1,2,3,4,9],[0,7,8,1,2,3,4,5,6,9]],
'rotate8':[[0,1,2,3,4,5,6,7,8,9],[0,2,3,4,5,6,7,8,1,9],[0,3,4,5,6,7,8,1,2,9],[0,4,5,6,7,8,1,2,3,9],\
    [0,5,6,7,8,1,2,3,4,9],[0,6,7,8,1,2,3,4,5,9],[0,7,8,1,2,3,4,5,6,9],[0,8,1,2,3,4,5,6,7,9]],
'rotate4reflect':[[0,1,2,3,4,5,6,7,8,9],[0,3,4,5,6,7,8,1,2,9],[0,5,6,7,8,1,2,3,4,9],[0,7,8,1,2,3,4,5,6,9],\
    [0,1,8,7,6,5,4,3,2,9],[0,7,6,5,4,3,2,1,8,9],[0,5,4,3,2,1,8,7,6,9],[0,3,2,1,8,7,6,5,4,9]],
'rotate8reflect':[[0,1,2,3,4,5,6,7,8,9],[0,2,3,4,5,6,7,8,1,9],[0,3,4,5,6,7,8,1,2,9],[0,4,5,6,7,8,1,2,3,9],\
    [0,5,6,7,8,1,2,3,4,9],[0,6,7,8,1,2,3,4,5,9],[0,7,8,1,2,3,4,5,6,9],[0,8,1,2,3,4,5,6,7,9],\
    [0,8,7,6,5,4,3,2,1,9],[0,7,6,5,4,3,2,1,8,9],[0,6,5,4,3,2,1,8,7,9],[0,5,4,3,2,1,8,7,6,9],\
    [0,4,3,2,1,8,7,6,5,9],[0,3,2,1,8,7,6,5,4,9],[0,2,1,8,7,6,5,4,3,9],[0,1,8,7,6,5,4,3,2,9]],
'reflect_horizontal':[[0,1,2,3,4,5,6,7,8,9],[0,1,8,7,6,5,4,3,2,9]],
'permute':[[0,1,2,3,4,5,6,7,8,9]] # (gets done later)
},
"Margolus":
{
'none':[[0,1,2,3,4,5,6,7]],
'reflect_horizontal':[[0,1,2,3,4,5,6,7],[1,0,3,2,5,4,7,6]],
'reflect_vertical':[[0,1,2,3,4,5,6,7],[2,3,0,1,6,7,4,5]],
'rotate4':
    [[0,1,2,3,4,5,6,7],[2,0,3,1,6,4,7,5],[3,2,1,0,7,6,5,4],[1,3,0,2,5,7,4,6]],
'rotate4reflect':[
    [0,1,2,3,4,5,6,7],[2,0,3,1,6,4,7,5],[3,2,1,0,7,6,5,4],[1,3,0,2,5,7,4,6],
    [1,0,3,2,5,4,7,6],[0,2,1,3,4,6,5,7],[2,3,0,1,6,7,4,5],[3,1,2,0,7,5,6,4]],
'permute':[p+map(lambda x:x+4,p) for p in permu2(range(4))]
},
"square4_figure8v": # same symmetries as Margolus
{
'none':[[0,1,2,3,4,5,6,7]],
'reflect_horizontal':[[0,1,2,3,4,5,6,7],[1,0,3,2,5,4,7,6]],
'reflect_vertical':[[0,1,2,3,4,5,6,7],[2,3,0,1,6,7,4,5]],
'rotate4':
    [[0,1,2,3,4,5,6,7],[2,0,3,1,6,4,7,5],[3,2,1,0,7,6,5,4],[1,3,0,2,5,7,4,6]],
'rotate4reflect':[
    [0,1,2,3,4,5,6,7],[2,0,3,1,6,4,7,5],[3,2,1,0,7,6,5,4],[1,3,0,2,5,7,4,6],
    [1,0,3,2,5,4,7,6],[0,2,1,3,4,6,5,7],[2,3,0,1,6,7,4,5],[3,1,2,0,7,5,6,4]],
'permute':[p+map(lambda x:x+4,p) for p in permu2(range(4))]
},
"square4_figure8h": # same symmetries as Margolus
{
'none':[[0,1,2,3,4,5,6,7]],
'reflect_horizontal':[[0,1,2,3,4,5,6,7],[1,0,3,2,5,4,7,6]],
'reflect_vertical':[[0,1,2,3,4,5,6,7],[2,3,0,1,6,7,4,5]],
'rotate4':
    [[0,1,2,3,4,5,6,7],[2,0,3,1,6,4,7,5],[3,2,1,0,7,6,5,4],[1,3,0,2,5,7,4,6]],
'rotate4reflect':[
    [0,1,2,3,4,5,6,7],[2,0,3,1,6,4,7,5],[3,2,1,0,7,6,5,4],[1,3,0,2,5,7,4,6],
    [1,0,3,2,5,4,7,6],[0,2,1,3,4,6,5,7],[2,3,0,1,6,7,4,5],[3,1,2,0,7,5,6,4]],
'permute':[p+map(lambda x:x+4,p) for p in permu2(range(4))]
},
"square4_cyclic": # same symmetries as Margolus
{
'none':[[0,1,2,3,4,5,6,7]],
'reflect_horizontal':[[0,1,2,3,4,5,6,7],[1,0,3,2,5,4,7,6]],
'reflect_vertical':[[0,1,2,3,4,5,6,7],[2,3,0,1,6,7,4,5]],
'rotate4':
    [[0,1,2,3,4,5,6,7],[2,0,3,1,6,4,7,5],[3,2,1,0,7,6,5,4],[1,3,0,2,5,7,4,6]],
'rotate4reflect':[
    [0,1,2,3,4,5,6,7],[2,0,3,1,6,4,7,5],[3,2,1,0,7,6,5,4],[1,3,0,2,5,7,4,6],
    [1,0,3,2,5,4,7,6],[0,2,1,3,4,6,5,7],[2,3,0,1,6,7,4,5],[3,1,2,0,7,5,6,4]],
'permute':[p+map(lambda x:x+4,p) for p in permu2(range(4))]
},
"triangularVonNeumann":
{
'none':[[0,1,2,3,4]],
'rotate':[[0,1,2,3,4],[0,3,1,2,4],[0,2,3,1,4]],
'rotate_reflect':[[0,1,2,3,4],[0,3,1,2,4],[0,2,3,1,4],[0,3,2,1,4],[0,1,3,2,4],[0,2,1,3,4]],
'permute':[[0,1,2,3,4]] # (gets done later)
},
"triangularMoore":
{
'none':[[0,1,2,3,4,5,6,7,8,9,10,11,12,13]],
'rotate':[[0,1,2,3,4,5,6,7,8,9,10,11,12,13],
          [0,2,3,1,7,8,9,10,11,12,4,5,6,13],
          [0,3,1,2,10,11,12,4,5,6,7,8,9,13]],
'rotate_reflect':[[0,1,2,3,4,5,6,7,8,9,10,11,12,13],
                  [0,2,3,1,7,8,9,10,11,12,4,5,6,13],
                  [0,3,1,2,10,11,12,4,5,6,7,8,9,13],
                  [0,3,2,1,9,8,7,6,5,4,12,11,10,13],
                  [0,2,1,3,6,5,4,12,11,10,9,8,7,13],
                  [0,1,3,2,12,11,10,9,8,7,6,5,4,13]],
'permute':[[0,1,2,3,4,5,6,7,8,9,10,11,12,13]], # (gets done later)
},
"oneDimensional":
{
'none':[[0,1,2,3]],
'reflect':[[0,1,2,3],[0,2,1,3]],
'permute':[[0,1,2,3]], # (gets done later)
},
"hexagonal":
{
'none':[[0,1,2,3,4,5,6,7]],
'rotate2':[[0,1,2,3,4,5,6,7],[0,4,5,6,1,2,3,7]],
'rotate3':[[0,1,2,3,4,5,6,7],[0,3,4,5,6,1,2,7],[0,5,6,1,2,3,4,7]],
'rotate6':[[0,1,2,3,4,5,6,7],[0,2,3,4,5,6,1,7],[0,3,4,5,6,1,2,7],
           [0,4,5,6,1,2,3,7],[0,5,6,1,2,3,4,7],[0,6,1,2,3,4,5,7]],
'rotate6reflect':[[0,1,2,3,4,5,6,7],[0,2,3,4,5,6,1,7],[0,3,4,5,6,1,2,7],
                   [0,4,5,6,1,2,3,7],[0,5,6,1,2,3,4,7],[0,6,1,2,3,4,5,7],
                   [0,6,5,4,3,2,1,7],[0,5,4,3,2,1,6,7],[0,4,3,2,1,6,5,7],
                   [0,3,2,1,6,5,4,7],[0,2,1,6,5,4,3,7],[0,1,6,5,4,3,2,7]],
'permute':[[0,1,2,3,4,5,6,7]], # (gets done later)
},
}

def ReadRuleTable(filename):
    '''
    Return n_states, neighborhood, transitions
    e.g. 2, "vonNeumann", [[0],[0,1],[0],[0],[1],[1]]
    Transitions are expanded for symmetries and bound variables.
    '''
    f=open(filename,'r')
    vars={}
    symmetry_string = ''
    symmetry = []
    n_states = 0
    neighborhood = ''
    transitions = []
    numParams = 0
    for line in f:
        if line[0]=='#' or line.strip()=='':
            pass
        elif line[0:9]=='n_states:':
            n_states = int(line[9:])
            if n_states<0 or n_states>256:
                golly.warn('n_states out of range: '+n_states)
                golly.exit()
        elif line[0:13]=='neighborhood:':
            neighborhood = line[13:].strip()
            if not neighborhood in SupportedSymmetries:
                golly.warn('Unknown neighborhood: '+neighborhood)
                golly.exit()
            numParams = len(SupportedSymmetries[neighborhood].items()[0][1][0])
        elif line[0:11]=='symmetries:':
            symmetry_string = line[11:].strip()
            if not symmetry_string in SupportedSymmetries[neighborhood]:
                golly.warn('Unknown symmetry: '+symmetry_string)
                golly.exit()
            symmetry = SupportedSymmetries[neighborhood][symmetry_string]
        elif line[0:4]=='var ':
            line = line[4:] # strip var keyword
            if '#' in line: line = line[:line.find('#')] # strip any trailing comment
            # read each variable into a dictionary mapping string to list of ints
            entries = line.replace('=',' ').replace('{',' ').replace(',',' ').\
                replace(':',' ').replace('}',' ').replace('\n','').split()
            vars[entries[0]] = []
            for e in entries[1:]:
                if e in vars: vars[entries[0]] += vars[e] # vars allowed in later vars
                else: vars[entries[0]].append(int(e))
        else:
            # assume line is a transition
            if '#' in line: line = line[:line.find('#')] # strip any trailing comment
            if ',' in line:
                entries = line.replace('\n','').replace(',',' ').replace(':',' ').split()
            else:
                entries = list(line.strip()) # special no-comma format
            if not len(entries)==numParams:
                golly.warn('Wrong number of entries on line: '+line+' (expected '+str(numParams)+')')
                golly.exit()
            # retrieve the variables that repeat within the transition, these are 'bound'
            bound_vars = [ e for e in set(entries) if entries.count(e)>1 and e in vars ]
            # iterate through all the possible values of each bound variable
            var_val_indices = dict(zip(bound_vars,[0]*len(bound_vars)))
            while True:
                ### AKT: this code causes syntax error in Python 2.3:
                ### transition = [ [vars[e][var_val_indices[e]]] if e in bound_vars \
                ###                else vars[e] if e in vars \
                ###                else [int(e)] \
                ###                for e in entries ]
                transition = []
                for e in entries:
                    if e in bound_vars:
                        transition.append([vars[e][var_val_indices[e]]])
                    elif e in vars:
                        transition.append(vars[e])
                    else:
                        transition.append([int(e)])
                if symmetry_string=='permute' and neighborhood in PermuteLater:
                    # permute all but C,C' (first and last entries)
                    for permuted_section in permu2(transition[1:-1]):
                        permuted_transition = [transition[0]]+permuted_section+[transition[-1]]
                        if not permuted_transition in transitions:
                            transitions.append(permuted_transition)
                else:
                    # expand for symmetry using the explicit list
                    for s in symmetry:
                        tran = [transition[i] for i in s]
                        if not tran in transitions:
                            transitions.append(tran)
                # increment the variable values (or break out if done)
                var_val_to_change = 0
                while var_val_to_change<len(bound_vars):
                    var_label = bound_vars[var_val_to_change]
                    if var_val_indices[var_label]<len(vars[var_label])-1:
                        var_val_indices[var_label] += 1
                        break
                    else:
                        var_val_indices[var_label] = 0
                        var_val_to_change += 1
                if var_val_to_change >= len(bound_vars):
                    break
    f.close()
    return n_states, neighborhood, transitions