1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
# Only the neighborhoods supported by ruletree_algo are supported:
# a) vonNeumann: 4 neighbors: C,S,E,W,N,
# b) Moore: 8 neighbors: C,S,E,W,N,SE,SW,NE,NW
#
# This file contains two ways of building rule trees:
#
# 1) RuleTree Usage example:
#
# tree = RuleTree(14,4) # 14 states, 4 neighbors = von Neumann neighborhood
# tree.add_rule([[1],[1,2,3],[3],[0,1],[2]],7) # inputs: [C,S,E,W,N], output
# tree.write("Test.tree")
#
# 2) MakeRuleTreeFromTransitionFunction usage example:
#
# MakeRuleTreeFromTransitionFunction( 2, 4, lambda a:(a[0]+a[1]+a[2])%2, 'Parity.tree' )
#
import golly
import os
from tempfile import mkstemp
from shutil import move
# ------------------------------------------------------------------------------
class RuleTree:
'''
Usage example:
tree = RuleTree(14,4) # 14 states, 4 neighbors = von Neumann neighborhood
tree.add_rule([[1],[1,2,3],[3],[0,1],[2]],7) # inputs: [C,S,E,W,N], output
tree.write("Test.tree")
For vonNeumann neighborhood, inputs are: C,S,E,W,N
For Moore neighborhood, inputs are: C,S,E,W,N,SE,SW,NE,NW
'''
def __init__(self,numStates,numNeighbors):
self.numParams = numNeighbors + 1 ;
self.world = {} # dictionary mapping node tuples to node index (for speedy access by value)
self.seq = [] # same node tuples but stored in a list (for access by index)
# each node tuple is ( depth, index0, index1, .. index(numStates-1) )
# where each index is an index into self.seq
self.nodeSeq = 0
self.curndd = -1
self.numStates = numStates
self.numNeighbors = numNeighbors
self.cache = {}
self.shrinksize = 100
self._init_tree()
def _init_tree(self):
self.curndd = -1
for i in range(self.numParams):
node = tuple( [i+1] + [self.curndd]*self.numStates )
self.curndd = self._getNode(node)
def _getNode(self,node):
if node in self.world:
return self.world[node]
else:
iNewNode = self.nodeSeq
self.nodeSeq += 1
self.seq.append(node)
self.world[node] = iNewNode
return iNewNode
def _add(self,inputs,output,nddr,at):
if at == 0: # this is a leaf node
if nddr<0:
return output # return the output of the transition
else:
return nddr # return the node index
if nddr in self.cache:
return self.cache[nddr]
# replace the node entry at each input with the index of the node from a recursive call to the next level down
### AKT: this code causes syntax error in Python 2.3:
### node = tuple( [at] + [ self._add(inputs,output,self.seq[nddr][i+1],at-1) if i in inputs[at-1] \
### else self.seq[nddr][i+1] for i in range(self.numStates) ] )
temp = []
for i in range(self.numStates):
if i in inputs[at-1]:
temp.append( self._add(inputs,output,self.seq[nddr][i+1],at-1) )
else:
temp.append( self.seq[nddr][i+1] )
node = tuple( [at] + temp )
r = self._getNode(node)
self.cache[nddr] = r
return r
def _recreate(self,oseq,nddr,lev):
if lev == 0:
return nddr
if nddr in self.cache:
return self.cache[nddr]
# each node entry is the node index retrieved from a recursive call to the next level down
node = tuple( [lev] + [ self._recreate(oseq,oseq[nddr][i+1],lev-1) for i in range(self.numStates) ] )
r = self._getNode(node)
self.cache[nddr] = r
return r
def _shrink(self):
self.world = {}
oseq = self.seq
self.seq = []
self.cache = {}
self.nodeSeq = 0 ;
self.curndd = self._recreate(oseq, self.curndd, self.numParams)
self.shrinksize = len(self.seq) * 2
def add_rule(self,inputs,output):
self.cache = {}
self.curndd = self._add(inputs,output,self.curndd,self.numParams)
if self.nodeSeq > self.shrinksize:
self._shrink()
def _setdefaults(self,nddr,off,at):
if at == 0:
if nddr<0:
return off
else:
return nddr
if nddr in self.cache:
return self.cache[nddr]
# each node entry is the node index retrieved from a recursive call to the next level down
node = tuple( [at] + [ self._setdefaults(self.seq[nddr][i+1],i,at-1) for i in range(self.numStates) ] )
node_index = self._getNode(node)
self.cache[nddr] = node_index
return node_index
def _setDefaults(self):
self.cache = {}
self.curndd = self._setdefaults(self.curndd, -1, self.numParams)
def write(self,filename):
self._setDefaults()
self._shrink()
out = open(filename,'w')
out.write("num_states=" + str(self.numStates)+'\n')
out.write("num_neighbors=" + str(self.numNeighbors)+'\n')
out.write("num_nodes=" + str(len(self.seq))+'\n')
for rule in self.seq:
out.write(' '.join(map(str,rule))+'\n')
out.flush()
out.close()
# ------------------------------------------------------------------------------
class MakeRuleTreeFromTransitionFunction:
'''
Usage example:
MakeRuleTreeFromTransitionFunction( 2, 4, lambda a:(a[0]+a[1]+a[2])%2, 'Parity.tree' )
For vonNeumann neighborhood, inputs are: N,W,E,S,C
For Moore neighborhood, inputs are NW,NE,SW,SE,N,W,E,S,C
'''
def __init__(self,numStates,numNeighbors,f,filename):
self.numParams = numNeighbors + 1 ;
self.numStates = numStates
self.numNeighbors = numNeighbors
self.world = {}
self.seq = []
self.params = [0]*self.numParams
self.nodeSeq = 0
self.f = f
self._recur(self.numParams)
self._write(filename)
def _getNode(self,node):
if node in self.world:
return self.world[node]
else:
iNewNode = self.nodeSeq
self.nodeSeq += 1
self.seq.append(node)
self.world[node] = iNewNode
return iNewNode
def _recur(self,at):
if at == 0:
return self.f(self.params)
node = tuple([at])
for i in range(self.numStates):
self.params[self.numParams-at] = i
node += tuple( [self._recur(at-1)] )
return self._getNode(node)
def _write(self,filename):
out = open(filename,'w')
out.write("num_states=" + str(self.numStates)+'\n')
out.write("num_neighbors=" + str(self.numNeighbors)+'\n')
out.write("num_nodes=" + str(len(self.seq))+'\n')
for rule in self.seq:
out.write(' '.join(map(str,rule))+'\n')
out.flush()
out.close()
# ------------------------------------------------------------------------------
def ReplaceTreeSection(rulepath, newtree):
# replace @TREE section in existing .rule file with new tree data
try:
rulefile = open(rulepath,'r')
except:
golly.exit('Failed to open existing .rule file: '+rulepath)
# create a temporary file for writing new rule info
temphdl, temppath = mkstemp()
tempfile = open(temppath,'w')
skiplines = False
for line in rulefile:
if line.startswith('@TREE'):
tempfile.write('@TREE\n\n')
tempfile.write(newtree)
skiplines = True
elif skiplines and line.startswith('@'):
tempfile.write('\n')
skiplines = False
if not skiplines:
tempfile.write(line)
# close files
rulefile.close()
tempfile.flush()
tempfile.close()
os.close(temphdl)
# remove original .rule file and rename temporary file
os.remove(rulepath)
move(temppath, rulepath)
# ------------------------------------------------------------------------------
def GetColors(icon_pixels, wd, ht):
colors = []
multi_colored = False
for row in xrange(ht):
for col in xrange(wd):
R,G,B = icon_pixels[row][col]
if R != G or G != B:
multi_colored = True # not grayscale
found = False
index = 0
for count, RGB in colors:
if (R,G,B) == RGB:
found = True
break
index += 1
if found:
colors[index][0] += 1
else:
colors.append([1, (R,G,B)])
return colors, multi_colored
# ------------------------------------------------------------------------------
def hex2(i):
# convert number from 0..255 into 2 hex digits
hexdigit = "0123456789ABCDEF"
result = hexdigit[i / 16]
result += hexdigit[i % 16]
return result
# ------------------------------------------------------------------------------
def CreateXPMIcons(colors, icon_pixels, iconsize, yoffset, xoffset, numicons, rulefile):
# write out the XPM data for given icon size
rulefile.write("\nXPM\n")
cindex = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
numcolors = len(colors)
charsperpixel = 1
if numcolors > 26:
charsperpixel = 2 # AABA..PA, ABBB..PB, ... , APBP..PP
rulefile.write("/* width height num_colors chars_per_pixel */\n")
rulefile.write("\"" + str(iconsize) + " " + str(iconsize*numicons) + " " + \
str(numcolors) + " " + str(charsperpixel) + "\"\n")
rulefile.write("/* colors */\n")
n = 0
for count, RGB in colors:
R,G,B = RGB
if R == 0 and G == 0 and B == 0:
# nicer to show . or .. for black pixels
rulefile.write("\".")
if charsperpixel == 2: rulefile.write(".")
rulefile.write(" c #000000\"\n")
else:
hexcolor = "#" + hex2(R) + hex2(G) + hex2(B)
rulefile.write("\"")
if charsperpixel == 1:
rulefile.write(cindex[n])
else:
rulefile.write(cindex[n % 16] + cindex[n / 16])
rulefile.write(" c " + hexcolor + "\"\n")
n += 1
for i in xrange(numicons):
rulefile.write("/* icon for state " + str(i+1) + " */\n")
for row in xrange(iconsize):
rulefile.write("\"")
for col in xrange(iconsize):
R,G,B = icon_pixels[row + yoffset][col + xoffset*i]
if R == 0 and G == 0 and B == 0:
# nicer to show . or .. for black pixels
rulefile.write(".")
if charsperpixel == 2: rulefile.write(".")
else:
n = 0
thisRGB = (R,G,B)
for count, RGB in colors:
if thisRGB == RGB: break
n += 1
if charsperpixel == 1:
rulefile.write(cindex[n])
else:
rulefile.write(cindex[n % 16] + cindex[n / 16])
rulefile.write("\"\n")
# ------------------------------------------------------------------------------
def ConvertTreeToRule(rule_name, total_states, icon_pixels):
'''
Convert rule_name.tree to rule_name.rule and delete the .tree file.
If rule_name.colors exists then use it to create an @COLORS section
and delete the .colors file.
If icon_pixels is supplied then add an @ICONS section.
Format of icon_pixels (in this example there are 4 icons at each size):
---------------------------------------------------------
| | | | |
| | | | |
| 31x31 | 31x31 | 31x31 | 31x31 |
| | | | |
| | | | |
---------------------------------------------------------
| |.....| |.....| |.....| |.....|
| 15x15 |.....| 15x15 |.....| 15x15 |.....| 15x15 |.....|
| |.....| |.....| |.....| |.....|
---------------------------------------------------------
|7x7|.........|7x7|.........|7x7|.........|7x7|.........|
---------------------------------------------------------
The top layer of 31x31 icons is optional -- if not supplied (ie. the
height is 22) then there are no gaps between the 15x15 icons.
'''
rulepath = golly.getdir('rules')+rule_name+'.rule'
treepath = golly.getdir('rules')+rule_name+'.tree'
colorspath = golly.getdir('rules')+rule_name+'.colors'
# get contents of .tree file
try:
treefile = open(treepath,'r')
treedata = treefile.read()
treefile.close()
except:
golly.exit('Failed to open .tree file: '+treepath)
# if the .rule file already exists then only replace the @TREE section
# so we don't clobber any other info added by the user
if os.path.isfile(rulepath):
ReplaceTreeSection(rulepath, treedata)
os.remove(treepath)
if os.path.isfile(colorspath): os.remove(colorspath)
return
# create a new .rule file
rulefile = open(rulepath,'w')
rulefile.write('@RULE '+rule_name+'\n\n')
rulefile.write('@TREE\n\n')
# append contents of .tree file, then delete that file
rulefile.write(treedata)
os.remove(treepath)
# if .colors file exists then append @COLORS section and delete file
if os.path.isfile(colorspath):
colorsfile = open(colorspath,'r')
rulefile.write('\n@COLORS\n\n')
for line in colorsfile:
if line.startswith('color') or line.startswith('gradient'):
# strip off everything before 1st digit
line = line.lstrip('colorgadient= \t')
rulefile.write(line)
colorsfile.close()
os.remove(colorspath)
# if icon pixels are supplied then append @ICONS section
if len(icon_pixels) > 0:
wd = len(icon_pixels[0])
ht = len(icon_pixels)
iconsize = 15 # size of icons in top row
if ht > 22: iconsize = 31 # 31x31 icons are present
numicons = wd / iconsize
# get colors used in all icons (we assume each icon size uses the same set of colors)
colors, multi_colored = GetColors(icon_pixels, wd, ht)
if len(colors) > 256:
golly.warn('Icons use more than 256 colors!')
rulefile.flush()
rulefile.close()
return
if multi_colored:
# create @COLORS section using color info in icon_pixels (not grayscale)
rulefile.write('\n@COLORS\n\n')
if numicons >= total_states:
# extra icon is present so use top right pixel to set the color of state 0
R,G,B = icon_pixels[0][wd-1]
rulefile.write('0 ' + str(R) + ' ' + str(G) + ' ' + str(B) + '\n')
numicons -= 1
# set colors for each live state to the average of the non-black pixels
# in each icon on top row (note we've skipped the extra icon detected above)
for i in xrange(numicons):
nbcount = 0
totalR = 0
totalG = 0
totalB = 0
for row in xrange(iconsize):
for col in xrange(iconsize):
R,G,B = icon_pixels[row][col + i*iconsize]
if R > 0 or G > 0 or B > 0:
nbcount += 1
totalR += R
totalG += G
totalB += B
if nbcount > 0:
rulefile.write(str(i+1) + ' ' + str(totalR / nbcount) + ' ' \
+ str(totalG / nbcount) + ' ' \
+ str(totalB / nbcount) + '\n')
else:
# avoid div by zero
rulefile.write(str(i+1) + ' 0 0 0\n')
# create @ICONS section using (r,g,b) triples in icon_pixels[row][col]
rulefile.write('\n@ICONS\n')
if ht > 22:
# top row of icons is 31x31
CreateXPMIcons(colors, icon_pixels, 31, 0, 31, numicons, rulefile)
CreateXPMIcons(colors, icon_pixels, 15, 31, 31, numicons, rulefile)
CreateXPMIcons(colors, icon_pixels, 7, 46, 31, numicons, rulefile)
else:
# top row of icons is 15x15
CreateXPMIcons(colors, icon_pixels, 15, 0, 15, numicons, rulefile)
CreateXPMIcons(colors, icon_pixels, 7, 15, 15, numicons, rulefile)
rulefile.flush()
rulefile.close()
# ------------------------------------------------------------------------------
def ConvertRuleTableTransitionsToRuleTree(neighborhood,n_states,transitions,input_filename):
'''Convert a set of vonNeumann or Moore transitions directly to a rule tree.'''
rule_name = os.path.splitext(os.path.split(input_filename)[1])[0]
remap = {
"vonNeumann":[0,3,2,4,1], # CNESW->CSEWN
"Moore":[0,5,3,7,1,4,6,2,8] # C,N,NE,E,SE,S,SW,W,NW -> C,S,E,W,N,SE,SW,NE,NW
}
numNeighbors = len(remap[neighborhood])-1
tree = RuleTree(n_states,numNeighbors)
for i,t in enumerate(transitions):
golly.show("Building rule tree... ("+str(100*i/len(transitions))+"%)")
tree.add_rule([ t[j] for j in remap[neighborhood] ],t[-1][0])
tree.write(golly.getdir('rules')+rule_name+".tree" )
# use rule_name.tree to create rule_name.rule (no icons)
ConvertTreeToRule(rule_name, n_states, [])
return rule_name
|