1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
--[[
This script lets you use Golly to explore one-dimensional rules.
It supports all of Stephen Wolfram's 256 elementary rules, as well
as totalistic rules with up to 4 states and a maximum range of 4.
Author: Andrew Trevorrow (andrew@trevorrow.com), May 2019.
--]]
local g = golly()
local gp = require "gplus"
local split = gp.split
require "gplus.NewCA"
SCRIPT_NAME = "1D"
DEFAULT_RULE = "W110"
RULE_HELP = [[
This script lets you explore one-dimensional rules.
Stephen Wolfram's elementary rules are strings of the form Wn
where n is a number from 0 to 255.
<p>
Totalistic rules are strings of the form CcKkRr where c is a code
number from 0 to k^((2r+1)k-2r)-1, k is the number of states (2 to 4),
and r is the range (1 to 4).
<p>
More details can be found at these links:<br>
<a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html"
>http://mathworld.wolfram.com/ElementaryCellularAutomaton.html</a><br>
<a href="http://mathworld.wolfram.com/TotalisticCellularAutomaton.html"
>http://mathworld.wolfram.com/TotalisticCellularAutomaton.html</a>
]]
-- the following are non-local so a startup script can change them
DEFWD, DEFHT = 500, 500 -- default grid size
aliases = {} -- none at the moment
--------------------------------------------------------------------------------
NextPattern = function() end -- ParseRule sets this to NextElementary or NextTotalistic
local birth = {} -- set by ParseRule (only if given rule is valid)
local numstates = 2 -- ditto
local range = 1 -- ditto
local empty_row = false -- NextPattern created an empty row?
function ParseRule(newrule)
-- Parse the given rule string.
-- If valid then return nil, the canonical rule string,
-- the width and height of the grid, and the number of states.
-- If not valid then just return an appropriate error message.
if #newrule == 0 then
newrule = DEFAULT_RULE -- should be a valid rule!
else
-- check for a known alias
local rule = aliases[newrule]
if rule then
newrule = rule
elseif newrule:find(":") then
-- try without the suffix
local p, s = split(newrule,":")
rule = aliases[p]
if rule then newrule = rule..":"..s end
end
end
local prefix, suffix = split(newrule:upper(),":")
-- check for a valid prefix
local elementary = true
local n, c, k, r
if prefix:find("^W") then
n = tonumber( prefix:match("^W(%d+)$") )
if n == nil or n > 255 then
return "Rule syntax is Wn where n is from 0 to 255."
end
elseif prefix:find("^C") then
c, k, r = prefix:match("^C(%d+)K([234])R([1234])$")
c = tonumber(c)
k = tonumber(k)
r = tonumber(r)
if not (c and k and r) then
return "Rule syntax is CcKkRr where c is the code number,\n"..
"k is the number of states (2 to 4), and r is the\n"..
"range (1 to 4)."
end
local maxcode = math.floor(k^((2*r+1)*k-2*r)) - 1
if c > maxcode then
return "Maximum code for K"..k.." and R"..r.." is "..maxcode.."."
end
elementary = false
else
return "Rule must start with W or C."
end
-- check for a valid suffix like T50 or T50,30
local wd, ht = DEFWD, DEFHT
if suffix then
if suffix:find(",") then
wd, ht = suffix:match("^T(%d+),(%d+)$")
else
wd = suffix:match("^T(%d+)$")
ht = wd
end
wd = tonumber(wd)
ht = tonumber(ht)
if wd == nil or ht == nil then
return "Rule suffix must be Twd,ht or Twd."
end
end
if wd < 10 then wd = 10 elseif wd > 4000 then wd = 4000 end
if ht < 10 then ht = 10 elseif ht > 4000 then ht = 4000 end
-- given rule is valid
-- set birth table for use in NextPattern
birth = {}
if elementary then
local bit = 1
for i = 0, 7 do
if n & bit > 0 then birth[i] = 1 end
bit = bit * 2
end
else
-- totalistic
local code = c
for i = 0, (2*r+1)*k-2*r-1 do
if code == 0 then break end
local s = code % k
if s > 0 then birth[i] = s end
code = code // k
end
end
if birth[0] == nil then empty_row = false end
-- set NextPattern, numstates, range, and create the canonical rule
local canonrule
if elementary then
NextPattern = NextElementary
numstates = 2
range = 1
canonrule = "W"..n..":T"..wd..","..ht
else
-- totalistic
NextPattern = NextTotalistic
numstates = k
range = r
canonrule = "C"..c.."K"..k.."R"..r..":T"..wd..","..ht
end
return nil, canonrule, wd, ht, numstates
end
--------------------------------------------------------------------------------
function NextElementary(currcells, minx, miny, maxx, maxy)
-- Create the next elementary pattern.
local newrow = {} -- cell array for the new row (one-state)
local newlen = 0 -- length of newrow
local get = g.getcell
-- find the bottom row of the current pattern
local bbox = g.getrect()
local y = bbox[2] + bbox[4] - 1
if birth[0] then
-- for odd-numbered rules we need to ensure the grid doesn't become empty
-- when we wrap to the top row
if y == maxy then
-- save bottom row, erase current pattern and put bottom row in top row
local gridwd = maxx-minx+1
local bottrow = g.getcells( {minx, maxy, gridwd, 1} )
g.putcells(currcells, 0, 0, 1, 0, 0, 1, "xor")
g.putcells(bottrow, 0, -(maxy-miny), 1, 0, 0, 1, "or")
currcells = g.getcells( {minx, miny, gridwd, 1} )
y = miny
elseif empty_row then
-- if bottom row of current pattern is full then advance y by 1
local full = true
for x = minx, maxx do
if get(x, y) == 0 then full = false ; break end
end
if full then y = y + 1 end
end
end
local newy = y + 1 -- y coordinates for newrow
if newy > maxy then
newy = miny -- wrap to top row
end
for x = minx, maxx do
local xm1 = x-1
local xp1 = x+1
-- wrap left and right edges
if xm1 < minx then xm1 = maxx end
if xp1 > maxx then xp1 = minx end
local i = get(xp1, y)
if get(x, y) == 1 then i = i + 2 end
if get(xm1, y) == 1 then i = i + 4 end
if birth[i] then
newlen = newlen+1 ; newrow[newlen] = x
newlen = newlen+1 ; newrow[newlen] = newy
end
end
empty_row = newlen == 0 -- for next call (only used if birth[0])
if newy == miny then
-- erase current pattern and put newrow in top row
g.putcells(currcells, 0, 0, 1, 0, 0, 1, "xor")
g.putcells(newrow)
return newrow
else
-- append newrow to currcells (no need to erase current pattern)
local currlen = #currcells
for i = 1, newlen do
currlen = currlen+1 ; currcells[currlen] = newrow[i]
end
g.putcells(newrow)
return currcells
end
end
--------------------------------------------------------------------------------
function NextTotalistic(currcells, minx, miny, maxx, maxy)
-- Create the next totalistic pattern.
local newrow = {} -- cell array for the new row (one-state or multi-state)
local newlen = 0 -- length of newrow
local get = g.getcell
local multistate = numstates > 2
-- find the bottom row of the current pattern
local bbox = g.getrect()
local y = bbox[2] + bbox[4] - 1
if birth[0] then
-- for odd-numbered rules we need to ensure the grid doesn't become empty
-- when we wrap to the top row
if y == maxy then
-- save bottom row, erase current pattern and put bottom row in top row
local gridwd = maxx-minx+1
local bottrow = g.getcells( {minx, maxy, gridwd, 1} )
g.putcells(currcells, 0, 0, 1, 0, 0, 1, "xor")
g.putcells(bottrow, 0, -(maxy-miny), 1, 0, 0, 1, "or")
currcells = g.getcells( {minx, miny, gridwd, 1} )
y = miny
elseif empty_row then
-- if bottom row of current pattern is full then advance y by 1
local full = true
for x = minx, maxx do
if get(x, y) == 0 then full = false ; break end
end
if full then y = y + 1 end
end
end
local newy = y + 1 -- y coordinates for newrow
if newy > maxy then
newy = miny -- wrap to top row
end
for x = minx, maxx do
local total = get(x, y)
for i = 1, range do
local xmi = x-i
local xpi = x+i
-- wrap left and right edges
if xmi < minx then xmi = maxx - (minx - xmi - 1) end
if xpi > maxx then xpi = minx + (xpi - maxx - 1) end
total = total + get(xmi, y)
total = total + get(xpi, y)
end
if birth[total] then
newlen = newlen+1 ; newrow[newlen] = x
newlen = newlen+1 ; newrow[newlen] = newy
if multistate then
newlen = newlen+1 ; newrow[newlen] = birth[total]
end
end
end
if newlen > 0 and multistate then
-- ensure length of newrow is odd
if newlen & 1 == 0 then newlen = newlen+1 ; newrow[newlen] = 0 end
end
empty_row = newlen == 0 -- for next call (only used if birth[0])
if newy == miny then
-- erase current pattern and put newrow in top row
g.putcells(currcells, 0, 0, 1, 0, 0, 1, "xor")
g.putcells(newrow)
return newrow
else
-- append newrow to currcells (no need to erase current pattern)
local currlen = #currcells
if multistate then
-- ignore any padding ints in currcells and newrow
if currlen % 3 > 0 then currlen = currlen - 1 end
if newlen % 3 > 0 then newlen = newlen - 1 end
end
for i = 1, newlen do
currlen = currlen+1 ; currcells[currlen] = newrow[i]
end
if multistate then
-- ensure length of currcells is odd
if currlen & 1 == 0 then currcells[currlen+1] = 0 end
end
g.putcells(newrow)
return currcells
end
end
--------------------------------------------------------------------------------
-- override SetColors to use Wolfram's color scheme in ANKOS
function SetColors()
g.setcolors{0,255,255,255} -- state 0 is white
if g.numstates() == 2 then
-- state 1 is black
g.setcolors{1,0,0,0}
else
-- live states vary from gray to black
g.setcolors{128,128,128, 0,0,0}
end
g.setcolor("border", 190, 210, 230) -- light blue border around grid
g.setcolor(g.getalgo(), 190, 210, 230) -- ditto for status bar background
end
--------------------------------------------------------------------------------
-- override RandomPattern to create a single row at the top of the grid
function RandomPattern()
local rand = math.random
-- avoid flash due to Refresh call in NewPattern
local savedRefresh = Refresh
Refresh = function() end
NewPattern("random")
Refresh = savedRefresh
local minx = -(g.getwidth() // 2)
local miny = -(g.getheight() // 2)
local maxx = minx + g.getwidth() - 1
local perc = GetDensity()
for x = minx, maxx do
if rand(0,99) < perc then
g.setcell(x, miny, rand(1,g.numstates()-1))
end
end
FitGrid() -- calls Refresh
end
--------------------------------------------------------------------------------
-- user's startup script might want to override this
function RandomRule()
local rand = math.random
-- create a random totalistic rule
local k = rand(2,4)
local r = rand(1,4)
local c = rand(0,math.floor(k^((2*r+1)*k-2*r)) - 1)
return "C"..c.."K"..k.."R"..r
end
--------------------------------------------------------------------------------
-- allow alt-R to create a random pattern with a random totalistic rule
local saveHandleKey = HandleKey
function HandleKey(event)
local _, key, mods = split(event)
if key == "r" and mods == "alt" then
SetRule(RandomRule())
RandomPattern()
else
-- pass the event to the original HandleKey
saveHandleKey(event)
end
end
--------------------------------------------------------------------------------
-- and away we go...
StartNewCA()
|