File: generationsalgo.cpp

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (1174 lines) | stat: -rw-r--r-- 32,160 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
// This file is part of Golly.
// See docs/License.html for the copyright notice.

#include "generationsalgo.h"
#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#if defined(WIN32) || defined(WIN64)
#define strncasecmp _strnicmp
#endif

using namespace std ;

int generationsalgo::NumCellStates() {
   return maxCellStates ;

}

static const char *DEFAULTRULE = "12/34/3" ;
const char* generationsalgo::DefaultRule() {
   return DEFAULTRULE ;
}

state generationsalgo::slowcalc(state nw, state n, state ne, state w, state c,
                                state e, state sw, state s, state se) {
   // result
   state result = 0 ;

   // get the lookup table
   char *lookup = rule3x3 ;

   // create array index
   int index = ((nw == 1) ? 256 : 0) | ((n == 1) ? 128 : 0) | ((ne == 1) ? 64 : 0)
      | ((w == 1) ? 32 : 0) | ((c == 1) ? 16 : 0) | ((e == 1) ? 8 : 0)
      | ((sw == 1) ? 4 : 0) | ((s == 1) ? 2 : 0) | ((se == 1) ? 1 : 0) ;

   // lookup the next generation
   if (c <= 1 && lookup[index]) {
      result = 1 ;
   }
   else {
      if (c > 0 && c + 1 < maxCellStates) {
         result = c + 1 ;
      }
      else {
         result = 0 ;
      }
   }

   return result ;
}

static lifealgo *creator() { return new generationsalgo() ; }

void generationsalgo::doInitializeAlgoInfo(staticAlgoInfo &ai) {
   ghashbase::doInitializeAlgoInfo(ai) ;
   ai.setAlgorithmName("Generations") ;
   ai.setAlgorithmCreator(&creator) ;
   ai.minstates = 2 ;
   ai.maxstates = 256 ;
   // init default color scheme
   ai.defgradient = true ;              // use gradient
   ai.defr1 = 255 ;                     // start color = red
   ai.defg1 = 0 ;
   ai.defb1 = 0 ;
   ai.defr2 = 255 ;                     // end color = yellow
   ai.defg2 = 255 ;
   ai.defb2 = 0 ;
   // if not using gradient then set all states to white
   for (int i=0 ; i<256 ; i++) {
      ai.defr[i] = ai.defg[i] = ai.defb[i] = 255 ;
   }
}

generationsalgo::generationsalgo() {
   int i ;

   // base64 encoding characters
   base64_characters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" ;

   // all valid rule letters
   valid_rule_letters = "012345678ceaiknjqrytwz-" ;

   // rule letters per neighbor count
   rule_letters[0] = "ce" ;
   rule_letters[1] = "ceaikn" ;
   rule_letters[2] = "ceaiknjqry" ;
   rule_letters[3] = "ceaiknjqrytwz" ;

   // isotropic neighborhoods per neighbor count
   static int entry0[2] = { 1, 2 } ;
   static int entry1[6] = { 5, 10, 3, 40, 33, 68 } ;
   static int entry2[10] = { 69, 42, 11, 7, 98, 13, 14, 70, 41, 97 } ;
   static int entry3[13] = { 325, 170, 15, 45, 99, 71, 106, 102, 43, 101, 105, 78, 108 } ;
   rule_neighborhoods[0] = entry0 ;
   rule_neighborhoods[1] = entry1 ;
   rule_neighborhoods[2] = entry2 ;
   rule_neighborhoods[3] = entry3 ;

   // bit offset for suvival part of rule
   survival_offset = 9 ;

   // bit in letter bit mask indicating negative
   negative_bit = 13 ; 

   // maximum number of letters per neighbor count
   max_letters[0] = 0 ;
   max_letters[1] = (int) strlen(rule_letters[0]) ;
   max_letters[2] = (int) strlen(rule_letters[1]) ;
   max_letters[3] = (int) strlen(rule_letters[2]) ;
   max_letters[4] = (int) strlen(rule_letters[3]) ;
   max_letters[5] = max_letters[3] ;
   max_letters[6] = max_letters[2] ;
   max_letters[7] = max_letters[1] ;
   max_letters[8] = max_letters[0] ;
   for (i = 0 ; i < survival_offset ; i++) {
      max_letters[i + survival_offset] = max_letters[i] ;
   }

   // canonical letter order per neighbor count
   static int order0[1] = { 0 } ;
   static int order1[2] = { 0, 1 } ;
   static int order2[6] = { 2, 0, 1, 3, 4, 5 } ;
   static int order3[10] = { 2, 0, 1, 3, 6, 4, 5, 7, 8, 9 } ;
   static int order4[13] = { 2, 0, 1, 3, 6, 4, 5, 7, 8, 10, 11, 9, 12 } ;
   order_letters[0] = order0 ;
   order_letters[1] = order1 ;
   order_letters[2] = order2 ;
   order_letters[3] = order3 ;
   order_letters[4] = order4 ;
   order_letters[5] = order3 ;
   order_letters[6] = order2 ;
   order_letters[7] = order1 ;
   order_letters[8] = order0 ;
   for (i = 0 ; i < survival_offset ; i++) {
      order_letters[i + survival_offset] = order_letters[i] ;
   }

   // initialize
   initRule() ;
}

generationsalgo::~generationsalgo() {
}

// returns a count of the number of bits set in given int
static int bitcount(int v) {
   int r = 0 ;
   while (v) {
      r++ ;
      v &= v - 1 ;
   }
   return r ;
}

// initialize
void generationsalgo::initRule() {
   // default to Moore neighbourhood totalistic rule
   neighbormask = MOORE ; 
   neighbors = 8 ;
   totalistic = true ;
   using_map = false ;

   // we may need this to be >2 here so it's recognized as multistate
   maxCellStates = 3 ;

   // one bit for each neighbor count
   // s = survival, b = birth
   // bit:     17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
   // meaning: s8 s7 s6 s5 s4 s3 s2 s1 s0 b8 b7 b6 b5 b4 b3 b2 b1 b0
   rulebits = 0 ;

   // one bit for each letter per neighbor count
   // N = negative bit
   // bit:     13 12 11 10  9  8  7  6  5  4  3  2  1  0
   // meaning:  N  z  w  t  y  r  q  j  n  k  i  a  e  c
   memset(letter_bits, 0, sizeof(letter_bits)) ;

   // canonical rule string
   memset(canonrule, 0, sizeof(canonrule)) ;
}

// set 3x3 grid based on totalistic value
void generationsalgo::setTotalistic(int value, bool survival) {
   int mask = 0 ;
   int nbrs = 0 ;
   int nhood = 0 ;
   int i = 0 ;
   int j = 0 ;
   int offset = 0 ;

   // check if this value has already been processed
   if (survival) {
      offset = survival_offset ;
   }
   if ((rulebits & (1 << (value + offset))) == 0) {
       // update the rulebits
       rulebits |= 1 << (value + offset) ;

       // update the mask if survival
       if (survival) {
          mask = 0x10 ;
       }

       // fill the array based on totalistic value
       for (i = 0 ; i < ALL3X3 ; i += 32) {
          for (j = 0 ; j < 16 ; j++) {
             nbrs = 0 ;
             nhood = (i+j) & neighbormask ;
             while (nhood > 0) {
                nbrs += (nhood & 1) ;
                nhood >>= 1 ;
             }
             if (value == nbrs) {
                rule3x3[i+j+mask] = 1 ;
             }
          }
      }
   }
}

// flip bits
int generationsalgo::flipBits(int x) {
   return ((x & 0x07) << 6) | ((x & 0x1c0) >> 6) | (x & 0x38) ;
}

// rotate 90
int generationsalgo::rotateBits90Clockwise(int x) {
   return ((x & 0x4) << 6) | ((x & 0x20) << 2) | ((x & 0x100) >> 2)
                        | ((x & 0x2) << 4) | (x & 0x10) | ((x & 0x80) >> 4)
                        | ((x & 0x1) << 2) | ((x & 0x8) >> 2) | ((x & 0x40) >> 6) ;
}

// set symmetrical neighborhood into 3x3 map
void generationsalgo::setSymmetrical512(int x, int b) {
   int y = x ;
   int i = 0 ;

   // process each of the 4 rotations
   for (i = 0 ; i < 4 ; i++) {
      rule3x3[y] = (char) b ;
      y = rotateBits90Clockwise(y) ;
   }

   // flip
   y = flipBits(y) ;

   // process each of the 4 rotations
   for (i = 0 ; i < 4 ; i++) {
      rule3x3[y] = (char) b ;
      y = rotateBits90Clockwise(y) ;
   }
}

// set symmetrical neighborhood
void generationsalgo::setSymmetrical(int value, bool survival, int lindex, int normal) {
   int xorbit = 0 ;
   int nindex = value - 1 ;
   int x = 0 ;
   int offset = 0 ;

   // check for homogeneous bits
   if (value == 0 || value == 8) {
      setTotalistic(value, survival) ;
   }
   else {
      // update the rulebits
      if (survival) {
         offset = survival_offset ;
      }
      rulebits |= 1 << (value + offset) ;

      // reflect the index if in second half
      if (nindex > 3) {
         nindex = 6 - nindex ;
         xorbit = 0x1ef ;
      }

      // update the letterbits
      letter_bits[value + offset] |= 1 << lindex ;

      if (!normal) {
         // set the negative bit
         letter_bits[value + offset] |= 1 << negative_bit ;
      }

      // lookup the neighborhood
      x = rule_neighborhoods[nindex][lindex] ^ xorbit ;
      if (survival) {
         x |= 0x10 ;
      }
      setSymmetrical512(x, normal) ;
   }
}

// set totalistic birth or survival rule from a string
void generationsalgo::setTotalisticRuleFromString(const char *rule, bool survival) {
   char current ;

   // process each character in the rule string
   while ( *rule ) {
      current = *rule ;
      rule++ ;

      // convert the digit to an integer
      current -= '0' ;

      // set totalistic
      setTotalistic(current, survival) ;
   }
}

// set rule from birth or survival string
void generationsalgo::setRuleFromString(const char *rule, bool survival) {
   // current and next character
   char current ;
   char next ;

   // whether character normal or inverted
   int normal = 1 ;

   // letter index
   char *letterindex = 0 ;
   int lindex = 0 ;
   int nindex = 0 ;

   // process each character
   while ( *rule ) {
      current = *rule ;
      rule++ ;

      // find the index in the valid character list
      letterindex = strchr((char*) valid_rule_letters, current) ;
      lindex = letterindex ? int(letterindex - valid_rule_letters) : -1 ;

      // check if it is a digit
      if (lindex >= 0 && lindex <= 8) {
         // determine what follows the digit
         next = *rule ;
         nindex = -1 ;
         if (next) {
            letterindex = strchr((char*) rule_letters[3], next) ;
            if (letterindex) {
               nindex = int(letterindex - rule_letters[3]) ;
            }
         }

         // is the next character a digit or minus?
         if (nindex == -1) {
            setTotalistic(lindex, survival) ;
         }

         // check for inversion
         normal = 1 ;
         if (next == '-') {
            rule++ ;
            next = *rule ;

            // invert following character meanings
            normal = 0 ;
         }

         // process non-totalistic characters
         if (next) {
            letterindex = strchr((char*) rule_letters[3], next) ;
            nindex = -1 ;
            if (letterindex) {
               nindex = int(letterindex - rule_letters[3]) ;
            }
            while (nindex >= 0) {
               // set symmetrical
               setSymmetrical(lindex, survival, nindex, normal) ;

               // get next character
               rule++ ;
               next = *rule ;
               nindex = -1 ;
               if (next) {
                  letterindex = strchr((char*) rule_letters[3], next) ;
                  if (letterindex) {
                     nindex = int(letterindex - rule_letters[3]) ;
                  }
               }
            }
         }
      }
   }
}

// create the rule map from the base64 encoded map
void generationsalgo::createRuleMapFromMAP(const char *base64) {
   // set the number of characters to read
   int power2 = 1 << (neighbors + 1) ;
   int fullchars = power2 / 6 ;
   int remainbits = power2 % 6 ;

   // create an array to read the MAP bits
   char bits[ALL3X3] ;

   // decode the base64 string
   int i = 0 ;
   char c = 0 ;
   int j = 0 ;
   const char *index = 0 ;

   for (i = 0 ; i < fullchars ; i++) {
      // convert character to base64 index
      index = strchr(base64_characters, *base64) ;
      base64++ ;
      c = index ? (char)(index - base64_characters) : 0 ;

      // decode the character
      bits[j] = c >> 5 ;
      j++ ;
      bits[j] = (c >> 4) & 1 ;
      j++ ;
      bits[j] = (c >> 3) & 1 ;
      j++ ;
      bits[j] = (c >> 2) & 1 ;
      j++ ;
      bits[j] = (c >> 1) & 1 ;
      j++ ;
      bits[j] = c & 1 ;
      j++ ;
   }

   // decode remaining bits from final character
   if (remainbits > 0) {
      index = strchr(base64_characters, *base64) ;
      c = index ? (char)(index - base64_characters) : 0 ;
      int b = 5 ;

      while (remainbits > 0) {
          bits[j] = (c >> b) & 1 ;
          b-- ;
          j++ ;
          remainbits-- ;
      }
   }

   // copy into rule array using the neighborhood mask
   int k, m ;
   for (i = 0 ; i < ALL3X3 ; i++) {
      k = 0 ;
      m = neighbors ;
      for (j = 8 ; j >= 0 ; j--) {
         if (neighbormask & (1 << j)) {
             if (i & (1 << j)) {
                k |= (1 << m) ;
             }
             m-- ;
         }
      }
      rule3x3[i] = bits[k] ;
   }
}

// create the rule map from birth and survival strings
void generationsalgo::createRuleMap(const char *birth, const char *survival) {
   // clear the rule array
   memset(rule3x3, 0, ALL3X3) ;

   // check for totalistic rule
   if (totalistic) {
      // set the totalistic birth rule
      setTotalisticRuleFromString(birth, false) ;

      // set the totalistic surivival rule
      setTotalisticRuleFromString(survival, true) ;
   }
   else {
      // set the non-totalistic birth rule
      setRuleFromString(birth, false) ;

      // set the non-totalistic survival rule
      setRuleFromString(survival, true) ;
   }
}

// add canonical letter representation
int generationsalgo::addLetters(int count, int p) {
   int bits ;            // bitmask of letters defined at this count
   int negative = 0 ;    // whether negative
   int setbits ;         // how many bits are defined
   int maxbits ;         // maximum number of letters at this count
   int letter = 0 ;
   int j ;

   // check if letters are defined for this neighbor count
   if (letter_bits[count]) {
      // get the bit mask
      bits = letter_bits[count] ;

      // check for negative
      if (bits & (1 << negative_bit)) {
         // letters are negative
         negative = 1 ;
         bits &= ~(1 << negative_bit) ;
      }

      // compute the number of bits set
      setbits = bitcount(bits) ;

      // get the maximum number of allowed letters at this neighbor count
      maxbits = max_letters[count] ;

      // do not invert if not negative and seven letters
      if (!(!negative && setbits == 7 && maxbits == 13)) {
         // if maximum letters minus number used is greater than number used then invert
         if (setbits + negative > (maxbits >> 1)) {
            // invert maximum letters for this count
            bits = ~bits & ((1 << maxbits) - 1) ;
            if (bits) {
               negative = !negative ;
            }
         }
      }

      // if negative and no letters then remove neighborhood count
      if (negative && !bits) {
         canonrule[p] = 0 ;
         p-- ;
      }
      else {
         // check whether to output minus
         if (negative) {
            canonrule[p++] = '-' ;
         }

         // add defined letters
         for (j = 0 ; j < maxbits ; j++) {
            // lookup the letter in order
            letter = order_letters[count][j] ;
            if (bits & (1 << letter)) {
               canonrule[p++] = rule_letters[3][letter] ;
            }
         }
      }
   }

   return p ;
}

// AKT: store valid rule in canonical format for getrule()
void generationsalgo::createCanonicalName(const char *base64) {
   int p = 0 ;
   int np = 0 ;
   int i = 0 ;

   // the canonical version of a rule containing letters
   // might be simply totalistic
   bool stillnontotalistic = false ;

   // check for map rule
   if (using_map) {
      // output map header
      canonrule[p++] = 'M' ;
      canonrule[p++] = 'A' ;
      canonrule[p++] = 'P' ;

      // compute number of base64 characters
      int power2 = 1 << (neighbors + 1) ;
      int fullchars = power2 / 6 ;
      int remainbits = power2 % 6 ;

      // copy base64 part
      for (i = 0 ; i < fullchars ; i++) {
         if (*base64) {
            canonrule[p++] = *base64 ;
            base64++ ;
         }
      }

      // copy final bits of last character
      if (*base64) {
         const char *index = strchr(base64_characters, *base64) ;
         int c = index ? (char)(index - base64_characters) : 0 ;
         int k = 0 ;
         int m = 5 ;
         for (i = 0 ; i < remainbits ; i++) {
            k |= c & (1 << m) ;
            m-- ;
         }
         canonrule[p++] = base64_characters[c] ;
      }
   }
   else {
      // output survival part
      for (i = 0 ; i <= neighbors ; i++) {
         if (rulebits & (1 << (survival_offset+i))) {
            canonrule[p++] = '0' + (char)i ;
   
            // check for non-totalistic
            if (!totalistic) {
               // add any defined letters
               np = addLetters(survival_offset + i, p) ;
   
               // check if letters were added
               if (np != p) {
                  if (np > p) {
                     stillnontotalistic = true ;
                  }
                  p = np ;
               }
            }
         }
      }
   
      // add slash
      canonrule[p++] = '/' ;
   
      // output birth part
      for (i = 0 ; i <= neighbors ; i++) {
         if (rulebits & (1 << i)) {
            canonrule[p++] = '0' + (char)i ;
   
            // check for non-totalistic
            if (!totalistic) {
               // add any defined letters
               np = addLetters(i, p) ;
        
               // check if letters were added
               if (np != p) {
                  if (np > p) {
                     stillnontotalistic = true ;
                  }
                  p = np ;
               }
            }
         }
      }
   }

   // add slash
   canonrule[p++] = '/' ;

   // output state count
   char states[4] ;
   memset(states, 0, sizeof(states)) ;
   sprintf(states, "%d", maxCellStates) ;
   i = 0 ;
   while (states[i]) canonrule[p++] = states[i++] ;

   // check if non-totalistic became totalistic
   if (!totalistic && !stillnontotalistic) {
      totalistic = true ;
   }

   // add neighborhood if not MAP rule
   if (!using_map) {
      if (neighbormask == HEXAGONAL) canonrule[p++] = 'H' ;
      if (neighbormask == VON_NEUMANN) canonrule[p++] = 'V' ;
   }

   // check for bounded grid
   if (gridwd > 0 || gridht > 0) {
      // algo->setgridsize() was successfully called above, so append suffix
      const char* bounds = canonicalsuffix() ;
      i = 0 ;
      while (bounds[i]) canonrule[p++] = bounds[i++] ;
   }

   // null terminate
   canonrule[p] = 0 ;

   // set canonical rule
   ghashbase::setrule(canonrule) ;
}

// remove character from a string in place
void generationsalgo::removeChar(char *string, char skip) {
   int src = 0 ;
   int dst = 0 ;
   char c = string[src++] ;

   // copy characters other than skip
   while ( c ) {
      if (c != skip) {
         string[dst++] = c ;
      }
      c = string[src++] ;
   }

   // ensure null terminated
   string[dst] = 0 ;
}

// check whether non-totalistic letters are valid for defined neighbor counts
bool generationsalgo::lettersValid(const char *part) {
   char c ;
   int nindex = 0 ;
   int currentCount = -1 ;

   // get next character
   while ( *part ) {
      c = *part ;
      if (c >= '0' && c <= '8') {
         currentCount = c - '0' ;
         nindex = currentCount - 1 ;
         if (nindex > 3) {
            nindex = 6 - nindex ;
         }
      }
      else {
         // ignore minus
         if (c != '-') {
            // not valid if 0 or 8
            if (currentCount == 0 || currentCount == 8) {
               return false ;
            }

            // check against valid rule letters for this neighbor count
            if (strchr((char*) rule_letters[nindex], c) == 0) {
               return false ;
            }
         }
      }
      part++ ;
   }

   return true ;
}

// set rule
const char *generationsalgo::setrule(const char *rulestring) {
   char *r = (char *)rulestring ;
   char tidystring[MAXRULESIZE] ;  // tidy version of rule string
   char *t = (char *)tidystring ;
   char *end = r + strlen(r) ;     // end of rule string
   char c ;
   char *charpos = 0 ;
   int digit ;
   int maxdigit = 0 ;              // maximum digit value found
   char *colonpos = 0 ;            // position of colon
   char *slashpos = 0 ;            // position of first slash
   char *slashpos2 = 0 ;           // position of second slash
   char *bpos = 0 ;                // position of b
   char *spos = 0 ;                // position of s
   bool underscore_used = false ;  // whether underscore used
   int num_states = 0 ;            // number of cell states

   // initialize rule type
   initRule() ;

   // check if rule is too long
   if (strlen(rulestring) > (size_t) MAXRULESIZE) {
      return "Rule name is too long." ;
   }

   // check for colon
   colonpos = strchr(r, ':') ;
   if (colonpos) {
      // only process up to the colon
      end = colonpos ;
   }

   // skip any whitespace
   while (*r == ' ') {
      r++ ;
   }

   // check for map
   if (strncasecmp(r, "map", 3) == 0) {
      // attempt to decode map
      r += 3 ;
      bpos = r ;

      // terminate at the colon if one is present
      if (colonpos) *colonpos = 0 ;

      // check the length of the map
      int maplen = (int) strlen(r) ;

      // find the last slash
      char *lastslash = strrchr(r, '/') ;

      // replace the colon if one was present
      if (colonpos) *colonpos = ':' ;

      // check if there was a final slash
      if (lastslash == NULL) {
          return "Generations rule needs number of states." ;
      }

      // length is up to the final slash
      maplen = (int) (lastslash - r) ;

      // check if there is base64 padding
      if (maplen > 2 && !strncmp(r + maplen - 2, "==", 2)) {
         // remove padding
         maplen -= 2 ;
      }

      // check if the map length is valid for Moore, Hexagonal or von Neumann neighborhoods
      if (!(maplen == MAP512LENGTH || maplen == MAP128LENGTH || maplen == MAP32LENGTH)) {
          return "MAP rule needs 6, 22 or 86 base64 characters." ;
      }

      // validate the characters
      spos = r + maplen ;
      while (r < spos) {
         if (!strchr(base64_characters, *r)) {
             return "MAP contains illegal base64 character." ;
         }
         r++ ;
      }

      // set the neighborhood based on the map length
      if (maplen == MAP128LENGTH) {
         neighbormask = HEXAGONAL ;
         neighbors = 6 ;
      } else {
         if (maplen == MAP32LENGTH) {
            neighbormask = VON_NEUMANN ;
            neighbors = 4 ;
         }
      }

      // read number of states
      r = lastslash + 1 ;
      c = *r ;
      while (c) {
         if (c >= '0' && c <= '9') {
            num_states = num_states * 10 + (c - '0') ;
            r++ ;
            c = *r ;
         }
         else {
            c = 0 ;
         }
      }

      // check number of cell states is valid
      if (num_states < 2) {
         return "Number of states too low in Generations rule." ;
      }
      if (num_states > 256) {
         return "Number of states too high in Generations rule." ;
      }

      // check for trailing characters
      if (*r && r != colonpos) {
         return "Illegal trailing characters after MAP." ;
      }

      // set the number of cell states
      maxCellStates = num_states ;

      // map looks valid
      using_map = true ;
   }
   else {
      // create lower case version of rule name without spaces
      while (r < end) {
         // get the next character and convert to lowercase
         c = (char) tolower(*r) ;
   
         // process the character
         switch (c) {
         // birth
         case 'b':
            if (bpos) {
               // multiple b found
               return "Only one B allowed." ;
            }
            bpos = t ;
            *t = c ;
            t++ ;
            break ;
   
         // survival
         case 's':
            if (spos) {
               // multiple s found
               return "Only one S allowed." ;
            }
            spos = t ;
            *t = c ;
            t++ ;
            break ;
   
         // underscore
         case '_':
            underscore_used = true ;
            // fall through...
   
         // slash
         case '/':
            if (slashpos) {
               // multiple slashes found
               if (slashpos2) {
                  return "Only two slashes allowed." ;
               }
               else {
                  slashpos2 = t ;
                  *t = c ;
                  t++ ;
               }
            }
            else {
               slashpos = t ;
               *t = c ;
               t++ ;
            }
            break ;
           
         // hex
         case 'h':
            if (neighbormask != MOORE) {
               // multiple neighborhoods specified
               return "Only one neighborhood allowed." ;
            }
            neighbormask = HEXAGONAL ;
            grid_type = HEX_GRID ;
            neighbors = 6 ;
            *t = c ;
            t++ ;
            break ;
   
         // von neumann
         case 'v':
            if (neighbormask != MOORE) {
               // multiple neighborhoods specified
               return "Only one neighborhood allowed." ;
            }
            neighbormask = VON_NEUMANN ;
            grid_type = VN_GRID ;
            neighbors = 4 ;
            *t = c ;
            t++ ;
            break ;
   
         // minus
         case '-':
            // check if previous character is a digit
            if (t == tidystring || *(t-1) < '0' || *(t-1) > '8') {
               // minus can only follow a digit
               return "Minus can only follow a digit." ;
            }
            *t = c ;
            t++ ;
            totalistic = false ;
            break ;
   
         // other characters
         default:
            // ignore space
            if (c != ' ') {
               // check for state count after final slash
               if (slashpos2) {
                  if (c >= '0' && c <= '9') {
                     num_states = num_states * 10 + (c - '0') ;
                  }
                  else {
                     return "Bad character found." ;
                  }
               }
               else {
                  // check character is valid
                  charpos = strchr((char*) valid_rule_letters, c) ;
                  if (charpos) {
                     // copy character
                     *t = c ; 
                     t++ ;
      
                     // check if totalistic (i.e. found a valid non-digit)
                     digit = int(charpos - valid_rule_letters) ;
                     if (digit > 8) {
                        totalistic = false ;
                     }
                     else {
                        // update maximum digit found
                        if (digit > maxdigit) {
                           maxdigit = digit ;
                        }
                     }
                  }
                  else {
                     return "Bad character found." ;
                  }
               }
            }
            break ;
         }
   
         // next character
         r++ ;
      }
   
      // ensure null terminated
      *t = 0 ;
   
      // don't allow empty rule string
      t = tidystring ;
      if (*t == 0) {
         return "Rule cannot be empty string." ;
      }
   
      // check for two slashes
      if (!slashpos || !slashpos2) {
         return "Rule must contain two slashes." ;
      }
   
      // check number of cell states is valid
      if (num_states < 2) {
         return "Number of states too low in Generations rule." ;
      }
      if (num_states > 256) {
         return "Number of states too high in Generations rule." ;
      }
   
      // set the number of cell states
      maxCellStates = num_states ;
   
      // underscore only valid for non-totalistic rules
      if (underscore_used && totalistic) {
         return "Underscore not valid for totalistic rules, use slash." ;
      }
   
      // if neighborhood specified then must be last character
      if (neighbormask != MOORE) {
         size_t len = strlen(t) ;
         if (len) {
            c = t[len - 1] ;
            if (!((c == 'h') || (c == 'v'))) {
               return "Neighborhood must be at end of rule." ;
            }
            // remove character
            t[len - 1] = 0 ;
         }
      }
   
      // digits can not be greater than the number of neighbors for the defined neighborhood
      if (maxdigit > neighbors) {
         return "Digit greater than neighborhood allows." ;
      }
   
      // terminate the rule string at the second slash
      *slashpos2 = 0 ;
   
      // if slash present and both b and s then one must be each side of the slash
      if (slashpos && bpos && spos) {
         if ((bpos < slashpos && spos < slashpos) || (bpos > slashpos && spos > slashpos)) {
            return "B and S must be either side of slash." ;
         }
      }
   
      // check if there was a slash to divide birth from survival
      if (!slashpos) {
         // check if both b and s exist
         if (bpos && spos) {
            // determine whether b or s is first
            if (bpos < spos) {
               // skip b and cut the string using s
               bpos++ ;
               *spos = 0 ;
               spos++ ;
            }
            else {
               // skip s and cut the string using b
               spos++ ;
               *bpos = 0 ;
               bpos++ ;
            }
         }
         else {
            // just bpos
            if (bpos) {
               bpos = t ;
               removeChar(bpos, 'b') ;
               spos = bpos + strlen(bpos) ;
            }
            else {
               // just spos
               spos = t ;
               removeChar(spos, 's') ;
               bpos = spos + strlen(spos) ;
            }
         }
      }
      else {
         // slash exists so set determine which part is b and which is s
         *slashpos = 0 ;
   
         // check if b or s are defined
         if (bpos || spos) {
            // check for birth first
            if ((bpos && bpos < slashpos) || (spos && spos > slashpos)) {
               // birth then survival
               bpos = t ;
               spos = slashpos + 1 ;
            }
            else {
               // survival then birth
               bpos = slashpos + 1 ;
               spos = t ;
            }
   
            // remove b or s from rule parts
            removeChar(bpos, 'b') ;
            removeChar(spos, 's') ;
         }
         else {
            // no b or s so survival first
            spos = t ;
            bpos = slashpos + 1 ;
         }
      }
   
      // if not totalistic and a part exists it must start with a digit
      if (!totalistic) {
         // check birth
         c = *bpos ;
         if (c && (c < '0' || c > '8')) {
            return "Non-totalistic birth must start with a digit." ;
         }
         // check survival
         c = *spos ;
         if (c && (c < '0' || c > '8')) {
            return "Non-totalistic survival must start with a digit." ;
         }
      }
   
      // if not totalistic then neighborhood must be Moore
      if (!totalistic && neighbormask != MOORE) {
         return "Non-totalistic only supported with Moore neighborhood." ;
      }
   
      // validate letters used against each specified neighbor count
      if (!lettersValid(bpos)) {
         return "Letter not valid for birth neighbor count." ;
      }
      if (!lettersValid(spos)) {
         return "Letter not valid for survival neighbor count." ;
      }
   }

   // AKT: check for rule suffix like ":T200,100" to specify a bounded universe
   if (colonpos) {
      const char* err = setgridsize(colonpos) ;
      if (err) return err ;
   } else {
      // universe is unbounded
      gridwd = 0 ;
      gridht = 0 ;
   }

   // check for map
   if (using_map) {
      // generate the 3x3 map from the 512bit map
      createRuleMapFromMAP(bpos) ;
   }
   else {
      // generate the 3x3 map from the birth and survival rules
      createRuleMap(bpos, spos) ;
   }

   // check for B0 rules
   if (rule3x3[0]) {
      return "Generations does not support B0." ;
   }

   // save the canonical rule name
   createCanonicalName(bpos) ;

   // exit with success
   return 0 ;
}

const char* generationsalgo::getrule() {
   return canonrule ;
}