File: ltlalgo.cpp

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (2452 lines) | stat: -rwxr-xr-x 83,678 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
// This file is part of Golly.
// See docs/License.html for the copyright notice.

// Implementation code for the "Larger than Life" family of rules.
// See Help/Algorithms/Larger_than_Life.html for more info.

#include "ltlalgo.h"
#include "liferules.h"
#include "util.h"
#include <stdlib.h>     // for malloc, free, etc
#include <limits.h>     // for INT_MIN and INT_MAX
#include <string.h>     // for memset and strchr

// -----------------------------------------------------------------------------

// set default rule to match Life
static const char *DEFAULTRULE = "R1,C0,M0,S2..3,B3..3,NM";

#define MAXRANGE 500
#define DEFAULTSIZE 400     // must be >= 2

// maximum number of columns in a cell's neighborhood (used in fast_Moore)
static const int MAXNCOLS = 2 * MAXRANGE + 1;

// maximum number of cells in grid must be < 2^31 so population can't overflow
#define MAXCELLS 100000000.0

// faster_Neumann_* calls are much slower than fast_Neumann when the
// range is 1 or 2, similar when 5, but much faster when 10 or above
#define SMALL_NN_RANGE 4

// -----------------------------------------------------------------------------

// Create a new empty universe.

ltlalgo::ltlalgo()
{
    shape = NULL ;
    // create a bounded universe with the default grid size, range and neighborhood
    unbounded = false;
    range = 1;
    ntype = 'M';
    colcounts = NULL;
    create_grids(DEFAULTSIZE, DEFAULTSIZE);
    generation = 0;
    increment = 1;
    show_warning = true;
}

// -----------------------------------------------------------------------------

// Destroy the universe.

ltlalgo::~ltlalgo()
{
    free(outergrid1);
    if (outergrid2) free(outergrid2);
    if (colcounts) free(colcounts);
    if (shape) free(shape) ;
}

// -----------------------------------------------------------------------------

void ltlalgo::allocate_colcounts()
{
    // allocate the array used for cumulative column counts of state-1 cells
    if (colcounts) free(colcounts);
    if (ntype == 'M') {
        colcounts = (int*) malloc(outerbytes * sizeof(int));
        // if NULL then use fast_Moore, otherwise faster_Moore_*
    } else if (ntype == 'N') {
        if (range <= SMALL_NN_RANGE) {
            // use fast_Neumann (faster than faster_Neumann_* for small ranges)
            colcounts = NULL;
        } else {
            // additional rows are needed to calculate counts in faster_Neumann_*
            colcounts = (int*) malloc(outerwd * (outerht + (outerwd-1)/2) * sizeof(int));
            // if NULL then use fast_Neumann
        }
    } else if (ntype == 'C') {
        colcounts = NULL ;
        // use fast_Shaped
    } else {
        lifefatal("Unexpected ntype!");
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::create_grids(int wd, int ht)
{
    // create a bounded universe of given width and height
    gwd = wd;
    ght = ht;
    border = range + 1;                 // the extra 1 is needed by faster_Moore_*
    outerwd = gwd + border * 2;         // add left and right border
    outerht = ght + border * 2;         // add top and bottom border
    outerbytes = outerwd * outerht;
    
    allocate_colcounts();

    // allocate memory for grid
    int offset = border * outerwd + border;
    outergrid1 = (unsigned char*) calloc(outerbytes, sizeof(unsigned char));
    if (outergrid1 == NULL) lifefatal("Not enough memory for LtL grid!");
    // point currgrid to top left non-border cells within outergrid1
    currgrid = outergrid1 + offset;

    // if using fast_Moore or fast_Neumann we need to allocate outergrid2
    if (colcounts == NULL) {
        outergrid2 = (unsigned char*) calloc(outerbytes, sizeof(unsigned char));
        if (outergrid2 == NULL) lifefatal("Not enough memory for LtL grids!");
        // point nextgrid to top left non-border cells within outergrid2
        nextgrid = outergrid2 + offset;
    } else {
        // faster_* calls don't use outergrid2
        outergrid2 = NULL;
        nextgrid = NULL;
    }

    // set grid coordinates of cell at bottom right corner of inner grid
    gwdm1 = gwd - 1;
    ghtm1 = ght - 1;

    // set cell coordinates of inner grid edges (middle of grid is 0,0)
    gtop = -int(ght / 2);
    gleft = -int(gwd / 2);
    gbottom = gtop + ghtm1;
    gright = gleft + gwdm1;
    
    // set bigint versions of inner grid edges (used by GUI code)
    gridtop = gtop;
    gridleft = gleft;
    gridbottom = gbottom;
    gridright = gright;
    
    // the universe is empty
    population = 0;
    
    // init boundaries so next birth will change them
    empty_boundaries();
}

// -----------------------------------------------------------------------------

void ltlalgo::empty_boundaries()
{
    minx = INT_MAX;
    miny = INT_MAX;
    maxx = INT_MIN;
    maxy = INT_MIN;
}

// -----------------------------------------------------------------------------

void ltlalgo::clearall()
{
    lifefatal("clearall is not implemented");
}

// -----------------------------------------------------------------------------

int ltlalgo::NumCellStates()
{
    return maxCellStates;
}

// -----------------------------------------------------------------------------

void ltlalgo::endofpattern()
{
    show_warning = true;
}

// -----------------------------------------------------------------------------

const char* ltlalgo::resize_grids(int up, int down, int left, int right)
{
    // try to resize an unbounded universe by given amounts (possibly -ve)
    int newwd = gwd + left + right;
    int newht = ght + up + down;
    if ((float)newwd * (float)newht > MAXCELLS) {
        return "Sorry, but the universe can't be expanded that far.";
    }

    // check if new grid edges would be outside editing limits
    int newtop = gtop - up;
    int newleft = gleft - left;
    int newbottom = newtop + newht - 1;
    int newright = newleft + newwd - 1;
    if (newtop <   -1000000000 || newleft < -1000000000 ||
        newbottom > 1000000000 || newright > 1000000000) {
        return "Sorry, but the grid edges can't be outside the editing limits.";
    }
    
    int newbytes = newwd * newht;
    unsigned char* newcurr = (unsigned char*) calloc(newbytes, sizeof(unsigned char));
    unsigned char* newnext = (unsigned char*) calloc(newbytes, sizeof(unsigned char));
    if (newcurr == NULL || newnext == NULL) {
        if (newcurr) free(newcurr);
        if (newnext) free(newnext);
        return "Not enough memory to resize universe!";
    }
    
    // resize succeeded so copy pattern from currgrid into newcurr
    if (population > 0) {
        unsigned char* src = currgrid + miny * outerwd + minx;
        unsigned char* dest = newcurr + (miny + up) * newwd + minx + left;
        int xbytes = maxx - minx + 1;
        for (int row = miny; row <= maxy; row++) {
            memcpy(dest, src, xbytes);
            src += outerwd;
            dest += newwd;
        }
        // shift pattern boundaries
        minx += left;
        maxx += left;
        miny += up;
        maxy += up;
    }
    
    free(outergrid1);
    if (outergrid2) free(outergrid2);
    outergrid1 = currgrid = newcurr;
    outergrid2 = nextgrid = newnext;

    outerwd = gwd = newwd;
    outerht = ght = newht;
    outerbytes = newbytes;
    
    // set grid coordinates of cell at bottom right corner of grid
    gwdm1 = gwd - 1;
    ghtm1 = ght - 1;

    // adjust cell coordinates of grid edges
    gtop -= up;
    gleft -= left;
    gbottom = gtop + ghtm1;
    gright = gleft + gwdm1;
    
    // set bigint versions of grid edges (used by GUI code)
    gridtop = gtop;
    gridleft = gleft;
    gridbottom = gbottom;
    gridright = gright;

    allocate_colcounts();

    if (colcounts) {
        // faster_* calls don't use outergrid2
        free(outergrid2);
        outergrid2 = NULL;
        nextgrid = NULL;
    }

    return NULL;    // success
}

// -----------------------------------------------------------------------------

// Set the cell at the given location to the given state.

int ltlalgo::setcell(int x, int y, int newstate)
{
    if (newstate < 0 || newstate >= maxCellStates) return -1;
    
    if (unbounded) {
        // check if universe needs to be expanded
        if (x < gleft || x > gright || y < gtop || y > gbottom) {
            if (population == 0) {
                // no need to resize empty grids;
                // just adjust grid edges so that x,y is in middle of grid
                gtop = y - int(ght / 2);
                gleft = x - int(gwd / 2);
                gbottom = gtop + ghtm1;
                gright = gleft + gwdm1;
                // set bigint versions of grid edges (used by GUI code)
                gridtop = gtop;
                gridleft = gleft;
                gridbottom = gbottom;
                gridright = gright;
            } else {
                int up = y < gtop ? gtop - y : 0;
                int down = y > gbottom ? y - gbottom : 0;
                int left = x < gleft ? gleft - x : 0;
                int right = x > gright ? x - gright : 0;
                
                // if the down or right amount is 1 then it's likely a pattern file
                // is being loaded, so increase the amount to reduce the number of
                // resize_grids calls and speed up the loading time
                if (down == 1) down = 10;
                if (right == 1) right = 10;
                
                const char* errmsg = resize_grids(up, down, left, right);
                if (errmsg) {
                    if (show_warning) lifewarning(errmsg);
                    // prevent further warning messages until endofpattern is called
                    // (this avoids user having to close thousands of dialog boxes
                    // if they attempted to paste a large pattern)
                    show_warning = false;
                    return -1;
                }
            }
        }
    } else {
        // check if x,y is outside bounded universe
        if (x < gleft || x > gright) return -1;
        if (y < gtop || y > gbottom) return -1;
    }

    // set x,y cell in currgrid
    int gx = x - gleft;
    int gy = y - gtop;
    unsigned char* cellptr = currgrid + gy * outerwd + gx;
    int oldstate = *cellptr;
    if (newstate != oldstate) {
        *cellptr = (unsigned char)newstate;
        // population might change
        if (oldstate == 0 && newstate > 0) {
            population++;
            if (gx < minx) minx = gx;
            if (gx > maxx) maxx = gx;
            if (gy < miny) miny = gy;
            if (gy > maxy) maxy = gy;
        } else if (oldstate > 0 && newstate == 0) {
            population--;
            if (population == 0) empty_boundaries();
        }
    }
    
    return 0;
}

// -----------------------------------------------------------------------------

// Get the state of the cell at the given location.

int ltlalgo::getcell(int x, int y)
{
    if (unbounded) {
        // cell outside grid is dead
        if (x < gleft || x > gright) return 0;
        if (y < gtop || y > gbottom) return 0;
    } else {
        // error if x,y is outside bounded universe
        if (x < gleft || x > gright) return -1;
        if (y < gtop || y > gbottom) return -1;
    }

    // get x,y cell in currgrid
    unsigned char* cellptr = currgrid + (y - gtop) * outerwd + (x - gleft);
    return *cellptr;
}

// -----------------------------------------------------------------------------

// Return the distance to the next non-zero cell in the given row,
// or -1 if there is none.

int ltlalgo::nextcell(int x, int y, int& v)
{
    if (population == 0) return -1;

    // check if y is outside grid
    if (y < gtop || y > gbottom) return -1;
    
    // check if x is outside right edge
    if (x > gright) return -1;

    // init distance
    int d = 0;
    
    // if x is outside left edge then set it to gleft and increase d
    // (this is necessary in case the user makes a selection outside
    // gleft when the universe is unbounded)
    if (x < gleft) {
        d = gleft - x;
        x = gleft;
    }
    
    // get x,y cell in currgrid
    unsigned char* cellptr = currgrid + (y - gtop) * outerwd + (x - gleft);
    
    do {
        v = *cellptr;
        if (v > 0) return d;    // found a non-zero cell
        d++;
        cellptr++;
        x++;
    } while (x <= gright);
    
    return -1;
}

// -----------------------------------------------------------------------------

static bigint bigpop;

const bigint& ltlalgo::getPopulation()
{
    bigpop = population;
    return bigpop;
}

// -----------------------------------------------------------------------------

int ltlalgo::isEmpty()
{
    return population == 0 ? 1 : 0;
}

// -----------------------------------------------------------------------------

void ltlalgo::update_current_grid(unsigned char &state, int ncount)
{
    // return the state of the cell based on the neighbor count
    if (state == 0) {
        // this cell is dead
        if (ncount >= minB && ncount <= maxB) {
            // new cell is born
            state = 1;
            population++;
        }
    } else if (state == 1) {
        // this cell is alive
        if (ncount < minS || ncount > maxS) {
            // this cell doesn't survive
            if (maxCellStates > 2) {
                // cell decays to state 2
                state = 2;
            } else {
                // cell dies
                state = 0;
                population--;
                if (population == 0) empty_boundaries();
            }
        }
    } else {
        // state is > 1 so this cell will eventually die
        if (state + 1 < maxCellStates) {
            state++;
        } else {
            // cell dies
            state = 0;
            population--;
            if (population == 0) empty_boundaries();
        }
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::update_next_grid(int x, int y, int xyoffset, int ncount)
{
    // x,y cell in nextgrid might change based on the given neighborhood count
    unsigned char state = *(currgrid + xyoffset);
    if (state == 0) {
        // this cell is dead
        if (ncount >= minB && ncount <= maxB) {
            // new cell is born in nextgrid
            unsigned char* nextcell = nextgrid + xyoffset;
            *nextcell = 1;
            population++;
            if (x < minx) minx = x;
            if (x > maxx) maxx = x;
            if (y < miny) miny = y;
            if (y > maxy) maxy = y;
        }
    } else if (state == 1) {
        // this cell is alive
        if (ncount >= minS && ncount <= maxS) {
            // cell survives so copy into nextgrid
            unsigned char* nextcell = nextgrid + xyoffset;
            *nextcell = 1;
            // population doesn't change but pattern limits in nextgrid might
            if (x < minx) minx = x;
            if (x > maxx) maxx = x;
            if (y < miny) miny = y;
            if (y > maxy) maxy = y;
        } else if (maxCellStates > 2) {
            // cell decays to state 2
            unsigned char* nextcell = nextgrid + xyoffset;
            *nextcell = 2;
            // population doesn't change but pattern limits in nextgrid might
            if (x < minx) minx = x;
            if (x > maxx) maxx = x;
            if (y < miny) miny = y;
            if (y > maxy) maxy = y;
        } else {
            // cell dies
            population--;
            if (population == 0) empty_boundaries();
        }
    } else {
        // state is > 1 so this cell will eventually die
        if (state + 1 < maxCellStates) {
            unsigned char* nextcell = nextgrid + xyoffset;
            *nextcell = state + 1;
            // population doesn't change but pattern limits in nextgrid might
            if (x < minx) minx = x;
            if (x > maxx) maxx = x;
            if (y < miny) miny = y;
            if (y > maxy) maxy = y;
        } else {
            // cell dies
            population--;
            if (population == 0) empty_boundaries();
        }
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::faster_Moore_bounded(int mincol, int minrow, int maxcol, int maxrow)
{
    // use Adam P. Goucher's algorithm to calculate Moore neighborhood counts
    // in a bounded universe; note that currgrid is surrounded by a border that
    // might contain live cells (the border is range+1 cells thick and the
    // outermost cells are always dead)
    
    // the given limits are relative to currgrid so we need to add border
    // so they are relative to outergrid1, and then expand them by range
    int bmr = border - range;
    int bpr = border + range;
    minrow += bmr;
    mincol += bmr;
    maxrow += bpr;
    maxcol += bpr;

    // calculate cumulative counts for each column and store in colcounts

    unsigned char* cellptr = outergrid1 + minrow * outerwd + mincol;
    int* ccptr = colcounts + minrow * outerwd + mincol;
    int *prevptr = NULL;
    int width = (maxcol - mincol + 1);
    int nextrow = outerwd - width;
    int rowcount = 0;

    for (int j = mincol; j <= maxcol; j++) {
        if (*cellptr == 1) rowcount++;
        *ccptr = rowcount;
        cellptr++;
        ccptr++;
    }
    cellptr += nextrow;
    ccptr += nextrow;
    prevptr = ccptr - outerwd;
    for (int i = minrow + 1; i <= maxrow; i++) {
        rowcount = 0;
        for (int j = mincol; j <= maxcol; j++) {
            if (*cellptr == 1) rowcount++;
            *ccptr = *prevptr + rowcount;
            cellptr++;
            ccptr++;
            prevptr++;
        }
        cellptr += nextrow;
        ccptr += nextrow;
        prevptr += nextrow;
    }
    
    // restore given limits (necessary for update_current_grid calls)
    minrow -= bmr;
    mincol -= bmr;
    maxrow -= bpr;
    maxcol -= bpr;

    // calculate final neighborhood counts using values in colcounts
    // and update the corresponding cells in current grid
    
    int* colptr = colcounts + (minrow + bpr) * outerwd;
    ccptr = colptr + mincol + bpr;
    unsigned char* stateptr = currgrid + minrow*outerwd+mincol;
    unsigned char state = *stateptr;
    update_current_grid(state, *ccptr);
    *stateptr = state;
    if (state) {
        if (mincol < minx) minx = mincol;
        if (mincol > maxx) maxx = mincol;
        if (minrow < miny) miny = minrow;
        if (minrow > maxy) maxy = minrow;
    }

    bool rowchanged = false;
    int bmrm1 = border - range - 1;
    stateptr = currgrid + minrow*outerwd + mincol+1;
    for (int j = mincol+1; j <= maxcol; j++) {
        // do i == minrow
        int* ccptr1 = colptr + (j + bpr);
        int* ccptr2 = colptr + (j + bmrm1);
        state = *stateptr;
        update_current_grid(state, *ccptr1 - *ccptr2);
        *stateptr++ = state;
        if (state) {
            if (j < minx) minx = j;
            if (j > maxx) maxx = j;
            rowchanged = true;
        }
    }
    if (rowchanged) {
        if (minrow < miny) miny = minrow;
        if (minrow > maxy) maxy = minrow;
    }
    
    bool colchanged = false;
    colptr = colcounts + mincol + bpr;
    stateptr = currgrid + (minrow+1)*outerwd + mincol;
    for (int i = minrow+1; i <= maxrow; i++) {
        // do j == mincol
        int* ccptr1 = colptr + (i + bpr) * outerwd;
        int* ccptr2 = colptr + (i + bmrm1) * outerwd;
        state = *stateptr;
        update_current_grid(state, *ccptr1 - *ccptr2);
        *stateptr = state;
        stateptr += outerwd;
        if (state) {
            if (i < miny) miny = i;
            if (i > maxy) maxy = i;
            colchanged = true;
        }
    }
    if (colchanged) {
        if (mincol < minx) minx = mincol;
        if (mincol > maxx) maxx = mincol;
    }
    
    rowchanged = false;
    for (int i = minrow+1; i <= maxrow; i++) {
        int* ipr = colcounts + (i + bpr) * outerwd;
        int* imrm1 = colcounts + (i + bmrm1) * outerwd;
        stateptr = currgrid + i*outerwd + mincol+1;
        for (int j = mincol+1; j <= maxcol; j++) {
            int jpr = j + bpr;
            int jmrm1 = j + bmrm1;
            int* ccptr1 = ipr + jpr;
            int* ccptr2 = imrm1 + jmrm1;
            int* ccptr3 = ipr + jmrm1;
            int* ccptr4 = imrm1 + jpr;
            state = *stateptr;
            update_current_grid(state, *ccptr1 + *ccptr2 - *ccptr3 - *ccptr4);
            *stateptr++ = state;
            if (state) {
                if (j < minx) minx = j;
                if (j > maxx) maxx = j;
                rowchanged = true;
            }
        }
        if (rowchanged) {
            if (i < miny) miny = i;
            if (i > maxy) maxy = i;
            rowchanged = false;
        }
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::faster_Moore_bounded2(int mincol, int minrow, int maxcol, int maxrow)
{
    // use Adam P. Goucher's algorithm to calculate Moore neighborhood counts
    // in a bounded universe; note that currgrid is surrounded by a border that
    // might contain live cells (the border is range+1 cells thick and the
    // outermost cells are always dead)
    
    // the given limits are relative to currgrid so we need to add border
    // so they are relative to outergrid1, and then expand them by range
    int bmr = border - range;
    int bpr = border + range;
    minrow += bmr;
    mincol += bmr;
    maxrow += bpr;
    maxcol += bpr;

    // calculate cumulative counts for each column and store in colcounts

    unsigned char* cellptr = outergrid1 + minrow * outerwd + mincol;
    int* ccptr = colcounts + minrow * outerwd + mincol;
    int *prevptr = NULL;
    int width = (maxcol - mincol + 1);
    int nextrow = outerwd - width;
    int rowcount = 0;

    // compute 4 cell offset
    int offset = (4 - ((g_uintptr_t)cellptr & 3)) & 3;
    if (offset > width) offset = width;

    // process in 4 cell chunks
    int chunks = (width - offset) >> 2;
    int remainder = (width - offset) - (chunks << 2);
    int j = 0;

    // process cells in the first row

    // process cells up to the first 4 cell chunk
    for (j = 0; j < offset; j++) {
        rowcount += *cellptr++;
        *ccptr++ = rowcount;
    }

    // process any 4 cell chunks
    unsigned int *lcellptr = (unsigned int*)cellptr;
    for (j = 0; j < chunks; j++) {
        if (*lcellptr++) {
            rowcount += *cellptr++;
            *ccptr++ = rowcount;
            rowcount += *cellptr++;
            *ccptr++ = rowcount;
            rowcount += *cellptr++;
            *ccptr++ = rowcount;
            rowcount += *cellptr++;
            *ccptr++ = rowcount;
        } else {
            *ccptr++ = rowcount;
            *ccptr++ = rowcount;
            *ccptr++ = rowcount;
            *ccptr++ = rowcount;
            cellptr += 4;
        }
    }

    // process any remaining cells
    for (j = 0; j < remainder; j++) {
        rowcount += *cellptr++;
        *ccptr++ = rowcount;
    }
    cellptr += nextrow;
    ccptr += nextrow;
    prevptr = ccptr - outerwd;

    // process the remaining rows of cells

    for (int i = minrow + 1; i <= maxrow; i++) {
        rowcount = 0;

        // compute 4 cell offset
        offset = (4 - ((g_uintptr_t)cellptr & 3)) & 3;
        if (offset > width) offset = width;

        // process in 4 cell chunks
        chunks = (width - offset) >> 2;
        remainder = (width - offset) - (chunks << 2);

        // process cells up to the first 4 cell chunk
        for (j = 0; j < offset; j++) {
            rowcount += *cellptr++;
            *ccptr++ = *prevptr++ + rowcount;
        }
        lcellptr = (unsigned int*)cellptr;

        // process any 4 cell chunks
        for (j = 0; j < chunks; j++) {
            // check if any of the cells are alive
            if (*lcellptr++) {
                rowcount += *cellptr++;
                *ccptr++ = *prevptr++ + rowcount;
                rowcount += *cellptr++;
                *ccptr++ = *prevptr++ + rowcount;
                rowcount += *cellptr++;
                *ccptr++ = *prevptr++ + rowcount;
                rowcount += *cellptr++;
                *ccptr++ = *prevptr++ + rowcount;
           } else {
                *ccptr++ = *prevptr++ + rowcount;
                *ccptr++ = *prevptr++ + rowcount;
                *ccptr++ = *prevptr++ + rowcount;
                *ccptr++ = *prevptr++ + rowcount;
                cellptr += 4;
            }
        }

        // process any remaining cells
        for (j = 0; j < remainder; j++) {
            rowcount += *cellptr++;
            *ccptr++ = *prevptr++ + rowcount;
        }
        // next row
        cellptr += nextrow;
        ccptr += nextrow;
        prevptr += nextrow;
    }
    
    // restore given limits (necessary for update_current_grid calls)
    minrow -= bmr;
    mincol -= bmr;
    maxrow -= bpr;
    maxcol -= bpr;

    // calculate final neighborhood counts using values in colcounts
    // and update the corresponding cells in current grid
    
    int* colptr = colcounts + (minrow + bpr) * outerwd;
    ccptr = colptr + mincol + bpr;
    unsigned char* stateptr = currgrid + minrow*outerwd+mincol;
    int ncount = *ccptr;
    if (*stateptr == 0) {
        if (ncount >= minB && ncount <= maxB) {
            *stateptr = 1;
            population++;
            minx = mincol;
            maxx = mincol;
            miny = minrow;
            maxy = minrow;
        }
    } else {
        if (ncount < minS || ncount > maxS) {
            *stateptr = 0;
            population--;
        }
        else {
            minx = mincol;
            maxx = maxcol;
            miny = minrow;
            maxy = maxrow;
        }
    }

    bool rowchanged = false;
    int bmrm1 = border - range - 1;
    stateptr = currgrid + minrow*outerwd + mincol+1;
    int* ccptr1 = colptr + (mincol+1 + bpr);
    int* ccptr2 = colptr + (mincol+1 + bmrm1);
    for (j = mincol+1; j <= maxcol; j++) {
        // do i == minrow
        ncount = *ccptr1++ - *ccptr2++;
        if (*stateptr == 0) {
            if (ncount >= minB && ncount <= maxB) {
                *stateptr = 1;
                population++;
                if (j < minx) minx = j;
                if (j > maxx) maxx = j;
                rowchanged = true;
            }
        } else {
            if (ncount < minS || ncount > maxS) {
                *stateptr = 0;
                population--;
            }
            else {
                if (j < minx) minx = j;
                if (j > maxx) maxx = j;
                rowchanged = true;
            }
        }
        stateptr++;
    }
    if (rowchanged) {
        if (minrow < miny) miny = minrow;
        if (minrow > maxy) maxy = minrow;
    }
    
    bool colchanged = false;
    colptr = colcounts + mincol + bpr;
    stateptr = currgrid + (minrow+1)*outerwd + mincol;
    ccptr1 = colptr + (minrow+1 + bpr) * outerwd;
    ccptr2 = colptr + (minrow+1 + bmrm1) * outerwd;
    for (int i = minrow+1; i <= maxrow; i++) {
        // do j == mincol
        ncount = *ccptr1 - *ccptr2;
        if (*stateptr == 0) {
            if (ncount >= minB && ncount <= maxB) {
                *stateptr = 1;
                population++;
                if (i < miny) miny = i;
                if (i > maxy) maxy = i;
                colchanged = true;
            }
        } else {
            if (ncount < minS || ncount > maxS) {
                *stateptr = 0;
                population--;
            }
            else {
                if (i < miny) miny = i;
                if (i > maxy) maxy = i;
                colchanged = true;
            }
        }
        stateptr += outerwd;
        ccptr1 += outerwd;
        ccptr2 += outerwd;
    }
    if (colchanged) {
        if (mincol < minx) minx = mincol;
        if (mincol > maxx) maxx = mincol;
    }
    
    rowchanged = false;
    for (int i = minrow+1; i <= maxrow; i++) {
        int* ipr = colcounts + (i + bpr) * outerwd;
        int* imrm1 = colcounts + (i + bmrm1) * outerwd;
        int jpr = mincol+1 + bpr;
        int jmrm1 = mincol+1 + bmrm1;
        ccptr1 = ipr + jpr;
        ccptr2 = imrm1 + jmrm1;
        int* ccptr3 = ipr + jmrm1;
        int* ccptr4 = imrm1 + jpr;
        stateptr = currgrid + i*outerwd + mincol+1;
        for (j = mincol+1; j <= maxcol; j++) {
            ncount = *ccptr1++ + *ccptr2++ - *ccptr3++ - *ccptr4++;
            if (*stateptr == 0) {
                if (ncount >= minB && ncount <= maxB) {
                    *stateptr = 1;
                    population++;
                    if (j < minx) minx = j;
                    if (j > maxx) maxx = j;
                    rowchanged = true;
                }
            } else {
                if (ncount < minS || ncount > maxS) {
                    *stateptr = 0;
                    population--;
                }
                else {
                    if (j < minx) minx = j;
                    if (j > maxx) maxx = j;
                    rowchanged = true;
                }
            }
            stateptr++;
        }
        if (rowchanged) {
            if (i < miny) miny = i;
            if (i > maxy) maxy = i;
            rowchanged = false;
        }
    }
    if (population == 0) empty_boundaries();
}

// -----------------------------------------------------------------------------

void ltlalgo::faster_Moore_unbounded(int mincol, int minrow, int maxcol, int maxrow)
{
    // use Adam P. Goucher's algorithm to calculate Moore neighborhood counts
    // in an unbounded universe; note that we can safely assume there is at least
    // a 2*range border of dead cells surrounding the pattern
    
    // temporarily expand the given limits
    minrow -= range;
    mincol -= range;
    maxrow += range;
    maxcol += range;
    
    int r2 = range * 2;
    int minrowpr2 = minrow+r2;
    int mincolpr2 = mincol+r2;
    
    // put zeros in top 2*range rows of colcounts
    for (int i = minrow; i < minrowpr2; i++) {
        int* ccptr = colcounts + i * outerwd + mincol;
        for (int j = mincol; j <= maxcol; j++) {
            *ccptr++ = 0;
        }
    }

    // put zeros in left 2*range columns of colcounts
    for (int j = mincol; j < mincolpr2; j++) {
        int* ccptr = colcounts + minrowpr2 * outerwd + j;
        for (int i = minrowpr2; i <= maxrow; i++) {
            *ccptr = 0;
            ccptr += outerwd;
        }
    }

    unsigned char* cellptr = currgrid + minrowpr2 * outerwd + mincolpr2;
    int* ccptr = colcounts + minrowpr2 * outerwd + mincolpr2;
    int* prevptr = ccptr - outerwd;
    int width = (maxcol - mincolpr2 + 1);
    int nextrow = outerwd - width;
    int rowcount = 0;
    int j = 0;

    for (int i = minrowpr2; i <= maxrow; i++) {
        rowcount = 0;
        for (j = mincolpr2; j <= maxcol; j++) {
            if (*cellptr == 1) rowcount++;
            *ccptr = *prevptr + rowcount;
            cellptr++;
            ccptr++;
            prevptr++;
        }
        cellptr += nextrow;
        ccptr += nextrow;
        prevptr += nextrow;
    }

    // restore given limits
    minrow += range;
    mincol += range;
    maxrow -= range;
    maxcol -= range;

    // calculate final neighborhood counts using values in colcounts
    // and update the corresponding cells in current grid
    
    int* colptr = colcounts + (minrow + range) * outerwd;
    ccptr = colptr + mincol + range;
    unsigned char* stateptr = currgrid + minrow*outerwd+mincol;
    unsigned char state = *stateptr;
    update_current_grid(state, *ccptr);
    *stateptr = state;
    if (state) {
        if (mincol < minx) minx = mincol;
        if (mincol > maxx) maxx = mincol;
        if (minrow < miny) miny = minrow;
        if (minrow > maxy) maxy = minrow;
    }

    bool rowchanged = false;
    int rangep1 = range + 1;
    stateptr = currgrid + minrow*outerwd + mincol+1;
    for (j = mincol+1; j <= maxcol; j++) {
        // do i == minrow
        int* ccptr1 = colptr + (j+range);
        int* ccptr2 = colptr + (j-rangep1);
        state = *stateptr;
        update_current_grid(state, *ccptr1 - *ccptr2);
        *stateptr++ = state;
        if (state) {
            if (j < minx) minx = j;
            if (j > maxx) maxx = j;
            rowchanged = true;
        }
    }
    if (rowchanged) {
        if (minrow < miny) miny = minrow;
        if (minrow > maxy) maxy = minrow;
    }

    bool colchanged = false;
    colptr = colcounts + mincol + range;
    stateptr = currgrid + (minrow+1)*outerwd + mincol;
    for (int i = minrow+1; i <= maxrow; i++) {
        // do j == mincol
        int* ccptr1 = colptr + (i+range) * outerwd;
        int* ccptr2 = colptr + (i-rangep1) * outerwd;
        state = *stateptr;
        update_current_grid(state, *ccptr1 - *ccptr2);
        *stateptr = state;
        stateptr += outerwd;
        if (state) {
            if (i < miny) miny = i;
            if (i > maxy) maxy = i;
            colchanged = true;
        }
    }
    if (colchanged) {
        if (mincol < minx) minx = mincol;
        if (mincol > maxx) maxx = mincol;
    }
    
    rowchanged = false;
    for (int i = minrow+1; i <= maxrow; i++) {
        int* ipr = colcounts + (i+range) * outerwd;
        int* imrm1 = colcounts + (i-rangep1) * outerwd;
        stateptr = currgrid + i*outerwd + mincol+1;
        for (j = mincol+1; j <= maxcol; j++) {
            int jpr = j+range;
            int jmrm1 = j-rangep1;
            int* ccptr1 = ipr + jpr;
            int* ccptr2 = imrm1 + jmrm1;
            int* ccptr3 = ipr + jmrm1;
            int* ccptr4 = imrm1 + jpr;
            state = *stateptr;
            update_current_grid(state, *ccptr1 + *ccptr2 - *ccptr3 - *ccptr4);
            *stateptr++ = state;
            if (state) {
                if (j < minx) minx = j;
                if (j > maxx) maxx = j;
                rowchanged = true;
            }
        }
        if (rowchanged) {
            if (i < miny) miny = i;
            if (i > maxy) maxy = i;
            rowchanged = false;
        }
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::faster_Moore_unbounded2(int mincol, int minrow, int maxcol, int maxrow)
{
    // use Adam P. Goucher's algorithm to calculate Moore neighborhood counts
    // in an unbounded universe; note that we can safely assume there is at least
    // a 2*range border of dead cells surrounding the pattern
    
    // temporarily expand the given limits
    minrow -= range;
    mincol -= range;
    maxrow += range;
    maxcol += range;
    
    int r2 = range * 2;
    int minrowpr2 = minrow+r2;
    int mincolpr2 = mincol+r2;
    
    // put zeros in top 2*range rows of colcounts
    for (int i = minrow; i < minrowpr2; i++) {
        int* ccptr = colcounts + i * outerwd + mincol;
        for (int j = mincol; j <= maxcol; j++) {
            *ccptr++ = 0;
        }
    }

    // put zeros in left 2*range columns of colcounts
    for (int j = mincol; j < mincolpr2; j++) {
        int* ccptr = colcounts + minrowpr2 * outerwd + j;
        for (int i = minrowpr2; i <= maxrow; i++) {
            *ccptr = 0;
            ccptr += outerwd;
        }
    }

    // calculate cumulative counts for each column and store in colcounts

    unsigned char* cellptr = currgrid + minrowpr2 * outerwd + mincolpr2;
    int* ccptr = colcounts + minrowpr2 * outerwd + mincolpr2;
    int* prevptr = ccptr - outerwd;
    int width = (maxcol - mincolpr2 + 1);
    int nextrow = outerwd - width;
    int rowcount = 0;

    // compute 4 cell offset
    int offset = (4 - ((g_uintptr_t)cellptr & 3)) & 3;
    if (offset > width) offset = width;

    // process in 4 cell chunks
    int chunks = (width - offset) >> 2;
    int remainder = (width - offset) - (chunks << 2);
    int j = 0;

    // process cells in the first row

    // process cells up to the first 4 cell chunk
    for (j = 0; j < offset; j++) {
        rowcount += *cellptr++;
        *ccptr++ = rowcount;
    }

    // process any 4 cell chunks
    unsigned int *lcellptr = (unsigned int*)cellptr;
    for (j = 0; j < chunks; j++) {
        if (*lcellptr++) {
            rowcount += *cellptr++;
            *ccptr++ = rowcount;
            rowcount += *cellptr++;
            *ccptr++ = rowcount;
            rowcount += *cellptr++;
            *ccptr++ = rowcount;
            rowcount += *cellptr++;
            *ccptr++ = rowcount;
        } else {
            *ccptr++ = rowcount;
            *ccptr++ = rowcount;
            *ccptr++ = rowcount;
            *ccptr++ = rowcount;
            cellptr += 4;
        }
    }

    // process any remaining cells
    for (j = 0; j < remainder; j++) {
        rowcount += *cellptr++;
        *ccptr++ = rowcount;
    }
    cellptr += nextrow;
    ccptr += nextrow;
    prevptr = ccptr - outerwd;

    // process the remaining rows of cells

    for (int i = minrowpr2 + 1; i <= maxrow; i++) {
        rowcount = 0;

        // compute 4 cell offset
        offset = (4 - ((g_uintptr_t)cellptr & 3)) & 3;
        if (offset > width) offset = width;

        // process in 4 cell chunks
        chunks = (width - offset) >> 2;
        remainder = (width - offset) - (chunks << 2);

        // process cells up to the first 4 cell chunk
        for (j = 0; j < offset; j++) {
            rowcount += *cellptr++;
            *ccptr++ = *prevptr++ + rowcount;
        }
        lcellptr = (unsigned int*)cellptr;

        // process any 4 cell chunks
        for (j = 0; j < chunks; j++) {
            // check if any of the cells are alive
            if (*lcellptr++) {
                rowcount += *cellptr++;
                *ccptr++ = *prevptr++ + rowcount;
                rowcount += *cellptr++;
                *ccptr++ = *prevptr++ + rowcount;
                rowcount += *cellptr++;
                *ccptr++ = *prevptr++ + rowcount;
                rowcount += *cellptr++;
                *ccptr++ = *prevptr++ + rowcount;
           } else {
                *ccptr++ = *prevptr++ + rowcount;
                *ccptr++ = *prevptr++ + rowcount;
                *ccptr++ = *prevptr++ + rowcount;
                *ccptr++ = *prevptr++ + rowcount;
                cellptr += 4;
            }
        }

        // process any remaining cells
        for (j = 0; j < remainder; j++) {
            rowcount += *cellptr++;
            *ccptr++ = *prevptr++ + rowcount;
        }
        // next row
        cellptr += nextrow;
        ccptr += nextrow;
        prevptr += nextrow;
    }

    // restore given limits
    minrow += range;
    mincol += range;
    maxrow -= range;
    maxcol -= range;

    // calculate final neighborhood counts using values in colcounts
    // and update the corresponding cells in current grid
    
    int* colptr = colcounts + (minrow + range) * outerwd;
    ccptr = colptr + mincol + range;
    unsigned char* stateptr = currgrid + minrow*outerwd+mincol;
    int ncount = *ccptr;
    if (*stateptr == 0) {
        if (ncount >= minB && ncount <= maxB) {
            *stateptr = 1;
            population++;
            minx = mincol;
            maxx = mincol;
            miny = minrow;
            maxy = minrow;
        }
    } else {
        if (ncount < minS || ncount > maxS) {
            *stateptr = 0;
            population--;
        }
        else {
            minx = mincol;
            maxx = maxcol;
            miny = minrow;
            maxy = maxrow;
        }
    }

    bool rowchanged = false;
    int rangep1 = range + 1;
    stateptr = currgrid + minrow*outerwd + mincol+1;
    int* ccptr1 = colptr + (mincol+1 + range);
    int* ccptr2 = colptr + (mincol+1 - rangep1);
    for (j = mincol+1; j <= maxcol; j++) {
        // do i == minrow
        ncount = *ccptr1++ - *ccptr2++;
        if (*stateptr == 0) {
            if (ncount >= minB && ncount <= maxB) {
                *stateptr = 1;
                population++;
                if (j < minx) minx = j;
                if (j > maxx) maxx = j;
                rowchanged = true;
            }
        } else {
            if (ncount < minS || ncount > maxS) {
                *stateptr = 0;
                population--;
            }
            else {
                if (j < minx) minx = j;
                if (j > maxx) maxx = j;
                rowchanged = true;
            }
        }
        stateptr++;
    }
    if (rowchanged) {
        if (minrow < miny) miny = minrow;
        if (minrow > maxy) maxy = minrow;
    }

    bool colchanged = false;
    colptr = colcounts + mincol + range;
    stateptr = currgrid + (minrow+1)*outerwd + mincol;
    ccptr1 = colptr + (minrow+1+range) * outerwd;
    ccptr2 = colptr + (minrow+1-rangep1) * outerwd;
    for (int i = minrow+1; i <= maxrow; i++) {
        // do j == mincol
        ncount = *ccptr1 - *ccptr2;
        if (*stateptr == 0) {
            if (ncount >= minB && ncount <= maxB) {
                *stateptr = 1;
                population++;
                if (i < miny) miny = i;
                if (i > maxy) maxy = i;
                colchanged = true;
            }
        } else {
            if (ncount < minS || ncount > maxS) {
                *stateptr = 0;
                population--;
            }
            else {
                if (i < miny) miny = i;
                if (i > maxy) maxy = i;
                colchanged = true;
            }
        }
        stateptr += outerwd;
        ccptr1 += outerwd;
        ccptr2 += outerwd;
    }
    if (colchanged) {
        if (mincol < minx) minx = mincol;
        if (mincol > maxx) maxx = mincol;
    }
    
    rowchanged = false;
    for (int i = minrow+1; i <= maxrow; i++) {
        int* ipr = colcounts + (i+range) * outerwd;
        int* imrm1 = colcounts + (i-rangep1) * outerwd;
        int jpr = mincol+1+range;
        int jmrm1 = mincol+1-rangep1;
        ccptr1 = ipr + jpr;
        ccptr2 = imrm1 + jmrm1;
        int* ccptr3 = ipr + jmrm1;
        int* ccptr4 = imrm1 + jpr;
        stateptr = currgrid + i*outerwd + mincol+1;
        for (j = mincol+1; j <= maxcol; j++) {
            ncount = *ccptr1++ + *ccptr2++ - *ccptr3++ - *ccptr4++;
            if (*stateptr == 0) {
                if (ncount >= minB && ncount <= maxB) {
                    *stateptr = 1;
                    population++;
                    if (j < minx) minx = j;
                    if (j > maxx) maxx = j;
                    rowchanged = true;
                }
            } else {
                if (ncount < minS || ncount > maxS) {
                    *stateptr = 0;
                    population--;
                }
                else {
                    if (j < minx) minx = j;
                    if (j > maxx) maxx = j;
                    rowchanged = true;
                }
            }
            stateptr++;
        }
        if (rowchanged) {
            if (i < miny) miny = i;
            if (i > maxy) maxy = i;
            rowchanged = false;
        }
    }
    if (population == 0) empty_boundaries();
}

// -----------------------------------------------------------------------------

void ltlalgo::fast_Moore(int mincol, int minrow, int maxcol, int maxrow)
{
    if (range == 1) {
        for (int y = minrow; y <= maxrow; y++) {
            int yoffset = y * outerwd;
            unsigned char* topy = currgrid + (y - 1) * outerwd;
            for (int x = mincol; x <= maxcol; x++) {
                // count the state-1 neighbors within the current range
                // using the extended Moore neighborhood with no edge checks
                int ncount = 0;
                unsigned char* cellptr = topy + (x - 1);
                if (*cellptr++ == 1) ncount++;
                if (*cellptr++ == 1) ncount++;
                if (*cellptr   == 1) ncount++;
                cellptr += outerwd;
                if (*cellptr   == 1) ncount++;
                if (*--cellptr == 1) ncount++;
                if (*--cellptr == 1) ncount++;
                cellptr += outerwd;
                if (*cellptr++ == 1) ncount++;
                if (*cellptr++ == 1) ncount++;
                if (*cellptr   == 1) ncount++;
                update_next_grid(x, y, yoffset+x, ncount);
            }
        }
    } else {
        // range > 1
        int rightcol = 2 * range;
        for (int y = minrow; y <= maxrow; y++) {
            int yoffset = y * outerwd;
            int ymrange = y - range;
            int yprange = y + range;
            unsigned char* topy = currgrid + ymrange * outerwd;
            
            // for the 1st cell in this row we count the state-1 cells in the
            // extended Moore neighborhood and remember the column counts
            int colcount[MAXNCOLS];
            int xmrange = mincol - range;
            int xprange = mincol + range;
            int ncount = 0;
            for (int i = xmrange; i <= xprange; i++) {
                unsigned char* cellptr = topy + i;
                int col = i - xmrange;
                colcount[col] = 0;
                for (int j = ymrange; j <= yprange; j++) {
                    if (*cellptr == 1) colcount[col]++;
                    cellptr += outerwd;
                }
                ncount += colcount[col];
            }
            
            // we now have the neighborhood counts in each column;
            // eg. 7 columns if range == 3:
            //   ---------------
            //   | | | | | | | |
            //   | | | | | | | |
            //   |0|1|2|3|4|5|6|
            //   | | | | | | | |
            //   | | | | | | | |
            //   ---------------
            
            update_next_grid(mincol, y, yoffset+mincol, ncount);
            
            // for the remaining cells in this row we only need to update
            // the count in the right column of the new neighborhood
            // and shift the other column counts to the left
            topy += range;
            for (int x = mincol+1; x <= maxcol; x++) {
                // get count in right column
                int rcount = 0;
                unsigned char* cellptr = topy + x;
                for (int j = ymrange; j <= yprange; j++) {
                    if (*cellptr == 1) rcount++;
                    cellptr += outerwd;
                }
                
                ncount = rcount;
                for (int i = 1; i <= rightcol; i++) {
                    ncount += colcount[i];
                    colcount[i-1] = colcount[i];
                }
                colcount[rightcol] = rcount;
                
                update_next_grid(x, y, yoffset+x, ncount);
            }
        }
    
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::fast_Shaped(int mincol, int minrow, int maxcol, int maxrow)
{
     for (int y = minrow; y <= maxrow; y++) {
         int yoffset = y * outerwd;
         int ymrange = y - range;
         int yprange = y + range;
         
         // for the 1st cell in this row we count the state-1 cells in the
         // shaped neighborhood and remember the column counts
         int ncount = 0;
         unsigned char* cellptr = currgrid + ymrange * outerwd ;
         for (int j = ymrange; j <= yprange; j++, cellptr += outerwd) {
             int xmrange = mincol - shape[j-ymrange] ;
             int xprange = mincol + shape[j-ymrange] ;
             for (int i = xmrange; i <= xprange; i++)
                 if (cellptr[i] == 1) ncount++ ;
         }
            
         update_next_grid(mincol, y, yoffset+mincol, ncount);
         
         // for the remaining cells in this row we only need subtract
         // points in relevant rows and add points in other relevant
         // rows according to the shape.
         cellptr = currgrid + ymrange * outerwd ;
         for (int x = mincol+1; x <= maxcol; x++) {
             unsigned char* cp = cellptr ;
             for (int j = ymrange; j <= yprange; j++, cp += outerwd) {
                int xmrange = x - shape[j-ymrange] ;
                int xprange = x + shape[j-ymrange] ;
                if (cp[xmrange-1] == 1)
                   ncount-- ;
                if (cp[xprange] == 1)
                   ncount++ ;
             }
             update_next_grid(x, y, yoffset+x, ncount);
         }
     }
}

// -----------------------------------------------------------------------------

int ltlalgo::getcount(int i, int j)
{
    // From Dean Hickerson:
    // C[i][j] is the sum of G[i'][j'] for all cells between northwest and northeast from
    // (i,j) with i'+j' == i+j (mod 2).  I.e. the sum of these:
    //
    // ...                                    ...                                    ...
    //    G[i-3][j-3]           G[i-3][j-1]         G[i-3][j+1]           G[i-3][j+3]
    //               G[i-2][j-2]           G[i-2][j]           G[i-2][j+2]
    //                          G[i-1][j-1]         G[i-1][j+1]
    //                                      G[i][j]
    //
    // We only need to compute and store C[i][j] for  0 <= i < ncols,  0 <= j < nrows + floor((ncols-1)/2);
    // other values that we need are equal to one of these, as given by this function.
    //
    if (i < 0 || i+j < 0 || j-i >= ncols) {
        return 0;
    }
    if (j < 0 && i+j < ccht) {
        // return C[i+j][0]
        return *(colcounts + (i+j) * outerwd);
    }
    if (j >= ncols && j-i >= ncols-ccht) {
        // return C[i+ncols-1-j][ncols-1]
        return *(colcounts + (i+ncols-1-j) * outerwd + (ncols-1));
    }
    if (i < ccht) {
        // return C[i][j]
        return *(colcounts + i * outerwd + j);
    }
    if ((i-ccht+1)+j <= halfccwd) {
        // return C[ccht-1][i-ccht+1+j]
        return *(colcounts + (ccht-1) * outerwd + (i-ccht+1+j));
    }
    if (j-(i-ccht+1) >= halfccwd) {
        // return C[ccht-1][j-(i-ccht+1)]
        return *(colcounts + (ccht-1) * outerwd + (j-(i-ccht+1)));
    }
    // return C[ccht-1][halfccwd + ((i+j+ccht+halfccwd+1) % 2)]
    return *(colcounts + (ccht-1) * outerwd + (halfccwd + ((i+j+ccht+halfccwd+1) % 2)));
}

// -----------------------------------------------------------------------------

void ltlalgo::faster_Neumann_bounded(int mincol, int minrow, int maxcol, int maxrow)
{
    // use Dean Hickerson's algorithm (based on Adam P. Goucher's algorithm for the
    // Moore neighborhood) to calculate extended von Neumann neighborhood counts
    // in a bounded universe; note that currgrid is surrounded by a border that
    // might contain live cells (the border is range+1 cells thick and the
    // outermost cells are always dead)
    
    // the given limits are relative to currgrid so we need to add border
    // so they are relative to outergrid1, and then expand them by range
    int bmr = border - range;
    int bpr = border + range;
    minrow += bmr;
    mincol += bmr;
    maxrow += bpr;
    maxcol += bpr;
    
    // set variables used below and in getcount
    nrows = maxrow - minrow + 1;
    ncols = maxcol - mincol + 1;
    ccht = nrows + (ncols-1)/2;
    halfccwd = ncols/2;

    // calculate cumulative counts in top left corner of colcounts
    for (int i = 0; i < ccht; i++) {
        int* Coffset = colcounts + i * outerwd;
        unsigned char* Goffset = outergrid1 + (i + minrow) * outerwd;
        int im1 = i - 1;
        int im2 = im1 - 1;
        for (int j = 0; j < ncols; j++) {
            int* Cij = Coffset + j;
            *Cij = getcount(im1,j-1) + getcount(im1,j+1) - getcount(im2,j);
            if (i < nrows) {
                unsigned char* Gij = Goffset + j + mincol;
                if (*Gij == 1) *Cij += *Gij;
            }
        }
    }
    
    // set minrow and mincol for update_current_grid calls
    minrow -= border;
    mincol -= border;

    // calculate final neighborhood counts and update the corresponding cells in the grid
    bool rowchanged = false;
    for (int i = range; i < nrows-range; i++) {
        int im1 = i - 1;
        int ipr = i + range;
        int iprm1 = ipr - 1;
        int imrm1 = i - range - 1;
        int imrm2 = imrm1 - 1;
        int ipminrow = i + minrow;
        unsigned char* stateptr = currgrid + ipminrow*outerwd + range + mincol;
        for (int j = range; j < ncols-range; j++) {
            int jpr = j + range;
            int jmr = j - range;
            int n = getcount(ipr,j)   - getcount(im1,jpr+1) - getcount(im1,jmr-1) + getcount(imrm2,j) +
                    getcount(iprm1,j) - getcount(im1,jpr)   - getcount(im1,jmr)   + getcount(imrm1,j);
            unsigned char state = *stateptr;
            update_current_grid(state, n);
            *stateptr++ = state;
            if (state) {
                int jpmincol = j + mincol;
                if (jpmincol < minx) minx = jpmincol;
                if (jpmincol > maxx) maxx = jpmincol;
                rowchanged = true;
            }
        }
        if (rowchanged) {
            if (ipminrow < miny) miny = ipminrow;
            if (ipminrow > maxy) maxy = ipminrow;
            rowchanged = false;
        }
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::faster_Neumann_unbounded(int mincol, int minrow, int maxcol, int maxrow)
{
    // use Dean Hickerson's algorithm (based on Adam P. Goucher's algorithm for the
    // Moore neighborhood) to calculate extended von Neumann neighborhood counts
    // in an unbounded universe; note that we can safely assume there is at least
    // a 2*range border of dead cells surrounding the pattern
    
    // set variables used below and in getcount
    nrows = maxrow - minrow + 1;
    ncols = maxcol - mincol + 1;
    ccht = nrows + (ncols-1)/2;
    halfccwd = ncols/2;

    // calculate cumulative counts in top left corner of colcounts
    for (int i = 0; i < ccht; i++) {
        int* Coffset = colcounts + i * outerwd;
        unsigned char* Goffset = outergrid1 + (i + minrow) * outerwd;
        int im1 = i - 1;
        int im2 = im1 - 1;
        for (int j = 0; j < ncols; j++) {
            int* Cij = Coffset + j;
            *Cij = getcount(im1,j-1) + getcount(im1,j+1) - getcount(im2,j);
            if (i < nrows) {
                unsigned char* Gij = Goffset + j + mincol;
                if (*Gij == 1) *Cij += *Gij;
            }
        }
    }

    // calculate final neighborhood counts and update the corresponding cells in the grid
    bool rowchanged = false;
    for (int i = 0; i < nrows; i++) {
        int im1 = i - 1;
        int ipr = i + range;
        int iprm1 = ipr - 1;
        int imrm1 = i - range - 1;
        int imrm2 = imrm1 - 1;
        int ipminrow = i + minrow;
        unsigned char* stateptr = currgrid + ipminrow*outerwd + mincol;
        for (int j = 0; j < ncols; j++) {
            int jpr = j + range;
            int jmr = j - range;
            int n = getcount(ipr,j)   - getcount(im1,jpr+1) - getcount(im1,jmr-1) + getcount(imrm2,j) +
                    getcount(iprm1,j) - getcount(im1,jpr)   - getcount(im1,jmr)   + getcount(imrm1,j);
            unsigned char state = *stateptr;
            update_current_grid(state, n);
            *stateptr++ = state;
            if (state) {
                int jpmincol = j + mincol;
                if (jpmincol < minx) minx = jpmincol;
                if (jpmincol > maxx) maxx = jpmincol;
                rowchanged = true;
            }
        }
        if (rowchanged) {
            if (ipminrow < miny) miny = ipminrow;
            if (ipminrow > maxy) maxy = ipminrow;
            rowchanged = false;
        }
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::fast_Neumann(int mincol, int minrow, int maxcol, int maxrow)
{
    if (range == 1) {
        int outerwd2 = outerwd * 2;
        for (int y = minrow; y <= maxrow; y++) {
            int yoffset = y * outerwd;
            unsigned char* topy = currgrid + yoffset;
            for (int x = mincol; x <= maxcol; x++) {
                // count the state-1 neighbors within the current range
                // using the extended von Neumann neighborhood with no edge checks
                // (at range 1 a diamond is a cross: +)
                int ncount = 0;
                unsigned char* cellptr = topy + (x - 1);
                if (*cellptr++ == 1) ncount++;
                if (*cellptr++ == 1) ncount++;
                if (*cellptr   == 1) ncount++;
                cellptr -= outerwd;
                if (*--cellptr == 1) ncount++;
                cellptr += outerwd2;
                if (*cellptr   == 1) ncount++;
                update_next_grid(x, y, yoffset+x, ncount);
            }
        }
    } else {
        // range > 1
        for (int y = minrow; y <= maxrow; y++) {
            int yoffset = y * outerwd;
            int ymrange = y - range;
            int yprange = y + range;
            unsigned char* topy = currgrid + ymrange * outerwd;
            for (int x = mincol; x <= maxcol; x++) {
                // count the state-1 neighbors within the current range
                // using the extended von Neumann neighborhood (diamond) with no edge checks
                int ncount = 0;
                int xoffset = 0;
                unsigned char* rowptr = topy;
                for (int j = ymrange; j < y; j++) {
                    unsigned char* cellptr = rowptr + (x - xoffset);
                    int len = 2 * xoffset + 1;
                    for (int i = 0; i < len; i++) {
                        if (*cellptr++ == 1) ncount++;
                    }
                    xoffset++;          // 0, 1, 2, ..., range
                    rowptr += outerwd;
                }
                // xoffset == range
                for (int j = y; j <= yprange; j++) {
                    unsigned char* cellptr = rowptr + (x - xoffset);
                    int len = 2 * xoffset + 1;
                    for (int i = 0; i < len; i++) {
                        if (*cellptr++ == 1) ncount++;
                    }
                    xoffset--;          // range-1, ..., 2, 1, 0
                    rowptr += outerwd;
                }
                update_next_grid(x, y, yoffset+x, ncount);
            }
        }
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::do_bounded_gen()
{
    // limit processing to rectangle where births/deaths can occur
    int mincol, minrow, maxcol, maxrow;
    bool torus = topology == 'T';
    if (minB == 0) {
        // birth in every dead cell so process entire grid
        mincol = 0;
        minrow = 0;
        maxcol = gwdm1;
        maxrow = ghtm1;
    } else {
        mincol = minx - range;
        minrow = miny - range;
        maxcol = maxx + range;
        maxrow = maxy + range;
        
        // check if the limits are outside the grid edges
        if (mincol < 0) {
            mincol = 0;
            if (torus) maxcol = gwdm1;
        }
        if (maxcol > gwdm1) {
            maxcol = gwdm1;
            if (torus) mincol = 0;
        }
        if (minrow < 0) {
            minrow = 0;
            if (torus) maxrow = ghtm1;
        }
        if (maxrow > ghtm1) {
            maxrow = ghtm1;
            if (torus) minrow = 0;
        }
    }
    
    // save pattern limits for clearing border cells at end
    int sminx = minx;
    int smaxx = maxx;
    int sminy = miny;
    int smaxy = maxy;

    if (torus) {
        // If a pattern edge is within range of a grid edge then copy cells
        // into appropriate border cells next to the opposite grid edge,
        // as illustrated in this example of a grid with range 1 (so border = 2).
        // The live cells at "a" will be copied to the "A" locations and the
        // live cell at corner "b" will be copied to the three "B" locations:
        //
        //   <-------------- outerwd -------------->
        //   o--------------------------------------  ^  o = outergrid1
        //   |                                     |  |
        //   |  <------------- gwd ------------->  |  |
        //   |  c--------------------------------  |  |  c = currgrid
        //   | B|       aa      ^              b|  |  |
        //   |  |               |               |  |  |
        //   |  |              ght              |  |outerht
        //   |  |               |               |  |  |
        //   |  |               v               |  |  |
        //   |  ---------------------------------  |  |
        //   | B        AA                     B   |  |
        //   |                                     |  |
        //   ---------------------------------------  v
        //
        if (miny < range) {
            // copy cells near top edge of currgrid to bottom border
            int numrows = range - miny;
            int numcols = maxx - minx + 1;
            unsigned char* src = currgrid + miny * outerwd + minx;
            unsigned char* dest = src + ght * outerwd;
            for (int row = 0; row < numrows; row++) {
                memcpy(dest, src, numcols);
                src += outerwd;
                dest += outerwd;
            }
            if (minx < range) {
                // copy cells near top left corner of currgrid to bottom right border
                numcols = range - minx;
                src = currgrid + miny * outerwd + minx;
                dest = src + ght * outerwd + gwd;
                for (int row = 0; row < numrows; row++) {
                    memcpy(dest, src, numcols);
                    src += outerwd;
                    dest += outerwd;
                }
            }
        }
        if (maxy + range > ghtm1) {
            // copy cells near bottom edge of currgrid to top border
            int numrows = maxy + range - ghtm1;
            int numcols = maxx - minx + 1;
            unsigned char* src = currgrid + (ght - range) * outerwd + minx;
            unsigned char* dest = src - ght * outerwd;
            for (int row = 0; row < numrows; row++) {
                memcpy(dest, src, numcols);
                src += outerwd;
                dest += outerwd;
            }
            if (maxx + range > gwdm1) {
                // copy cells near bottom right corner of currgrid to top left border
                numcols = maxx + range - gwdm1;
                src = currgrid + (ght - range) * outerwd + gwd - range;
                dest = src - ght * outerwd - gwd;
                for (int row = 0; row < numrows; row++) {
                    memcpy(dest, src, numcols);
                    src += outerwd;
                    dest += outerwd;
                }
            }
        }
        if (minx < range) {
            // copy cells near left edge of currgrid to right border
            int numrows = maxy - miny + 1;
            int numcols = range - minx;
            unsigned char* src = currgrid + miny * outerwd + minx;
            unsigned char* dest = src + gwd;
            for (int row = 0; row < numrows; row++) {
                memcpy(dest, src, numcols);
                src += outerwd;
                dest += outerwd;
            }
            if (maxy + range > ghtm1) {
                // copy cells near bottom left corner of currgrid to top right border
                numrows = maxy + range - ghtm1;
                src = currgrid + (ght - range) * outerwd + minx;
                dest = src - ght * outerwd + gwd;
                for (int row = 0; row < numrows; row++) {
                    memcpy(dest, src, numcols);
                    src += outerwd;
                    dest += outerwd;
                }
            }
        }
        if (maxx + range > gwdm1) {
            // copy cells near right edge of currgrid to left border
            int numrows = maxy - miny + 1;
            int numcols = maxx + range - gwdm1;
            unsigned char* src = currgrid + miny * outerwd + gwd - range;
            unsigned char* dest = src - gwd;
            for (int row = 0; row < numrows; row++) {
                memcpy(dest, src, numcols);
                src += outerwd;
                dest += outerwd;
            }
            if (miny < range) {
                // copy cells near top right corner of currgrid to bottom left border
                numrows = range - miny;
                src = currgrid + miny * outerwd + gwd - range;
                dest = src + ght * outerwd - gwd;
                for (int row = 0; row < numrows; row++) {
                    memcpy(dest, src, numcols);
                    src += outerwd;
                    dest += outerwd;
                }
            }
        }
    }
    
    // reset minx,miny,maxx,maxy for first birth or survivor in nextgrid
    empty_boundaries();
    
    // create next generation
    if (ntype == 'M') {
        if (colcounts) {
            if (maxCellStates == 2) {
                faster_Moore_bounded2(mincol, minrow, maxcol, maxrow);
            } else {
                faster_Moore_bounded(mincol, minrow, maxcol, maxrow);
            }
        } else {
            fast_Moore(mincol, minrow, maxcol, maxrow);
        }
    } else if (ntype == 'N') {
        if (colcounts) {
            faster_Neumann_bounded(mincol, minrow, maxcol, maxrow);
        } else {
            fast_Neumann(mincol, minrow, maxcol, maxrow);
        }
    } else {
        fast_Shaped(mincol, minrow, maxcol, maxrow);
    }

    // if using one grid with a torus then clear border cells copied above
    if (colcounts && torus) {
        if (sminy < range) {
            // clear cells in bottom border
            int numrows = range - sminy;
            int numcols = smaxx - sminx + 1;
            unsigned char* src = currgrid + sminy * outerwd + sminx;
            unsigned char* dest = src + ght * outerwd;
            for (int row = 0; row < numrows; row++) {
                memset(dest, 0, numcols);
                dest += outerwd;
            }
            if (sminx < range) {
                // clear cells in bottom right border
                numcols = range - sminx;
                src = currgrid + sminy * outerwd + sminx;
                dest = src + ght * outerwd + gwd;
                for (int row = 0; row < numrows; row++) {
                    memset(dest, 0, numcols);
                    dest += outerwd;
                }
            }
        }
        if (smaxy + range > ghtm1) {
            // clear cells in top border
            int numrows = smaxy + range - ghtm1;
            int numcols = smaxx - sminx + 1;
            unsigned char* src = currgrid + (ght - range) * outerwd + sminx;
            unsigned char* dest = src - ght * outerwd;
            for (int row = 0; row < numrows; row++) {
                memset(dest, 0, numcols);
                dest += outerwd;
            }
            if (smaxx + range > gwdm1) {
                // clear cells in top left border
                numcols = smaxx + range - gwdm1;
                src = currgrid + (ght - range) * outerwd + gwd - range;
                dest = src - ght * outerwd - gwd;
                for (int row = 0; row < numrows; row++) {
                    memset(dest, 0, numcols);
                    dest += outerwd;
                }
            }
        }
        if (sminx < range) {
            // clear cells in right border
            int numrows = smaxy - sminy + 1;
            int numcols = range - sminx;
            unsigned char* src = currgrid + sminy * outerwd + sminx;
            unsigned char* dest = src + gwd;
            for (int row = 0; row < numrows; row++) {
                memset(dest, 0, numcols);
                dest += outerwd;
            }
            if (smaxy + range > ghtm1) {
                // clear cells in top right border
                numrows = smaxy + range - ghtm1;
                src = currgrid + (ght - range) * outerwd + sminx;
                dest = src - ght * outerwd + gwd;
                for (int row = 0; row < numrows; row++) {
                    memset(dest, 0, numcols);
                    dest += outerwd;
                }
            }
        }
        if (smaxx + range > gwdm1) {
            // clear cells in left border
            int numrows = smaxy - sminy + 1;
            int numcols = smaxx + range - gwdm1;
            unsigned char* src = currgrid + sminy * outerwd + gwd - range;
            unsigned char* dest = src - gwd;
            for (int row = 0; row < numrows; row++) {
                memset(dest, 0, numcols);
                dest += outerwd;
            }
            if (sminy < range) {
                // clear cells in bottom left border
                numrows = range - sminy;
                src = currgrid + sminy * outerwd + gwd - range;
                dest = src + ght * outerwd - gwd;
                for (int row = 0; row < numrows; row++) {
                    memset(dest, 0, numcols);
                    dest += outerwd;
                }
            }
        }
    }
}

// -----------------------------------------------------------------------------

bool ltlalgo::do_unbounded_gen()
{
    int mincol = minx - range;
    int minrow = miny - range;
    int maxcol = maxx + range;
    int maxrow = maxy + range;

    if (mincol < range || maxcol > gwdm1-range || minrow < range || maxrow > ghtm1-range) {
        // pattern boundary is too close to a grid edge so expand the universe in that
        // direction, and possibly shrink the universe in the opposite direction        
        int inc = MAXRANGE * 2;
        int up    = minrow < range       ? inc : 0;
        int down  = maxrow > ghtm1-range ? inc : 0;
        int left  = mincol < range       ? inc : 0;
        int right = maxcol > gwdm1-range ? inc : 0;
        
        // check for possible shrinkage (pattern might be a spaceship)
        if (up > 0    && down == 0  && maxrow < ghtm1-range) down  = -(ghtm1-maxrow-range);
        if (down > 0  && up == 0    && minrow > range)       up    = -(minrow-range);
        if (left > 0  && right == 0 && maxcol < gwdm1-range) right = -(gwdm1-maxcol-range);
        if (right > 0 && left == 0  && mincol > range)       left  = -(mincol-range);
        
        const char* errmsg = resize_grids(up, down, left, right);
        if (errmsg) {
            lifewarning(errmsg);    // no need to check show_warning here
            return false;           // stop generating
        }
        
        mincol = minx - range;
        minrow = miny - range;
        maxcol = maxx + range;
        maxrow = maxy + range;
    }
        
    // reset minx,miny,maxx,maxy for first birth or survivor in nextgrid
    empty_boundaries();

    if (ntype == 'M') {
        if (colcounts) {
            if (maxCellStates == 2) {
                faster_Moore_unbounded2(mincol, minrow, maxcol, maxrow);
            } else {
                faster_Moore_unbounded(mincol, minrow, maxcol, maxrow);
            }
        } else {
            fast_Moore(mincol, minrow, maxcol, maxrow);
        }
    } else if (ntype == 'N') {
        if (colcounts) {
            faster_Neumann_unbounded(mincol, minrow, maxcol, maxrow);
        } else {
            fast_Neumann(mincol, minrow, maxcol, maxrow);
        }
    } else {
        fast_Shaped(mincol, minrow, maxcol, maxrow);
    }
    return true;
}

// -----------------------------------------------------------------------------

// Do increment generations.

void ltlalgo::step()
{
    bigint t = increment;
    while (t != 0) {
        if (population > 0 || minB == 0) {
            int prevpop = population;
            
            // calculate the next generation in nextgrid
            if (unbounded) {
                if (!do_unbounded_gen()) {
                    // failed to resize universe so stop generating
                    poller->setInterrupted();
                    return;
                }
            } else {
                do_bounded_gen();
            }
        
            // swap outergrid1 and outergrid2 if using fast_* algo
            if (outergrid2) {
                unsigned char* temp = outergrid1;
                outergrid1 = outergrid2;
                outergrid2 = temp;
        
                // swap currgrid and nextgrid
                temp = currgrid;
                currgrid = nextgrid;
                nextgrid = temp;
            
                // kill all cells in outergrid2
                if (prevpop > 0) memset(outergrid2, 0, outerbytes);
            }
        }
    
        generation += bigint::one;
        
        // this is a safe place to check for user events
        if (poller->inner_poll()) return;
        
        t -= 1;
        // user might have changed increment 
        if (t > increment) t = increment;
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::save_cells()
{
    for (int y = miny; y <= maxy; y++) {
        int yoffset = y * outerwd;
        for (int x = minx; x <= maxx; x++) {
            unsigned char* currcell = currgrid + yoffset + x;
            if (*currcell) {
                cell_list.push_back(x + gleft);
                cell_list.push_back(y + gtop);
                cell_list.push_back(*currcell);
            }
        }
    }
}

// -----------------------------------------------------------------------------

void ltlalgo::restore_cells()
{
    clipped_cells.clear();
    for (size_t i = 0; i < cell_list.size(); i += 3) {
        int x = cell_list[i];
        int y = cell_list[i+1];
        int s = cell_list[i+2];
        // check if x,y is outside grid
        if (x < gleft || x > gright || y < gtop || y > gbottom) {
            // store clipped cells so that GUI code (eg. ClearOutsideGrid)
            // can remember them in case this rule change is undone
            clipped_cells.push_back(x);
            clipped_cells.push_back(y);
            clipped_cells.push_back(s);
        } else {
            setcell(x, y, s);
        }
    }
    cell_list.clear();
}

// -----------------------------------------------------------------------------

// Switch to the given rule if it is valid.

const char *ltlalgo::setrule(const char *s)
{
    int r, c, m, s1, s2, b1, b2, endpos;
    char n;
    if (sscanf(s, "R%d,C%d,M%d,S%d..%d,B%d..%d,N%c%n",
                  &r, &c, &m, &s1, &s2, &b1, &b2, &n, &endpos) != 8) {
        // try alternate LtL syntax as defined by Kellie Evans;
        // eg: 5,34,45,34,58 is equivalent to R5,C0,M1,S34..58,B34..45,NM
        if (sscanf(s, "%d,%d,%d,%d,%d%n",
                      &r, &b1, &b2, &s1, &s2, &endpos) == 5) {
            c = 0;
            m = 1;
            n = 'M';
        } else {
            return "bad syntax in Larger than Life rule";
        }
    }
    
    if (r < 1) return "R value is too small";
    int r2 = r*r+r ;
    if (r > MAXRANGE) return "R value is too big";
    if (c < 0 || c > 256) return "C value must be from 0 to 256";
    if (m < 0 || m > 1) return "M value must be 0 or 1";
    if (s1 > s2) return "S minimum must be <= S maximum";
    if (b1 > b2) return "B minimum must be <= B maximum";
    if (n != 'M' && n != 'N' && n != 'C') return "N must be followed by M or N or C";
    int maxn = n == 'M' ? (2*r+1)*(2*r+1) : 2*r*(r+1)+1;
    int tshape[2*MAXRANGE+1] ;
    if (n == 'C') {
       int cnt = 0 ;
       for (int i=-r; i<=r; i++) {
          int w = 0 ;
          while ((w + 1) * (w + 1) + (i * i) <= r2)
             w++ ;
          tshape[i+r] = w ;
          cnt += 2 * w + 1 ;
       }
       maxn = cnt ;
    }
    maxn -= (1 - m);    // adjust max neighbors by middle cell setting
    if (s1 < 0 || s1 > maxn || s2 < 0 || s2 > maxn) return "S value must be from 0 to max neighbors";
    if (b1 < 0 || b1 > maxn || b2 < 0 || b2 > maxn) return "B value must be from 0 to max neighbors";
    if (s[endpos] != 0 && s[endpos] != ':') return "bad suffix";

    char t = 'T';
    int newwd = DEFAULTSIZE;
    int newht = DEFAULTSIZE;

    // check for explicit suffix like ":T200,100"
    const char *suffix = strchr(s, ':');
    if (suffix && suffix[1] != 0) {
        if (suffix[1] == 'T' || suffix[1] == 't') {
            t = 'T';
        } else if (suffix[1] == 'P' || suffix[1] == 'p') {
            t = 'P';
        } else {
            return "bad topology in suffix (must be torus or plane)";
        }
        if (suffix[2] != 0) {
            bool oneval = false;
            if (sscanf(suffix+2, "%d,%d%n", &newwd, &newht, &endpos) != 2) {
                if (sscanf(suffix+2, "%d%n", &newwd, &endpos) != 1) {
                    return "bad grid size";
                } else {
                    newht = newwd;
                    oneval = true;
                    if (suffix[endpos+2] != 0) {
                        if (suffix[endpos+2] == ',' && suffix[endpos+3] == 0) {
                            // allow dangling comma after width to be consistent with lifealgo::setgridsize
                        } else {
                            return "unexpected character in suffix";
                        }
                    }
                }
            }
            if (!oneval && suffix[endpos+2] != 0) return "unexpected character in suffix";
        }
        if ((float)newwd * (float)newht > MAXCELLS) return "grid size is too big";
    }
    
    if (!suffix) {
        // no suffix given so universe is unbounded
        if (b1 == 0) return "B0 is not allowed if universe is unbounded";
    }

    // the given rule is valid
    int oldrange = range;
    char oldtype = ntype;
    int scount = c;
    range = r;
    rangec = r2;
    totalistic = m;
    minS = s1;
    maxS = s2;
    minB = b1;
    maxB = b2;
    ntype = n;
    topology = t;
    
    if (shape)
        free(shape) ;
    shape = (int *)calloc(sizeof(int), 2*r+1) ;
    for (int i=0; i<2*r+1; i++) {
        shape[i] = tshape[i] ;
    }
    // set the grid_type so the GUI code can display circles or diamonds in icon mode
    // (no circular grid, so adopt a square grid for now)
    #define CIRC_GRID SQUARE_GRID
    grid_type = ntype == 'M' ? SQUARE_GRID : (ntype == 'N' ? VN_GRID : CIRC_GRID) ;
    
    if (suffix) {
        // use a bounded universe
        int minsize = 2 * range;
        if (newwd < minsize) newwd = minsize;
        if (newht < minsize) newht = minsize;
        
        // if the new size is different or range has changed or ntype has changed
        // or the old universe is unbounded then we need to create new grids
        if (gwd != newwd || ght != newht || range != oldrange || ntype != oldtype || unbounded) {
            if (population > 0) {
                save_cells();       // store the current pattern in cell_list
            }
            // free the current grids and allocate new ones
            free(outergrid1);
            if (outergrid2) {
                free(outergrid2);
                outergrid2 = NULL;
            }
            create_grids(newwd, newht);
            if (cell_list.size() > 0) {
                // restore the pattern (if the new grid is smaller then any live cells
                // outside the grid will be saved in clipped_cells)
                restore_cells();
            }
        }
        
        // tell GUI code not to call CreateBorderCells and DeleteBorderCells
        unbounded = false;
        
        // set bounded grid dimensions used by GUI code
        gridwd = gwd;
        gridht = ght;

    } else {
        // no suffix given so use an unbounded universe
        unbounded = true;
        
        // set unbounded grid dimensions used by GUI code
        gridwd = 0;
        gridht = 0;
        
        // check if previous universe was bounded
        if (gwd < outerwd) {
            // we could call resize_grids(-border,-border,-border,-border)
            // to remove the outer border but there's a (slight) danger
            // the call will fail due to lack of memory, so safer to use
            // the current grids and just shift the pattern position
            if (population > 0) {
                // shift pattern boundaries
                minx += border;
                maxx += border;
                miny += border;
                maxy += border;
            }
            currgrid = outergrid1;
            nextgrid = outergrid2;
            gwd = outerwd;
            ght = outerht;
            // set grid coordinates of cell at bottom right corner of grid
            gwdm1 = gwd - 1;
            ghtm1 = ght - 1;
            // adjust cell coordinates of grid edges
            gtop -= border;
            gleft -= border;
            gbottom = gtop + ghtm1;
            gright = gleft + gwdm1;
            // set bigint versions of grid edges (used by GUI code)
            gridtop = gtop;
            gridleft = gleft;
            gridbottom = gbottom;
            gridright = gright;
        }

        // reallocate colcounts if ntype has changed
        if (ntype != oldtype) {
            allocate_colcounts();
        }
        
        if (colcounts == NULL && outergrid2 == NULL) {
            // this can happen if previous rule used NM and was unbounded,
            // and new rule uses NN and is unbounded and range <= SMALL_NN_RANGE
            outergrid2 = (unsigned char*) calloc(outerbytes, sizeof(unsigned char));
            if (outergrid2 == NULL) lifefatal("Not enough memory for nextgrid!");
            nextgrid = outergrid2;
        }

        if (colcounts && outergrid2) {
            // faster_* calls don't use outergrid2, so we deallocate it and
            // reset it to NULL (also necessary for test in step() loop)
            free(outergrid2);
            outergrid2 = NULL;
            nextgrid = NULL;
        }
    }

    // set the number of cell states
    if (scount > 2) {
        // show history
        maxCellStates = scount;
    } else {
        maxCellStates = 2;
        scount = 0;         // show C0 in canonical rule
    }

    // set the canonical rule
    if (unbounded) {
        sprintf(canonrule, "R%d,C%d,M%d,S%d..%d,B%d..%d,N%c",
                           range, scount, totalistic, minS, maxS, minB, maxB, ntype);
    } else {
        sprintf(canonrule, "R%d,C%d,M%d,S%d..%d,B%d..%d,N%c:%c%d,%d",
                           range, scount, totalistic, minS, maxS, minB, maxB, ntype,
                           topology, gwd, ght);
    }
    
    // adjust the survival range if the center cell is not included
    if (totalistic == 0) {
        minS++;
        maxS++;
    }

    return 0;
}

// -----------------------------------------------------------------------------

const char* ltlalgo::getrule()
{
   return canonrule;
}

// -----------------------------------------------------------------------------

const char* ltlalgo::DefaultRule()
{
    return DEFAULTRULE;
}

// -----------------------------------------------------------------------------

static lifealgo *creator() { return new ltlalgo(); }

void ltlalgo::doInitializeAlgoInfo(staticAlgoInfo& ai)
{
    ai.setAlgorithmName("Larger than Life");
    ai.setAlgorithmCreator(&creator);
    ai.setDefaultBaseStep(10);
    ai.setDefaultMaxMem(0);
    ai.minstates = 2;
    ai.maxstates = 256;
    // init default color scheme
    ai.defgradient = true;              // use gradient
    ai.defr1 = 255;                     // start color = yellow
    ai.defg1 = 255;
    ai.defb1 = 0;
    ai.defr2 = 255;                     // end color = red
    ai.defg2 = 0;
    ai.defb2 = 0;
    // if not using gradient then set all states to white
    for (int i=0; i<256; i++) {
        ai.defr[i] = ai.defg[i] = ai.defb[i] = 255;
    }
}