1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
// This file is part of Golly.
// See docs/License.html for the copyright notice.
#include "ruletable_algo.h"
#include "util.h" // for lifegetuserrules, lifegetrulesdir, lifewarning
// for case-insensitive string comparison
#include <string.h>
#ifndef WIN32
#define stricmp strcasecmp
#define strnicmp strncasecmp
#endif
#include <algorithm>
#include <map>
#include <sstream>
using namespace std;
const string ruletable_algo::neighborhood_value_keywords[N_SUPPORTED_NEIGHBORHOODS] =
{"vonNeumann","Moore","hexagonal","oneDimensional"};
// (keep in sync with TNeighborhood)
bool ruletable_algo::IsDefaultRule(const char* rulename)
{
return (strcmp(rulename, DefaultRule()) == 0);
}
static FILE* static_rulefile = NULL;
static int static_lineno = 0;
static char static_endchar = 0;
const char* ruletable_algo::LoadTable(FILE* rulefile, int lineno, char endchar, const char* s)
{
// set static vars so LoadRuleTable() will load table data from .rule file
static_rulefile = rulefile;
static_lineno = lineno;
static_endchar = endchar;
const char* err = setrule(s); // calls LoadRuleTable
// reset static vars
static_rulefile = NULL;
static_lineno = 0;
static_endchar = 0;
return err;
}
int ruletable_algo::NumCellStates()
{
return this->n_states;
}
bool starts_with(const string& line,const string& keyword)
{
return strnicmp(line.c_str(),keyword.c_str(),keyword.length())==0;
}
const char* ruletable_algo::setrule(const char* s)
{
const char *colonptr = strchr(s, ':');
string rule_name(s);
if (colonptr)
rule_name.assign(s,colonptr);
static string ret; // NOTE: don't initialize this statically!
ret = LoadRuleTable(rule_name.c_str());
if(!ret.empty())
{
// if the file exists and we've got an error then it must be a file format issue
if(!starts_with(ret,"Failed to open file: "))
lifewarning(ret.c_str());
return ret.c_str();
}
// check for rule suffix like ":T200,100" to specify a bounded universe
if (colonptr) {
const char* err = setgridsize(colonptr);
if (err) return err;
} else {
// universe is unbounded
gridwd = 0;
gridht = 0;
}
// set canonical rule string returned by getrule()
this->current_rule = rule_name.c_str();
if (gridwd > 0 || gridht > 0) {
// setgridsize() was successfully called above, so append suffix
string bounds = canonicalsuffix();
this->current_rule += bounds;
}
maxCellStates = this->n_states;
ghashbase::setrule(rule_name.c_str());
return NULL;
}
vector<string> tokenize(const string& str,const string& delimiters)
{
vector<string> tokens;
// skip delimiters at beginning.
string::size_type lastPos = str.find_first_not_of(delimiters, 0);
// find first "non-delimiter".
string::size_type pos = str.find_first_of(delimiters, lastPos);
while (string::npos != pos || string::npos != lastPos)
{
// found a token, add it to the vector.
tokens.push_back(str.substr(lastPos, pos - lastPos));
// skip delimiters. Note the "not_of"
lastPos = str.find_first_not_of(delimiters, pos);
// find next "non-delimiter"
pos = str.find_first_of(delimiters, lastPos);
}
return tokens;
}
string trim_right(const string & s, const string & t = " \t\r\n")
{
string d (s);
string::size_type i (d.find_last_not_of (t));
if (i == string::npos)
return "";
else
return d.erase (d.find_last_not_of (t) + 1);
}
string trim_left(const string & s, const string & t = " \t\r\n")
{
string d (s);
return d.erase (0, s.find_first_not_of (t));
}
string trim(const string & s, const string & t = " \t\r\n")
{
string d (s);
return trim_left (trim_right (d, t), t);
}
const char *defaultRuleData[] = {
"n_states:8", "neighborhood:vonNeumann", "symmetries:rotate4",
"000000", "000012", "000020", "000030", "000050", "000063", "000071",
"000112", "000122", "000132", "000212", "000220", "000230", "000262",
"000272", "000320", "000525", "000622", "000722", "001022", "001120",
"002020", "002030", "002050", "002125", "002220", "002322", "005222",
"012321", "012421", "012525", "012621", "012721", "012751", "014221",
"014321", "014421", "014721", "016251", "017221", "017255", "017521",
"017621", "017721", "025271", "100011", "100061", "100077", "100111",
"100121", "100211", "100244", "100277", "100511", "101011", "101111",
"101244", "101277", "102026", "102121", "102211", "102244", "102263",
"102277", "102327", "102424", "102626", "102644", "102677", "102710",
"102727", "105427", "111121", "111221", "111244", "111251", "111261",
"111277", "111522", "112121", "112221", "112244", "112251", "112277",
"112321", "112424", "112621", "112727", "113221", "122244", "122277",
"122434", "122547", "123244", "123277", "124255", "124267", "125275",
"200012", "200022", "200042", "200071", "200122", "200152", "200212",
"200222", "200232", "200242", "200250", "200262", "200272", "200326",
"200423", "200517", "200522", "200575", "200722", "201022", "201122",
"201222", "201422", "201722", "202022", "202032", "202052", "202073",
"202122", "202152", "202212", "202222", "202272", "202321", "202422",
"202452", "202520", "202552", "202622", "202722", "203122", "203216",
"203226", "203422", "204222", "205122", "205212", "205222", "205521",
"205725", "206222", "206722", "207122", "207222", "207422", "207722",
"211222", "211261", "212222", "212242", "212262", "212272", "214222",
"215222", "216222", "217222", "222272", "222442", "222462", "222762",
"222772", "300013", "300022", "300041", "300076", "300123", "300421",
"300622", "301021", "301220", "302511", "401120", "401220", "401250",
"402120", "402221", "402326", "402520", "403221", "500022", "500215",
"500225", "500232", "500272", "500520", "502022", "502122", "502152",
"502220", "502244", "502722", "512122", "512220", "512422", "512722",
"600011", "600021", "602120", "612125", "612131", "612225", "700077",
"701120", "701220", "701250", "702120", "702221", "702251", "702321",
"702525", "702720", 0 };
static FILE *OpenTableFile(string &rule, const char *dir, string &path)
{
// look for rule.table in given dir and set path
path = dir;
int istart = (int)path.size();
path += rule + ".table";
// change "dangerous" characters to underscores
for (unsigned int i=istart; i<path.size(); i++)
if (path[i] == '/' || path[i] == '\\') path[i] = '_';
return fopen(path.c_str(), "rt");
}
string ruletable_algo::LoadRuleTable(string rule)
{
const string comment_keyword = "#";
const string symmetries_keyword = "symmetries:";
const string neighborhood_keyword = "neighborhood:";
const string n_states_keyword = "n_states:";
const string variable_keyword = "var ";
map< string, vector<string> > available_symmetries;
{
const string vonNeumann_available_symmetries[5] = {"none","rotate4","rotate4reflect","reflect_horizontal","permute"};
available_symmetries["vonNeumann"].assign(vonNeumann_available_symmetries,vonNeumann_available_symmetries+5);
const string Moore_available_symmetries[7] = {"none","rotate4","rotate8","rotate4reflect","rotate8reflect","reflect_horizontal","permute"};
available_symmetries["Moore"].assign(Moore_available_symmetries,Moore_available_symmetries+7);
const string hexagonal_available_symmetries[6] = {"none","rotate2","rotate3","rotate6","rotate6reflect","permute"};
available_symmetries["hexagonal"].assign(hexagonal_available_symmetries,hexagonal_available_symmetries+6);
const string oneDimensional_available_symmetries[3] = {"none","reflect","permute"};
available_symmetries["oneDimensional"].assign(oneDimensional_available_symmetries,oneDimensional_available_symmetries+3);
}
string line;
const int MAX_LINE_LEN=1000;
char line_buffer[MAX_LINE_LEN];
FILE *in = 0;
linereader line_reader(0);
int lineno = 0;
string full_filename;
bool isDefaultRule = IsDefaultRule(rule.c_str());
if (isDefaultRule) {
// no need to read table data from a file
} else if (static_rulefile) {
// read table data from currently open .rule file
line_reader.setfile(static_rulefile);
line_reader.setcloseonfree();
lineno = static_lineno;
full_filename = rule + ".rule";
} else {
// look for rule.table in user's rules dir then in Golly's rules dir
in = OpenTableFile(rule, lifegetuserrules(), full_filename);
if (!in)
in = OpenTableFile(rule, lifegetrulesdir(), full_filename);
if (!in)
return "Failed to open file: "+full_filename;
line_reader.setfile(in);
line_reader.setcloseonfree(); // make sure it goes away if we return with an error
}
string symmetries = "rotate4"; // default
TNeighborhood neighborhood = vonNeumann; // default
unsigned int n_states = 8; // default
map< string, vector<state> > variables;
vector< pair< vector< vector<state> >, state > > transition_table;
unsigned int n_inputs=0;
// these line must have been read before the rest of the file
bool n_states_parsed=false,neighborhood_parsed=false,symmetries_parsed=false;
for (;;)
{
if (isDefaultRule) {
if (defaultRuleData[lineno] == 0)
break;
line = defaultRuleData[lineno];
} else {
if (!line_reader.fgets(line_buffer,MAX_LINE_LEN))
break;
if (static_rulefile && line_buffer[0] == static_endchar)
break;
line = line_buffer;
}
lineno++;
// snip off any trailing comment
if(line.find('#')!=string::npos)
line.assign(line.begin(),line.begin()+line.find('#'));
// trim any leading/trailing whitespace
line = trim(line);
// try each of the allowed forms for this line:
if(line.empty())
continue; // line was blank or just had a comment
else if(starts_with(line,n_states_keyword))
{
// parse the rest of the line
if(sscanf(line.c_str()+n_states_keyword.length(),"%d",&n_states)!=1)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
return oss.str();
}
if(n_states<2 || n_states>256)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": n_states out of range (min 2, max 256)";
return oss.str();
}
n_states_parsed = true;
}
else if(starts_with(line,neighborhood_keyword))
{
// parse the rest of the line
string remaining(line.begin()+neighborhood_keyword.length(),line.end());
remaining = trim(remaining); // (allow for space between : and value)
const string* found = find(this->neighborhood_value_keywords,
this->neighborhood_value_keywords+N_SUPPORTED_NEIGHBORHOODS,remaining);
if(found == this->neighborhood_value_keywords+N_SUPPORTED_NEIGHBORHOODS)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": unsupported neighborhood";
return oss.str();
}
neighborhood = (TNeighborhood)(found - this->neighborhood_value_keywords);
switch(neighborhood) {
default:
case vonNeumann: n_inputs=5; grid_type=VN_GRID; break;
case Moore: n_inputs=9; grid_type=SQUARE_GRID; break;
case hexagonal: n_inputs=7; grid_type=HEX_GRID; break;
case oneDimensional: n_inputs=3; grid_type=SQUARE_GRID; break;
}
neighborhood_parsed = true;
}
else if(starts_with(line,symmetries_keyword))
{
if(!neighborhood_parsed)
{
ostringstream oss;
oss << "Error reading " << full_filename << ": neighborhood must be declared before symmetries";
return oss.str();
}
string remaining(line.begin()+symmetries_keyword.length(),line.end());
remaining = trim(remaining); // (allow for space between : and value)
string neighborhood_as_string = this->neighborhood_value_keywords[neighborhood];
vector<string>::const_iterator found = find(
available_symmetries[neighborhood_as_string].begin(),
available_symmetries[neighborhood_as_string].end(), remaining );
if(found == available_symmetries[neighborhood_as_string].end())
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": unsupported symmetries";
return oss.str();
}
symmetries = remaining;
symmetries_parsed = true;
}
else if(starts_with(line,variable_keyword))
{
if(!n_states_parsed || !neighborhood_parsed || !symmetries_parsed)
{
ostringstream oss;
oss << "Error reading " << full_filename << ": one or more of n_states, neighborhood or symmetries missing\nbefore first variable";
return oss.str();
}
// parse the rest of the line for the variable
vector<string> tokens = tokenize(line,"= {,}");
string variable_name = tokens[1];
vector<state> states;
if(tokens.size()<3)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
return oss.str();
}
for(unsigned int i=2;i<tokens.size();i++)
{
if(variables.find(tokens[i])!=variables.end())
{
// variables permitted inside later variables
states.insert(states.end(),variables[tokens[i]].begin(),variables[tokens[i]].end());
}
else
{
unsigned int s=0;
if(sscanf(tokens[i].c_str(),"%u",&s)!=1)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
return oss.str();
}
if( s>=n_states)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state value out of range";
return oss.str();
}
states.push_back((state)s);
}
}
variables[variable_name] = states;
}
else
{
// must be a transitions line
if(!n_states_parsed || !neighborhood_parsed || !symmetries_parsed)
{
ostringstream oss;
oss << "Error reading " << full_filename << ": one or more of n_states, neighborhood or symmetries missing\nbefore first transition";
return oss.str();
}
if(n_states<=10 && variables.empty() && line.find(',')==string::npos)
{
// if there are only single-digit states and no variables then can use comma-free form:
// e.g. 012345 for 0,1,2,3,4 -> 5
vector< vector<state> > inputs;
state output;
if(line.length() < n_inputs+1)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - too few entries";
return oss.str();
}
for(unsigned int i=0;i<n_inputs;i++)
{
char c = line[i];
if(c<'0' || c>'9')
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
return oss.str();
}
inputs.push_back(vector<state>(1,c-'0'));
}
unsigned char c = line[n_inputs];
if(c<'0' || c>'9')
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
return oss.str();
}
output = c-'0';
if (output >= n_states) // AKT: avoid later crash in PackTransition
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state out of range";
return oss.str();
}
transition_table.push_back(make_pair(inputs,output));
}
else // transition line with commas
{
vector<string> tokens = tokenize(line,", #\t");
if(tokens.size() < n_inputs+1)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - too few entries";
return oss.str();
}
// first pass: which variables appear more than once? these are "bound" (must take the same value each time they appear in this transition)
vector<string> bound_variables;
for(map< string, vector<state> >::const_iterator var_it=variables.begin();var_it!=variables.end();var_it++)
if(count(tokens.begin(),tokens.begin()+n_inputs+1,var_it->first)>1)
bound_variables.push_back(var_it->first);
unsigned int n_bound_variables = (unsigned int)bound_variables.size();
// second pass: iterate through the possible states for the bound variables, adding a transition for each combination
vector< vector<state> > inputs(n_inputs);
state output;
map<string,unsigned int> bound_variable_indices; // each is an index into vector<state> of 'variables' map
for(unsigned int i=0;i<n_bound_variables;i++)
bound_variable_indices[bound_variables[i]]=0;
for(;;)
{
// output the transition for the current set of bound variables
for(unsigned int i=0;i<n_inputs;i++) // collect the inputs
{
if(!bound_variables.empty() && find(bound_variables.begin(),bound_variables.end(),tokens[i])!=bound_variables.end())
inputs[i] = vector<state>(1,variables[tokens[i]][bound_variable_indices[tokens[i]]]); // this input is a bound variable
else if(variables.find(tokens[i])!=variables.end())
inputs[i] = variables[tokens[i]]; // this input is an unbound variable
else
{
unsigned int s=0;
if(sscanf(tokens[i].c_str(),"%u",&s)!=1) // this input is a state
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
return oss.str();
}
if(s>=n_states)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state out of range";
return oss.str();
}
inputs[i] = vector<state>(1,(state)s);
}
}
// collect the output
if(!bound_variables.empty() &&
find(bound_variables.begin(),bound_variables.end(),tokens[n_inputs])!=bound_variables.end())
output = variables[tokens[n_inputs]][bound_variable_indices[tokens[n_inputs]]];
else
{
unsigned int s;
if(variables.find(tokens[n_inputs])!=variables.end() &&
variables[tokens[n_inputs]].size()==1)
{
// single-state variables are permitted as the output
s = variables[tokens[n_inputs]][0];
}
else if(sscanf(tokens[n_inputs].c_str(),"%u",&s)!=1) // if not a bound variable, output must be a state
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line
<< " - output must be state, single-state variable or bound variable";
return oss.str();
}
if(s>=n_states)
{
ostringstream oss;
oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state out of range";
return oss.str();
}
output = (state)s;
}
transition_table.push_back(make_pair(inputs,output));
// move on to the next value of bound variables
{
unsigned int iChanging=0;
for(;iChanging<n_bound_variables;iChanging++)
{
if(bound_variable_indices[bound_variables[iChanging]] < variables[bound_variables[iChanging]].size()-1)
{
bound_variable_indices[bound_variables[iChanging]]++;
break;
}
else
{
bound_variable_indices[bound_variables[iChanging]]=0;
}
}
if(iChanging>=n_bound_variables)
break;
}
}
}
}
} // (finished reading lines from the file)
if(!n_states_parsed || !neighborhood_parsed || !symmetries_parsed)
{
ostringstream oss;
oss << "Error reading " << full_filename << ": one or more of n_states, neighborhood or symmetries missing";
return oss.str();
}
this->neighborhood = neighborhood;
this->n_states = n_states;
PackTransitions(symmetries,n_inputs,transition_table);
return string(""); // success
}
// convert transition table to bitmask lookup
void ruletable_algo::PackTransitions(const string& symmetries, int n_inputs,
const vector< pair< vector< vector<state> >, state > >& transition_table)
{
// cumbersome initialization of a remap array for the different symmetries
map< string, vector< vector<int> > > symmetry_remap[N_SUPPORTED_NEIGHBORHOODS];
{
int vn_rotate4[4][6] = {{0,1,2,3,4,5},{0,2,3,4,1,5},{0,3,4,1,2,5},{0,4,1,2,3,5}};
for(int i=0;i<4;i++)
symmetry_remap[vonNeumann]["rotate4"].push_back(vector<int>(vn_rotate4[i],vn_rotate4[i]+6));
int vn_rotate4reflect[8][6] = {{0,1,2,3,4,5},{0,2,3,4,1,5},{0,3,4,1,2,5},{0,4,1,2,3,5},
{0,4,3,2,1,5},{0,3,2,1,4,5},{0,2,1,4,3,5},{0,1,4,3,2,5}};
for(int i=0;i<8;i++)
symmetry_remap[vonNeumann]["rotate4reflect"].push_back(vector<int>(vn_rotate4reflect[i],vn_rotate4reflect[i]+6));
int vn_reflect_horizontal[2][6] = {{0,1,2,3,4,5},{0,1,4,3,2,5}};
for(int i=0;i<2;i++)
symmetry_remap[vonNeumann]["reflect_horizontal"].push_back(vector<int>(vn_reflect_horizontal[i],vn_reflect_horizontal[i]+6));
int moore_rotate4[4][10] = {{0,1,2,3,4,5,6,7,8,9},{0,3,4,5,6,7,8,1,2,9},{0,5,6,7,8,1,2,3,4,9},{0,7,8,1,2,3,4,5,6,9}};
for(int i=0;i<4;i++)
symmetry_remap[Moore]["rotate4"].push_back(vector<int>(moore_rotate4[i],moore_rotate4[i]+10));
int moore_rotate8[8][10] = {{0,1,2,3,4,5,6,7,8,9},{0,2,3,4,5,6,7,8,1,9},{0,3,4,5,6,7,8,1,2,9},{0,4,5,6,7,8,1,2,3,9},
{0,5,6,7,8,1,2,3,4,9},{0,6,7,8,1,2,3,4,5,9},{0,7,8,1,2,3,4,5,6,9},{0,8,1,2,3,4,5,6,7,9}};
for(int i=0;i<8;i++)
symmetry_remap[Moore]["rotate8"].push_back(vector<int>(moore_rotate8[i],moore_rotate8[i]+10));
int moore_rotate4reflect[8][10] = {{0,1,2,3,4,5,6,7,8,9},{0,3,4,5,6,7,8,1,2,9},{0,5,6,7,8,1,2,3,4,9},{0,7,8,1,2,3,4,5,6,9},
{0,1,8,7,6,5,4,3,2,9},{0,7,6,5,4,3,2,1,8,9},{0,5,4,3,2,1,8,7,6,9},{0,3,2,1,8,7,6,5,4,9}};
for(int i=0;i<8;i++)
symmetry_remap[Moore]["rotate4reflect"].push_back(vector<int>(moore_rotate4reflect[i],moore_rotate4reflect[i]+10));
int moore_rotate8reflect[16][10] = {{0,1,2,3,4,5,6,7,8,9},{0,2,3,4,5,6,7,8,1,9},{0,3,4,5,6,7,8,1,2,9},{0,4,5,6,7,8,1,2,3,9},
{0,5,6,7,8,1,2,3,4,9},{0,6,7,8,1,2,3,4,5,9},{0,7,8,1,2,3,4,5,6,9},{0,8,1,2,3,4,5,6,7,9},
{0,8,7,6,5,4,3,2,1,9},{0,7,6,5,4,3,2,1,8,9},{0,6,5,4,3,2,1,8,7,9},{0,5,4,3,2,1,8,7,6,9},
{0,4,3,2,1,8,7,6,5,9},{0,3,2,1,8,7,6,5,4,9},{0,2,1,8,7,6,5,4,3,9},{0,1,8,7,6,5,4,3,2,9}};
for(int i=0;i<16;i++)
symmetry_remap[Moore]["rotate8reflect"].push_back(vector<int>(moore_rotate8reflect[i],moore_rotate8reflect[i]+10));
int moore_reflect_horizontal[2][10] = {{0,1,2,3,4,5,6,7,8,9},{0,1,8,7,6,5,4,3,2,9}};
for(int i=0;i<2;i++)
symmetry_remap[Moore]["reflect_horizontal"].push_back(vector<int>(moore_reflect_horizontal[i],moore_reflect_horizontal[i]+10));
int oneDimensional_reflect[2][4] = {{0,1,2,3},{0,2,1,3}};
for(int i=0;i<2;i++)
symmetry_remap[oneDimensional]["reflect"].push_back(vector<int>(oneDimensional_reflect[i],oneDimensional_reflect[i]+4));
int hex_rotate2[2][8] = {{0,1,2,3,4,5,6,7},{0,4,5,6,1,2,3,7}};
for(int i=0;i<2;i++)
symmetry_remap[hexagonal]["rotate2"].push_back(vector<int>(hex_rotate2[i],hex_rotate2[i]+8));
int hex_rotate3[3][8] = {{0,1,2,3,4,5,6,7},{0,3,4,5,6,1,2,7},{0,5,6,1,2,3,4,7}};
for(int i=0;i<3;i++)
symmetry_remap[hexagonal]["rotate3"].push_back(vector<int>(hex_rotate3[i],hex_rotate3[i]+8));
int hex_rotate6[6][8] = {{0,1,2,3,4,5,6,7},{0,2,3,4,5,6,1,7},{0,3,4,5,6,1,2,7},
{0,4,5,6,1,2,3,7},{0,5,6,1,2,3,4,7},{0,6,1,2,3,4,5,7}};
for(int i=0;i<6;i++)
symmetry_remap[hexagonal]["rotate6"].push_back(vector<int>(hex_rotate6[i],hex_rotate6[i]+8));
int hex_rotate6reflect[12][8] = {{0,1,2,3,4,5,6,7},{0,2,3,4,5,6,1,7},{0,3,4,5,6,1,2,7},
{0,4,5,6,1,2,3,7},{0,5,6,1,2,3,4,7},{0,6,1,2,3,4,5,7},
{0,6,5,4,3,2,1,7},{0,5,4,3,2,1,6,7},{0,4,3,2,1,6,5,7},
{0,3,2,1,6,5,4,7},{0,2,1,6,5,4,3,7},{0,1,6,5,4,3,2,7}};
for(int i=0;i<12;i++)
symmetry_remap[hexagonal]["rotate6reflect"].push_back(vector<int>(hex_rotate6reflect[i],hex_rotate6reflect[i]+8));
}
// initialize the packed transition table
this->lut.assign(n_inputs,vector< vector<TBits> >(this->n_states));
this->output.clear();
this->n_compressed_rules = 0;
// each transition rule looks like: e.g. 1,[2,3,5],4,[0,1],3 -> 0
vector< vector<state> > permuted_inputs(n_inputs);
for(vector< pair< vector< vector<state> >, state> >::const_iterator rule_it = transition_table.begin();
rule_it!=transition_table.end();
rule_it++)
{
const vector< vector<state> > & inputs = rule_it->first;
state output = rule_it->second;
if(symmetries=="none")
{
PackTransition(inputs,output);
}
else if(symmetries=="permute")
{
// work through the permutations of all but the centre cell
permuted_inputs = inputs;
sort(permuted_inputs.begin()+1,permuted_inputs.end()); // (must sort before permuting)
do {
PackTransition(permuted_inputs,output);
} while(next_permutation(permuted_inputs.begin()+1,permuted_inputs.end())); // (skips duplicates)
}
else
{
const vector< vector<int> > & remap = symmetry_remap[this->neighborhood][symmetries];
for(int iSymm=0;iSymm<(int)remap.size();iSymm++)
{
for(int i=0;i<n_inputs;i++)
permuted_inputs[i] = inputs[remap[iSymm][i]];
PackTransition(permuted_inputs,output);
}
}
}
}
void ruletable_algo::PackTransition(const vector< vector<state> > & inputs,
state output)
{
int n_inputs = (int)inputs.size();
const unsigned int n_bits = (unsigned int)(sizeof(TBits)*8);
this->output.push_back(output);
int iRule = (int)(this->output.size()-1);
int iBit = iRule % n_bits;
unsigned int iRuleC = (iRule-iBit)/n_bits; // the compressed index of the rule
// add a new compressed rule if required
if(iRuleC >= this->n_compressed_rules)
{
for(int iInput=0;iInput<n_inputs;iInput++)
for(int iState=0;iState<(int)n_states;iState++)
this->lut[iInput][iState].push_back(0);
this->n_compressed_rules++;
}
TBits mask = (TBits)1 << iBit; // (cast needed to ensure this is a 64-bit shift, not a 32-bit shift)
for(int iNbor=0;iNbor<n_inputs;iNbor++)
{
const vector<state> & possibles = inputs[iNbor];
for(vector<state>::const_iterator poss_it=possibles.begin();poss_it!=possibles.end();poss_it++)
{
// add the bits
this->lut[iNbor][*poss_it][iRuleC] |= mask;
}
}
}
const char* ruletable_algo::getrule() {
return this->current_rule.c_str();
}
const char* ruletable_algo::DefaultRule() {
return "Langtons-Loops";
}
ruletable_algo::ruletable_algo()
: n_states(8), neighborhood(vonNeumann), n_compressed_rules(0)
{
maxCellStates = n_states;
}
ruletable_algo::~ruletable_algo()
{
}
// --- the update function ---
state ruletable_algo::slowcalc(state nw, state n, state ne, state w, state c, state e,
state sw, state s, state se)
{
TBits is_match = 0; // AKT: explicitly initialized to avoid gcc warning
for(unsigned int iRuleC=0;iRuleC<this->n_compressed_rules;iRuleC++)
{
// is there a match for any of the (e.g.) 64 rules within iRuleC?
// (we don't have to worry about symmetries here since they were expanded out in PackTransitions)
switch(this->neighborhood)
{
case vonNeumann: // c,n,e,s,w
is_match = this->lut[0][c][iRuleC] & this->lut[1][n][iRuleC] & this->lut[2][e][iRuleC] &
this->lut[3][s][iRuleC] & this->lut[4][w][iRuleC];
break;
case Moore: // c,n,ne,e,se,s,sw,w,nw
is_match = this->lut[0][c][iRuleC] & this->lut[1][n][iRuleC] & this->lut[2][ne][iRuleC] &
this->lut[3][e][iRuleC] & this->lut[4][se][iRuleC] & this->lut[5][s][iRuleC] &
this->lut[6][sw][iRuleC] & this->lut[7][w][iRuleC] & this->lut[8][nw][iRuleC];
break;
case hexagonal: // c,n,e,se,s,w,nw
is_match = this->lut[0][c][iRuleC] & this->lut[1][n][iRuleC] & this->lut[2][e][iRuleC] &
this->lut[3][se][iRuleC] & this->lut[4][s][iRuleC] & this->lut[5][w][iRuleC] &
this->lut[6][nw][iRuleC];
break;
case oneDimensional: // c,w,e
is_match = this->lut[0][c][iRuleC] & this->lut[1][w][iRuleC] & this->lut[2][e][iRuleC];
break;
}
// if any of them matched, return the output of the first
if(is_match)
{
// find the least significant bit of is_match
unsigned int iBit=0;
TBits mask=1;
while(!(is_match&mask))
{
++iBit;
mask <<= 1;
}
return this->output[ iRuleC*sizeof(TBits)*8 + iBit ]; // find the uncompressed rule index
}
}
return c; // default: no change
}
static lifealgo *creator() { return new ruletable_algo(); }
void ruletable_algo::doInitializeAlgoInfo(staticAlgoInfo &ai)
{
ghashbase::doInitializeAlgoInfo(ai);
ai.setAlgorithmName("RuleTable");
ai.setAlgorithmCreator(&creator);
ai.minstates = 2;
ai.maxstates = 256;
// init default color scheme
ai.defgradient = true; // use gradient
ai.defr1 = 255; // start color = red
ai.defg1 = 0;
ai.defb1 = 0;
ai.defr2 = 255; // end color = yellow
ai.defg2 = 255;
ai.defb2 = 0;
// if not using gradient then set all states to white
for (int i=0; i<256; i++) {
ai.defr[i] = ai.defg[i] = ai.defb[i] = 255;
}
}
|