File: ruletable_algo.cpp

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (760 lines) | stat: -rw-r--r-- 32,487 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
// This file is part of Golly.
// See docs/License.html for the copyright notice.

#include "ruletable_algo.h"

#include "util.h"      // for lifegetuserrules, lifegetrulesdir, lifewarning

// for case-insensitive string comparison
#include <string.h>
#ifndef WIN32
   #define stricmp strcasecmp
   #define strnicmp strncasecmp
#endif

#include <algorithm>
#include <map>
#include <sstream>
using namespace std;

const string ruletable_algo::neighborhood_value_keywords[N_SUPPORTED_NEIGHBORHOODS] = 
                    {"vonNeumann","Moore","hexagonal","oneDimensional"};
// (keep in sync with TNeighborhood)

bool ruletable_algo::IsDefaultRule(const char* rulename)
{
    return (strcmp(rulename, DefaultRule()) == 0);
}

static FILE* static_rulefile = NULL;
static int static_lineno = 0;
static char static_endchar = 0;

const char* ruletable_algo::LoadTable(FILE* rulefile, int lineno, char endchar, const char* s)
{
    // set static vars so LoadRuleTable() will load table data from .rule file
    static_rulefile = rulefile;
    static_lineno = lineno;
    static_endchar = endchar;
    
    const char* err = setrule(s);   // calls LoadRuleTable
    
    // reset static vars
    static_rulefile = NULL;
    static_lineno = 0;
    static_endchar = 0;
    
    return err;
}

int ruletable_algo::NumCellStates()
{
   return this->n_states;
}

bool starts_with(const string& line,const string& keyword)
{
   return strnicmp(line.c_str(),keyword.c_str(),keyword.length())==0;
}

const char* ruletable_algo::setrule(const char* s)
{
   const char *colonptr = strchr(s, ':');
   string rule_name(s);
   if (colonptr) 
      rule_name.assign(s,colonptr);

   static string ret;  // NOTE: don't initialize this statically!
   ret = LoadRuleTable(rule_name.c_str());
   if(!ret.empty())
   {
      // if the file exists and we've got an error then it must be a file format issue
      if(!starts_with(ret,"Failed to open file: "))
         lifewarning(ret.c_str());

      return ret.c_str();
   }
   
   // check for rule suffix like ":T200,100" to specify a bounded universe
   if (colonptr) {
      const char* err = setgridsize(colonptr);
      if (err) return err;
   } else {
      // universe is unbounded
      gridwd = 0;
      gridht = 0;
   }

   // set canonical rule string returned by getrule()
   this->current_rule = rule_name.c_str();
   if (gridwd > 0 || gridht > 0) {
      // setgridsize() was successfully called above, so append suffix
      string bounds = canonicalsuffix();
      this->current_rule += bounds;
   }
   
   maxCellStates = this->n_states;
   ghashbase::setrule(rule_name.c_str());
   return NULL;
}

vector<string> tokenize(const string& str,const string& delimiters)
{
   vector<string> tokens;

   // skip delimiters at beginning.
   string::size_type lastPos = str.find_first_not_of(delimiters, 0);

   // find first "non-delimiter".
   string::size_type pos = str.find_first_of(delimiters, lastPos);

   while (string::npos != pos || string::npos != lastPos)
   {
      // found a token, add it to the vector.
      tokens.push_back(str.substr(lastPos, pos - lastPos));

      // skip delimiters.  Note the "not_of"
      lastPos = str.find_first_not_of(delimiters, pos);

      // find next "non-delimiter"
      pos = str.find_first_of(delimiters, lastPos);
   }

   return tokens;
}

string trim_right(const string & s, const string & t = " \t\r\n")
{ 
   string d (s); 
   string::size_type i (d.find_last_not_of (t));
   if (i == string::npos)
      return "";
   else
      return d.erase (d.find_last_not_of (t) + 1); 
}

string trim_left(const string & s, const string & t = " \t\r\n") 
{ 
   string d (s); 
   return d.erase (0, s.find_first_not_of (t)); 
}

string trim(const string & s, const string & t = " \t\r\n")
{ 
   string d (s); 
   return trim_left (trim_right (d, t), t); 
}

const char *defaultRuleData[] = {
   "n_states:8", "neighborhood:vonNeumann", "symmetries:rotate4",
   "000000", "000012", "000020", "000030", "000050", "000063", "000071",
   "000112", "000122", "000132", "000212", "000220", "000230", "000262",
   "000272", "000320", "000525", "000622", "000722", "001022", "001120",
   "002020", "002030", "002050", "002125", "002220", "002322", "005222",
   "012321", "012421", "012525", "012621", "012721", "012751", "014221",
   "014321", "014421", "014721", "016251", "017221", "017255", "017521",
   "017621", "017721", "025271", "100011", "100061", "100077", "100111",
   "100121", "100211", "100244", "100277", "100511", "101011", "101111",
   "101244", "101277", "102026", "102121", "102211", "102244", "102263",
   "102277", "102327", "102424", "102626", "102644", "102677", "102710",
   "102727", "105427", "111121", "111221", "111244", "111251", "111261",
   "111277", "111522", "112121", "112221", "112244", "112251", "112277",
   "112321", "112424", "112621", "112727", "113221", "122244", "122277",
   "122434", "122547", "123244", "123277", "124255", "124267", "125275",
   "200012", "200022", "200042", "200071", "200122", "200152", "200212",
   "200222", "200232", "200242", "200250", "200262", "200272", "200326",
   "200423", "200517", "200522", "200575", "200722", "201022", "201122",
   "201222", "201422", "201722", "202022", "202032", "202052", "202073",
   "202122", "202152", "202212", "202222", "202272", "202321", "202422",
   "202452", "202520", "202552", "202622", "202722", "203122", "203216",
   "203226", "203422", "204222", "205122", "205212", "205222", "205521",
   "205725", "206222", "206722", "207122", "207222", "207422", "207722",
   "211222", "211261", "212222", "212242", "212262", "212272", "214222",
   "215222", "216222", "217222", "222272", "222442", "222462", "222762",
   "222772", "300013", "300022", "300041", "300076", "300123", "300421",
   "300622", "301021", "301220", "302511", "401120", "401220", "401250",
   "402120", "402221", "402326", "402520", "403221", "500022", "500215",
   "500225", "500232", "500272", "500520", "502022", "502122", "502152",
   "502220", "502244", "502722", "512122", "512220", "512422", "512722",
   "600011", "600021", "602120", "612125", "612131", "612225", "700077",
   "701120", "701220", "701250", "702120", "702221", "702251", "702321",
   "702525", "702720", 0 };
   
static FILE *OpenTableFile(string &rule, const char *dir, string &path)
{
   // look for rule.table in given dir and set path
   path = dir;
   int istart = (int)path.size();
   path += rule + ".table";
   // change "dangerous" characters to underscores
   for (unsigned int i=istart; i<path.size(); i++)
      if (path[i] == '/' || path[i] == '\\') path[i] = '_';
   return fopen(path.c_str(), "rt");
}

string ruletable_algo::LoadRuleTable(string rule)
{
   const string comment_keyword = "#";
   const string symmetries_keyword = "symmetries:";
   const string neighborhood_keyword = "neighborhood:";
   const string n_states_keyword = "n_states:";
   const string variable_keyword = "var ";
   
   map< string, vector<string> > available_symmetries;
   {
       const string vonNeumann_available_symmetries[5] = {"none","rotate4","rotate4reflect","reflect_horizontal","permute"};
       available_symmetries["vonNeumann"].assign(vonNeumann_available_symmetries,vonNeumann_available_symmetries+5);
       const string Moore_available_symmetries[7] = {"none","rotate4","rotate8","rotate4reflect","rotate8reflect","reflect_horizontal","permute"};
       available_symmetries["Moore"].assign(Moore_available_symmetries,Moore_available_symmetries+7);
       const string hexagonal_available_symmetries[6] = {"none","rotate2","rotate3","rotate6","rotate6reflect","permute"};
       available_symmetries["hexagonal"].assign(hexagonal_available_symmetries,hexagonal_available_symmetries+6);
       const string oneDimensional_available_symmetries[3] = {"none","reflect","permute"};
       available_symmetries["oneDimensional"].assign(oneDimensional_available_symmetries,oneDimensional_available_symmetries+3);
   }
   
   string line;
   const int MAX_LINE_LEN=1000;
   char line_buffer[MAX_LINE_LEN];
   FILE *in = 0;
   linereader line_reader(0);
   int lineno = 0;
   string full_filename;
   
   bool isDefaultRule = IsDefaultRule(rule.c_str());
   if (isDefaultRule) {
      // no need to read table data from a file
   } else if (static_rulefile) {
      // read table data from currently open .rule file
      line_reader.setfile(static_rulefile);
      line_reader.setcloseonfree();
      lineno = static_lineno;
      full_filename = rule + ".rule";
   } else {
      // look for rule.table in user's rules dir then in Golly's rules dir
      in = OpenTableFile(rule, lifegetuserrules(), full_filename);
      if (!in)
         in = OpenTableFile(rule, lifegetrulesdir(), full_filename);
      if (!in) 
         return "Failed to open file: "+full_filename;
      line_reader.setfile(in);
      line_reader.setcloseonfree(); // make sure it goes away if we return with an error
   }

   string symmetries = "rotate4"; // default
   TNeighborhood neighborhood = vonNeumann;  // default
   unsigned int n_states = 8;  // default
   map< string, vector<state> > variables;
   vector< pair< vector< vector<state> >, state > > transition_table;
   unsigned int n_inputs=0;

   // these line must have been read before the rest of the file
   bool n_states_parsed=false,neighborhood_parsed=false,symmetries_parsed=false;

   for (;;) 
   {
      if (isDefaultRule) {
         if (defaultRuleData[lineno] == 0)
            break;
         line = defaultRuleData[lineno];
      } else {
         if (!line_reader.fgets(line_buffer,MAX_LINE_LEN))
            break;
         if (static_rulefile && line_buffer[0] == static_endchar)
            break;
         line = line_buffer;
      }
      lineno++;
      // snip off any trailing comment
      if(line.find('#')!=string::npos)
         line.assign(line.begin(),line.begin()+line.find('#'));
      // trim any leading/trailing whitespace
      line = trim(line); 
      // try each of the allowed forms for this line:
      if(line.empty())
         continue; // line was blank or just had a comment
      else if(starts_with(line,n_states_keyword))
      {
         // parse the rest of the line
         if(sscanf(line.c_str()+n_states_keyword.length(),"%d",&n_states)!=1)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
            return oss.str();
         }
         if(n_states<2 || n_states>256)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << " on line " << lineno << ": n_states out of range (min 2, max 256)";
            return oss.str();
         }
         n_states_parsed = true;
      }
      else if(starts_with(line,neighborhood_keyword))
      {
         // parse the rest of the line
         string remaining(line.begin()+neighborhood_keyword.length(),line.end());
         remaining = trim(remaining); // (allow for space between : and value)
         const string* found = find(this->neighborhood_value_keywords,
            this->neighborhood_value_keywords+N_SUPPORTED_NEIGHBORHOODS,remaining);
         if(found == this->neighborhood_value_keywords+N_SUPPORTED_NEIGHBORHOODS)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << " on line " << lineno << ": unsupported neighborhood";
            return oss.str();
         }
         neighborhood = (TNeighborhood)(found - this->neighborhood_value_keywords);
         switch(neighborhood) {
            default:
            case vonNeumann: n_inputs=5; grid_type=VN_GRID; break;
            case Moore: n_inputs=9; grid_type=SQUARE_GRID; break;
            case hexagonal: n_inputs=7; grid_type=HEX_GRID; break;
            case oneDimensional: n_inputs=3; grid_type=SQUARE_GRID; break;
         }
         neighborhood_parsed = true;
      }
      else if(starts_with(line,symmetries_keyword))
      {
         if(!neighborhood_parsed)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << ": neighborhood must be declared before symmetries";
            return oss.str();
         }
         string remaining(line.begin()+symmetries_keyword.length(),line.end());
         remaining = trim(remaining); // (allow for space between : and value)
         string neighborhood_as_string = this->neighborhood_value_keywords[neighborhood];
         vector<string>::const_iterator found = find(
            available_symmetries[neighborhood_as_string].begin(),
            available_symmetries[neighborhood_as_string].end(), remaining );
         if(found == available_symmetries[neighborhood_as_string].end())
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << " on line " << lineno << ": unsupported symmetries";
            return oss.str();
         }
         symmetries = remaining;
         symmetries_parsed = true;
      }
      else if(starts_with(line,variable_keyword))
      {
         if(!n_states_parsed || !neighborhood_parsed || !symmetries_parsed)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << ": one or more of n_states, neighborhood or symmetries missing\nbefore first variable";
            return oss.str();
         }
         // parse the rest of the line for the variable
         vector<string> tokens = tokenize(line,"= {,}");
         string variable_name = tokens[1];
         vector<state> states;
         if(tokens.size()<3)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
            return oss.str();
         }  
         for(unsigned int i=2;i<tokens.size();i++)
         {
            if(variables.find(tokens[i])!=variables.end())
            {
               // variables permitted inside later variables
               states.insert(states.end(),variables[tokens[i]].begin(),variables[tokens[i]].end());
            }
            else
            {
               unsigned int s=0;
               if(sscanf(tokens[i].c_str(),"%u",&s)!=1)
               {
                  ostringstream oss;
                  oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
                  return oss.str();
               }
               if( s>=n_states)
               {
                  ostringstream oss;
                  oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state value out of range";
                  return oss.str();
               }
               states.push_back((state)s);
            }
         }
         variables[variable_name] = states;
      }
      else
      {
         // must be a transitions line
         if(!n_states_parsed || !neighborhood_parsed || !symmetries_parsed)
         {
            ostringstream oss;
            oss << "Error reading " << full_filename << ": one or more of n_states, neighborhood or symmetries missing\nbefore first transition";
            return oss.str();
         }
         if(n_states<=10 && variables.empty() && line.find(',')==string::npos)
         {
            // if there are only single-digit states and no variables then can use comma-free form:
            // e.g. 012345 for 0,1,2,3,4 -> 5
            vector< vector<state> > inputs;
            state output;
            if(line.length() < n_inputs+1)
            {
               ostringstream oss;
               oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - too few entries";
               return oss.str();
            }
            for(unsigned int i=0;i<n_inputs;i++)
            {
               char c = line[i];
               if(c<'0' || c>'9')
               {
                  ostringstream oss;
                  oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
                  return oss.str();
               }

               inputs.push_back(vector<state>(1,c-'0'));
            }
            unsigned char c = line[n_inputs];
            if(c<'0' || c>'9')
            {
               ostringstream oss;
               oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
               return oss.str();
            }
            output = c-'0';
            if (output >= n_states)     // AKT: avoid later crash in PackTransition
            {
                ostringstream oss;
                oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state out of range";
                return oss.str();
            }
            transition_table.push_back(make_pair(inputs,output));
         }
         else // transition line with commas
         {  
            vector<string> tokens = tokenize(line,", #\t");
            if(tokens.size() < n_inputs+1)
            {
               ostringstream oss;
               oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - too few entries";
               return oss.str();
            }
            // first pass: which variables appear more than once? these are "bound" (must take the same value each time they appear in this transition)
            vector<string> bound_variables;
            for(map< string, vector<state> >::const_iterator var_it=variables.begin();var_it!=variables.end();var_it++)
               if(count(tokens.begin(),tokens.begin()+n_inputs+1,var_it->first)>1)
                  bound_variables.push_back(var_it->first);
            unsigned int n_bound_variables = (unsigned int)bound_variables.size();
            // second pass: iterate through the possible states for the bound variables, adding a transition for each combination
            vector< vector<state> > inputs(n_inputs);
            state output;
            map<string,unsigned int> bound_variable_indices; // each is an index into vector<state> of 'variables' map
            for(unsigned int i=0;i<n_bound_variables;i++)
               bound_variable_indices[bound_variables[i]]=0;
            for(;;)
            {
               // output the transition for the current set of bound variables
               for(unsigned int i=0;i<n_inputs;i++) // collect the inputs
               {
                  if(!bound_variables.empty() && find(bound_variables.begin(),bound_variables.end(),tokens[i])!=bound_variables.end())
                    inputs[i] = vector<state>(1,variables[tokens[i]][bound_variable_indices[tokens[i]]]); // this input is a bound variable
                  else if(variables.find(tokens[i])!=variables.end())
                     inputs[i] = variables[tokens[i]]; // this input is an unbound variable
                  else 
                  {
                     unsigned int s=0;
                     if(sscanf(tokens[i].c_str(),"%u",&s)!=1) // this input is a state
                     {
                        ostringstream oss;
                        oss << "Error reading " << full_filename << " on line " << lineno << ": " << line;
                        return oss.str();
                     }
                     if(s>=n_states)
                     {
                        ostringstream oss;
                        oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state out of range";
                        return oss.str();
                     }
                     inputs[i] = vector<state>(1,(state)s);
                  }
               }
               // collect the output
               if(!bound_variables.empty() && 
                  find(bound_variables.begin(),bound_variables.end(),tokens[n_inputs])!=bound_variables.end())
                     output = variables[tokens[n_inputs]][bound_variable_indices[tokens[n_inputs]]];
               else 
               {
                  unsigned int s;
                  if(variables.find(tokens[n_inputs])!=variables.end() &&
                    variables[tokens[n_inputs]].size()==1)
                  {
                     // single-state variables are permitted as the output
                     s = variables[tokens[n_inputs]][0];
                  }
                  else if(sscanf(tokens[n_inputs].c_str(),"%u",&s)!=1) // if not a bound variable, output must be a state
                  {
                     ostringstream oss;
                     oss << "Error reading " << full_filename << " on line " << lineno << ": " << line
                        << " - output must be state, single-state variable or bound variable";
                     return oss.str();
                  }
                  if(s>=n_states)
                  {
                     ostringstream oss;
                     oss << "Error reading " << full_filename << " on line " << lineno << ": " << line << " - state out of range";
                     return oss.str();
                  }
                  output = (state)s;
               }
               transition_table.push_back(make_pair(inputs,output));
               // move on to the next value of bound variables
               {
                  unsigned int iChanging=0;
                  for(;iChanging<n_bound_variables;iChanging++)
                  {
                     if(bound_variable_indices[bound_variables[iChanging]] < variables[bound_variables[iChanging]].size()-1)
                     {
                        bound_variable_indices[bound_variables[iChanging]]++;
                        break;
                     }
                     else
                     {
                        bound_variable_indices[bound_variables[iChanging]]=0;
                     }
                  }
                  if(iChanging>=n_bound_variables)
                     break;
               }
            }
         }
      }
   } // (finished reading lines from the file)

   if(!n_states_parsed || !neighborhood_parsed || !symmetries_parsed)
   {
      ostringstream oss;
      oss << "Error reading " << full_filename << ": one or more of n_states, neighborhood or symmetries missing";
      return oss.str();
   }

   this->neighborhood = neighborhood;
   this->n_states = n_states;
   PackTransitions(symmetries,n_inputs,transition_table);

   return string(""); // success
}

// convert transition table to bitmask lookup
void ruletable_algo::PackTransitions(const string& symmetries, int n_inputs,
                            const vector< pair< vector< vector<state> >, state > >& transition_table)
{
    // cumbersome initialization of a remap array for the different symmetries
    map< string, vector< vector<int> > > symmetry_remap[N_SUPPORTED_NEIGHBORHOODS];
    {
       int vn_rotate4[4][6] = {{0,1,2,3,4,5},{0,2,3,4,1,5},{0,3,4,1,2,5},{0,4,1,2,3,5}};
       for(int i=0;i<4;i++)
          symmetry_remap[vonNeumann]["rotate4"].push_back(vector<int>(vn_rotate4[i],vn_rotate4[i]+6));
       int vn_rotate4reflect[8][6] = {{0,1,2,3,4,5},{0,2,3,4,1,5},{0,3,4,1,2,5},{0,4,1,2,3,5},
          {0,4,3,2,1,5},{0,3,2,1,4,5},{0,2,1,4,3,5},{0,1,4,3,2,5}};
       for(int i=0;i<8;i++)
          symmetry_remap[vonNeumann]["rotate4reflect"].push_back(vector<int>(vn_rotate4reflect[i],vn_rotate4reflect[i]+6));
       int vn_reflect_horizontal[2][6] = {{0,1,2,3,4,5},{0,1,4,3,2,5}};
       for(int i=0;i<2;i++)
          symmetry_remap[vonNeumann]["reflect_horizontal"].push_back(vector<int>(vn_reflect_horizontal[i],vn_reflect_horizontal[i]+6));
       int moore_rotate4[4][10] = {{0,1,2,3,4,5,6,7,8,9},{0,3,4,5,6,7,8,1,2,9},{0,5,6,7,8,1,2,3,4,9},{0,7,8,1,2,3,4,5,6,9}};
       for(int i=0;i<4;i++)
          symmetry_remap[Moore]["rotate4"].push_back(vector<int>(moore_rotate4[i],moore_rotate4[i]+10));
       int moore_rotate8[8][10] = {{0,1,2,3,4,5,6,7,8,9},{0,2,3,4,5,6,7,8,1,9},{0,3,4,5,6,7,8,1,2,9},{0,4,5,6,7,8,1,2,3,9},
          {0,5,6,7,8,1,2,3,4,9},{0,6,7,8,1,2,3,4,5,9},{0,7,8,1,2,3,4,5,6,9},{0,8,1,2,3,4,5,6,7,9}};
       for(int i=0;i<8;i++)
          symmetry_remap[Moore]["rotate8"].push_back(vector<int>(moore_rotate8[i],moore_rotate8[i]+10));
       int moore_rotate4reflect[8][10] = {{0,1,2,3,4,5,6,7,8,9},{0,3,4,5,6,7,8,1,2,9},{0,5,6,7,8,1,2,3,4,9},{0,7,8,1,2,3,4,5,6,9},
          {0,1,8,7,6,5,4,3,2,9},{0,7,6,5,4,3,2,1,8,9},{0,5,4,3,2,1,8,7,6,9},{0,3,2,1,8,7,6,5,4,9}};
       for(int i=0;i<8;i++)
          symmetry_remap[Moore]["rotate4reflect"].push_back(vector<int>(moore_rotate4reflect[i],moore_rotate4reflect[i]+10));
       int moore_rotate8reflect[16][10] = {{0,1,2,3,4,5,6,7,8,9},{0,2,3,4,5,6,7,8,1,9},{0,3,4,5,6,7,8,1,2,9},{0,4,5,6,7,8,1,2,3,9},
          {0,5,6,7,8,1,2,3,4,9},{0,6,7,8,1,2,3,4,5,9},{0,7,8,1,2,3,4,5,6,9},{0,8,1,2,3,4,5,6,7,9},
          {0,8,7,6,5,4,3,2,1,9},{0,7,6,5,4,3,2,1,8,9},{0,6,5,4,3,2,1,8,7,9},{0,5,4,3,2,1,8,7,6,9},
          {0,4,3,2,1,8,7,6,5,9},{0,3,2,1,8,7,6,5,4,9},{0,2,1,8,7,6,5,4,3,9},{0,1,8,7,6,5,4,3,2,9}};
       for(int i=0;i<16;i++)
          symmetry_remap[Moore]["rotate8reflect"].push_back(vector<int>(moore_rotate8reflect[i],moore_rotate8reflect[i]+10));
       int moore_reflect_horizontal[2][10] = {{0,1,2,3,4,5,6,7,8,9},{0,1,8,7,6,5,4,3,2,9}};
       for(int i=0;i<2;i++)
          symmetry_remap[Moore]["reflect_horizontal"].push_back(vector<int>(moore_reflect_horizontal[i],moore_reflect_horizontal[i]+10));
       int oneDimensional_reflect[2][4] = {{0,1,2,3},{0,2,1,3}};
       for(int i=0;i<2;i++)
          symmetry_remap[oneDimensional]["reflect"].push_back(vector<int>(oneDimensional_reflect[i],oneDimensional_reflect[i]+4));
       int hex_rotate2[2][8] = {{0,1,2,3,4,5,6,7},{0,4,5,6,1,2,3,7}};
       for(int i=0;i<2;i++)
          symmetry_remap[hexagonal]["rotate2"].push_back(vector<int>(hex_rotate2[i],hex_rotate2[i]+8));
       int hex_rotate3[3][8] = {{0,1,2,3,4,5,6,7},{0,3,4,5,6,1,2,7},{0,5,6,1,2,3,4,7}};
       for(int i=0;i<3;i++)
          symmetry_remap[hexagonal]["rotate3"].push_back(vector<int>(hex_rotate3[i],hex_rotate3[i]+8));
       int hex_rotate6[6][8] = {{0,1,2,3,4,5,6,7},{0,2,3,4,5,6,1,7},{0,3,4,5,6,1,2,7},
          {0,4,5,6,1,2,3,7},{0,5,6,1,2,3,4,7},{0,6,1,2,3,4,5,7}};
       for(int i=0;i<6;i++)
          symmetry_remap[hexagonal]["rotate6"].push_back(vector<int>(hex_rotate6[i],hex_rotate6[i]+8));
       int hex_rotate6reflect[12][8] = {{0,1,2,3,4,5,6,7},{0,2,3,4,5,6,1,7},{0,3,4,5,6,1,2,7},
                           {0,4,5,6,1,2,3,7},{0,5,6,1,2,3,4,7},{0,6,1,2,3,4,5,7},
                           {0,6,5,4,3,2,1,7},{0,5,4,3,2,1,6,7},{0,4,3,2,1,6,5,7},
                           {0,3,2,1,6,5,4,7},{0,2,1,6,5,4,3,7},{0,1,6,5,4,3,2,7}};
       for(int i=0;i<12;i++)
          symmetry_remap[hexagonal]["rotate6reflect"].push_back(vector<int>(hex_rotate6reflect[i],hex_rotate6reflect[i]+8));
   }

   // initialize the packed transition table
   this->lut.assign(n_inputs,vector< vector<TBits> >(this->n_states));
   this->output.clear();
   this->n_compressed_rules = 0;
   // each transition rule looks like: e.g. 1,[2,3,5],4,[0,1],3 -> 0
   vector< vector<state> > permuted_inputs(n_inputs);
   for(vector< pair< vector< vector<state> >, state> >::const_iterator rule_it = transition_table.begin();
       rule_it!=transition_table.end();
       rule_it++)
   {
      const vector< vector<state> > & inputs = rule_it->first;
      state output = rule_it->second;
      if(symmetries=="none")
      {
         PackTransition(inputs,output);
      }
      else if(symmetries=="permute")
      {
         // work through the permutations of all but the centre cell
         permuted_inputs = inputs;
         sort(permuted_inputs.begin()+1,permuted_inputs.end()); // (must sort before permuting)
         do {
            PackTransition(permuted_inputs,output);
         } while(next_permutation(permuted_inputs.begin()+1,permuted_inputs.end())); // (skips duplicates)
      }
      else
      {
         const vector< vector<int> > & remap = symmetry_remap[this->neighborhood][symmetries];
         for(int iSymm=0;iSymm<(int)remap.size();iSymm++)
         {
            for(int i=0;i<n_inputs;i++)
                permuted_inputs[i] = inputs[remap[iSymm][i]];
            PackTransition(permuted_inputs,output);
         }
      }
   }
}

void ruletable_algo::PackTransition(const vector< vector<state> > & inputs,
                                    state output)
{
    int n_inputs = (int)inputs.size();
    const unsigned int n_bits = (unsigned int)(sizeof(TBits)*8);
    
    this->output.push_back(output);
    int iRule = (int)(this->output.size()-1);
    int iBit = iRule % n_bits;
    unsigned int iRuleC = (iRule-iBit)/n_bits; // the compressed index of the rule
    
    // add a new compressed rule if required
    if(iRuleC >= this->n_compressed_rules)
    {
        for(int iInput=0;iInput<n_inputs;iInput++)
            for(int iState=0;iState<(int)n_states;iState++)
                this->lut[iInput][iState].push_back(0);
        this->n_compressed_rules++;
    }
    
    TBits mask = (TBits)1 << iBit; // (cast needed to ensure this is a 64-bit shift, not a 32-bit shift)
    for(int iNbor=0;iNbor<n_inputs;iNbor++)
    {
        const vector<state> & possibles = inputs[iNbor];
        for(vector<state>::const_iterator poss_it=possibles.begin();poss_it!=possibles.end();poss_it++)
        {
           // add the bits
           this->lut[iNbor][*poss_it][iRuleC] |= mask;
        }
    }
}

const char* ruletable_algo::getrule() {
   return this->current_rule.c_str();
}

const char* ruletable_algo::DefaultRule() {
   return "Langtons-Loops";
}

ruletable_algo::ruletable_algo()
   : n_states(8), neighborhood(vonNeumann), n_compressed_rules(0)
{
   maxCellStates = n_states;
}

ruletable_algo::~ruletable_algo()
{
}

// --- the update function ---
state ruletable_algo::slowcalc(state nw, state n, state ne, state w, state c, state e,
                        state sw, state s, state se) 
{
   TBits is_match = 0;  // AKT: explicitly initialized to avoid gcc warning

   for(unsigned int iRuleC=0;iRuleC<this->n_compressed_rules;iRuleC++)
   {
      // is there a match for any of the (e.g.) 64 rules within iRuleC?
      // (we don't have to worry about symmetries here since they were expanded out in PackTransitions)
      switch(this->neighborhood)
      {
         case vonNeumann: // c,n,e,s,w
            is_match = this->lut[0][c][iRuleC] & this->lut[1][n][iRuleC] & this->lut[2][e][iRuleC] & 
               this->lut[3][s][iRuleC] & this->lut[4][w][iRuleC];
            break;
         case Moore: // c,n,ne,e,se,s,sw,w,nw
            is_match = this->lut[0][c][iRuleC] & this->lut[1][n][iRuleC] & this->lut[2][ne][iRuleC] & 
               this->lut[3][e][iRuleC] & this->lut[4][se][iRuleC] & this->lut[5][s][iRuleC] & 
               this->lut[6][sw][iRuleC] & this->lut[7][w][iRuleC] & this->lut[8][nw][iRuleC];
            break;
         case hexagonal: // c,n,e,se,s,w,nw
            is_match = this->lut[0][c][iRuleC] & this->lut[1][n][iRuleC] & this->lut[2][e][iRuleC] & 
               this->lut[3][se][iRuleC] & this->lut[4][s][iRuleC] & this->lut[5][w][iRuleC] & 
               this->lut[6][nw][iRuleC];
            break;
         case oneDimensional: // c,w,e
            is_match = this->lut[0][c][iRuleC] & this->lut[1][w][iRuleC] & this->lut[2][e][iRuleC];
            break;
      }
      // if any of them matched, return the output of the first
      if(is_match)
      {
         // find the least significant bit of is_match
         unsigned int iBit=0;
         TBits mask=1;
         while(!(is_match&mask))
         {
            ++iBit;
            mask <<= 1;
         }
         return this->output[ iRuleC*sizeof(TBits)*8 + iBit ]; // find the uncompressed rule index
      }
   }
   return c; // default: no change
}

static lifealgo *creator() { return new ruletable_algo(); }

void ruletable_algo::doInitializeAlgoInfo(staticAlgoInfo &ai) 
{
   ghashbase::doInitializeAlgoInfo(ai);
   ai.setAlgorithmName("RuleTable");
   ai.setAlgorithmCreator(&creator);
   ai.minstates = 2;
   ai.maxstates = 256;
   // init default color scheme
   ai.defgradient = true;              // use gradient
   ai.defr1 = 255;                     // start color = red
   ai.defg1 = 0;
   ai.defb1 = 0;
   ai.defr2 = 255;                     // end color = yellow
   ai.defg2 = 255;
   ai.defb2 = 0;
   // if not using gradient then set all states to white
   for (int i=0; i<256; i++) {
      ai.defr[i] = ai.defg[i] = ai.defb[i] = 255;
   }
}