File: lex_1.htm

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (1042 lines) | stat: -rwxr-xr-x 74,972 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (1)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">

<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
<p><a name=a-0hddemonoid>:</a><b>0hd Demonoid</b> See <a href="lex_d.htm#demonoid">Demonoid</a>.
<p><a name=a-101>:</a><b>101</b> (p5) Found by Achim Flammenkamp in August 1994. The name was
suggested by Bill Gosper, noting that the <a href="lex_p.htm#phase">phase</a> shown below
displays the period in binary.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO......OO....$...O.O......O.O...$...O..........O...$OO.O..........O.OO$OO.O.O..OO..O.O.OO$...O.O.O..O.O.O...$...O.O.O..O.O.O...$OO.O.O..OO..O.O.OO$OO.O..........O.OO$...O..........O...$...O.O......O.O...$....OO......OO....$"
>....OO......OO....
...O.O......O.O...
...O..........O...
OO.O..........O.OO
OO.O.O..OO..O.O.OO
...O.O.O..O.O.O...
...O.O.O..O.O.O...
OO.O.O..OO..O.O.OO
OO.O..........O.OO
...O..........O...
...O.O......O.O...
....OO......OO....
</a></pre></td></tr></table></center>
<p><a name=a-10hddemonoid>:</a><b>10hd Demonoid</b> See <a href="lex_d.htm#demonoid">Demonoid</a>.
<p><a name=a-119p4h1v0>:</a><b>119P4H1V0</b> (<i>c</i>/4 orthogonally, p4) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Dean
Hickerson in December 1989, the first spaceship of its kind to be
found. Hickerson then found a small <a href="lex_t.htm#tagalong">tagalong</a> for this spaceship
which could be attached to one side or both. These three variants of
119P4H1V0 were the only known <i>c</i>/4 orthogonal spaceships until July
1992 when Hartmut Holzwart discovered a larger spaceship, 163P4H1V0.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................................O.$................O...............O.O$......O.O......O.....OO........O...$......O....O....O.OOOOOO....OO.....$......O.OOOOOOOO..........O..O.OOO.$.........O.....O.......OOOO....OOO.$....OO.................OOO.O.......$.O..OO.......OO........OO..........$.O..O..............................$O..................................$.O..O..............................$.O..OO.......OO........OO..........$....OO.................OOO.O.......$.........O.....O.......OOOO....OOO.$......O.OOOOOOOO..........O..O.OOO.$......O....O....O.OOOOOO....OO.....$......O.O......O.....OO........O...$................O...............O.O$.................................O.$"
>.................................O.
................O...............O.O
......O.O......O.....OO........O...
......O....O....O.OOOOOO....OO.....
......O.OOOOOOOO..........O..O.OOO.
.........O.....O.......OOOO....OOO.
....OO.................OOO.O.......
.O..OO.......OO........OO..........
.O..O..............................
O..................................
.O..O..............................
.O..OO.......OO........OO..........
....OO.................OOO.O.......
.........O.....O.......OOOO....OOO.
......O.OOOOOOOO..........O..O.OOO.
......O....O....O.OOOOOO....OO.....
......O.O......O.....OO........O...
................O...............O.O
.................................O.
</a></pre></td></tr></table></center>
<p><a name=a-123>:</a><b>1-2-3</b> (p3) Found by Dave Buckingham, August 1972. This is one of only
three essentially different p3 <a href="lex_o.htm#oscillator">oscillators</a> with only three cells in
the <a href="lex_r.htm#rotor">rotor</a>. The others are <a href="lex_s.htm#stillater">stillater</a> and <a href="lex_c.htm#cuphook">cuphook</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO......$O..O......$OO.O.OO...$.O.O..O...$.O....O.OO$..OOO.O.OO$.....O....$....O.....$....OO....$"
>..OO......
O..O......
OO.O.OO...
.O.O..O...
.O....O.OO
..OOO.O.OO
.....O....
....O.....
....OO....
</a></pre></td></tr></table></center>
<p><a name=a-1234>:</a><b>1-2-3-4</b> (p4) See also <a href="lex_a.htm#achimsp4">Achim's p4</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$....O.O....$...O.O.O...$...O...O...$OO.O.O.O.OO$O.O.....O.O$...OOOOO...$...........$.....O.....$....O.O....$.....O.....$"
>.....O.....
....O.O....
...O.O.O...
...O...O...
OO.O.O.O.OO
O.O.....O.O
...OOOOO...
...........
.....O.....
....O.O....
.....O.....
</a></pre></td></tr></table></center>
<p><a name=a-135degreemwsstog>:</a><b>135-degree MWSS-to-G</b> The following <a href="lex_c.htm#converter">converter</a>, discovered by
Matthias Merzenich in July 2013. It accepts an <a href="lex_m.htm#mwss">MWSS</a> as input, and
produces an output <a href="lex_g.htm#glider">glider</a> travelling at a 135-degree angle relative
to the input direction.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......OO......$......O.O.OO.O$........O.O.OO$........OO....$..............$..............$.OOOOO.....OO.$O....O.....OO.$.....O........$O...O.........$..O...........$"
>......OO......
......O.O.OO.O
........O.O.OO
........OO....
..............
..............
.OOOOO.....OO.
O....O.....OO.
.....O........
O...O.........
..O...........
</a></pre></td></tr></table></center>
<p><a name=a-14ner>:</a><b>14-ner</b> = <a href="lex_f.htm#fourteener">fourteener</a>
<p><a name=a-17c45spaceship>:</a><b>17c/45 spaceship</b> A <a href="lex_s.htm#spaceship">spaceship</a> travelling at seventeen forty-fifths
of the <a href="lex_s.htm#speedoflight">speed of light</a>. This was the first known <a href="lex_m.htm#macrospaceship">macro-spaceship</a>
speed. See <a href="lex_c.htm#caterpillar">Caterpillar</a> for details.
<p><a name=a-180degreekickback>:</a><b>180-degree kickback</b> The only other two-<a href="lex_g.htm#glider">glider</a> collision besides the
standard <a href="lex_k.htm#kickback">kickback</a> that produces a clean output glider with no
leftover <a href="lex_a.htm#ash">ash</a>. The 180-degree change in direction is occasionally
useful in <a href="lex_g.htm#glidersynthesis">glider synthesis</a>, but is rarely used in <a href="lex_s.htm#signal">signal</a>
circuitry or in <a href="lex_s.htm#selfsupporting">self-supporting</a> patterns like the <a href="lex_c.htm#caterpillar">Caterpillar</a> or
<a href="lex_c.htm#centipede">Centipede</a>, because 90-degree collisions are generally much easier
to arrange.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.$O..$OOO$...$...$.OO$O.O$..O$"
>.O.
O..
OOO
...
...
.OO
O.O
..O
</a></pre></td></tr></table></center>
<p><a name=a-1gseed>:</a><b>1G seed</b> See <a href="lex_s.htm#seed">seed</a>.
<p><a name=a-21c6spaceship>:</a><b>(2,1)c/6 spaceship</b> A <a href="lex_k.htm#knightship">knightship</a> that travels obliquely at the
fastest possible speed. To date the only known example of a
spaceship with this velocity is <a href="lex_s.htm#sirrobin">Sir Robin</a>.
<p><a name=a-235c79herschelclimber>:</a><b>(23,5)c/79 Herschel climber</b> The following glider-supported
<a href="lex_h.htm#herschelclimber">Herschel climber</a> reaction used in the <a href="lex_s.htm#selfsupporting">self-supporting</a> <a href="lex_w.htm#waterbear">waterbear</a>
<a href="lex_k.htm#knightship">knightship</a>, which can be repeated every 79 ticks, moving the
<a href="lex_h.htm#herschel">Herschel</a> 23 cells to the right and 5 cells upward, and releasing
two <a href="lex_g.htm#glider">gliders</a> to the northwest and southwest. As the diagram shows,
it is possible to substitute a loaf or other <a href="lex_s.htm#stilllife">still lifes</a> for some
or all of the support gliders. This fact is used to advantage at the
front end of the waterbear.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............O.O...............O..$...............OO...............O.O.$................O...............O..O$.................................OO.$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$O...................................$O.O.................................$OOO.................................$..O.................................$"
>...............O.O...............O..
...............OO...............O.O.
................O...............O..O
.................................OO.
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
O...................................
O.O.................................
OOO.................................
..O.................................
</a></pre></td></tr></table></center>
<p><a name=a-24cellquadraticgrowth>:</a><b>24-cell quadratic growth</b> A 39786x143 <a href="lex_q.htm#quadraticgrowth">quadratic growth</a> pattern found
by Michael Simkin in October 2014, two days after
<a href="lex_1.htm#a-25cellquadraticgrowth">25-cell quadratic growth</a> and a week before
<a href="lex_s.htm#switchenginepingpong">switch-engine ping-pong</a>.
<p><a name=a-25cellquadraticgrowth>:</a><b>25-cell quadratic growth</b> A 25-cell quadratic growth pattern found by
Michael Simkin in October 2014, with a bounding box of 21372x172. It
was the smallest-population quadratic growth pattern for two days,
until the discovery of <a href="lex_1.htm#a-24cellquadraticgrowth">24-cell quadratic growth</a>. It superseded
<a href="lex_w.htm#wedge">wedge</a>, which had held the record for eight years. See
<a href="lex_s.htm#switchenginepingpong">switch-engine ping-pong</a> for the lowest-population
<a href="lex_s.htm#superlineargrowth">superlinear growth</a> pattern as of July 2018, along with a list of
the record-holders.
<p><a name=a-25p3h1v01>:</a><b>25P3H1V0.1</b> (<i>c</i>/3 orthogonally, p3) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Dean
Hickerson in August 1989. It was the first <i>c</i>/3 spaceship to be
discovered. In terms of its 25 cells, it is tied with <a href="lex_1.htm#a-25p3h1v02">25P3H1V0.2</a> as
the smallest <i>c</i>/3 spaceship. Unlike 25P3H1V0.2, it has a population
of 25 in all of its phases, as well as a smaller bounding box.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......OO.O.....$....OO.O.OO.OOO.$.OOOO..OO......O$O....O...O...OO.$.OO.............$"
>.......OO.O.....
....OO.O.OO.OOO.
.OOOO..OO......O
O....O...O...OO.
.OO.............
</a></pre></td></tr></table></center>
Martin Grant discovered a glider synthesis for 25P3H1V0.1 on 6
January 2015.
<p><a name=a-25p3h1v02>:</a><b>25P3H1V0.2</b> (<i>c</i>/3 orthogonally, p3) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by David
Bell in early 1992, with a minimum of 25 cells - the lowest number of
cells known for any <i>c</i>/3 spaceship. A note in
<a href="lex_s.htm#spaceshipsinconwayslife">Spaceships in Conway's Life</a> indicates that it was found with a
search that limited the number of live cells in each column, and
possibly also the maximum cross-section (4 cells in this case). See
also <a href="lex_e.htm#edgerepairspaceship">edge-repair spaceship</a> for a very similar <i>c</i>/3 spaceship with a
minimum population of 26.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........O.....$........OOO.OOO.$.......OO......O$..O...O..O...OO.$.OOOO...........$O...O...........$.O.O..O.........$.....O..........$"
>..........O.....
........OOO.OOO.
.......OO......O
..O...O..O...OO.
.OOOO...........
O...O...........
.O.O..O.........
.....O..........
</a></pre></td></tr></table></center>
In December 2017 a collaborative effort found a 26-glider synthesis
for this spaceship.
<p><a name=a-26cellquadraticgrowth>:</a><b>26-cell quadratic growth</b> = <a href="lex_w.htm#wedge">wedge</a>.
<p><a name=a-295p5h1v1>:</a><b>295P5H1V1</b> (<i>c</i>/5 diagonally, p5) The first <a href="lex_s.htm#spaceship">spaceship</a> of its type to be
discovered, found by Jason Summers on 22 November 2000.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.............OO.....................................$.....OO....OO.O.O...................................$....OOO....OOOO.....................................$...OO......OO.....O.................................$..OO..OO...O..O..O..................................$.OO.....O.......O..OO...............................$.OO.O...OOOO........................................$....O...OO..OO.O....................................$.....OOO....O.O.....................................$......OO...OO..O....................................$......O.....O.......................................$.OOOO.O..O..O...O...................................$.OOO...OOOOO..OOOOOOO.O.............................$O.O....O..........O..OO.............................$OOO.O...O...O.....OOO...............................$.......O.O..O.......OO..............................$.O...O.....OO........OO..O.O........................$....O.......O........OOO.O.OOO......................$...O........OOO......O....O.........................$.....O......O.O.....O.O.............................$.....O......O.OO...O....O...........................$.............O.OOOO...O.....O..O....................$............OO..OO.O.O...O.OOO......................$.................O......O..OOO...OOO................$....................O..O......OO....................$................OO....O..O..........OO..............$..................O.............O...O...............$................OO....OO........O...................$.................O...OOO........O.O.O.O.............$.................O....OO........O.....OO............$........................O........O..OOO.............$.....................O..O........O........O.........$..........................OOOO........OO...O........$.......................O......OO......OO...O........$.......................O....O............O..........$.......................O...............O............$.........................OO.O.O.......O..O..........$.........................O....O.........OOO.........$............................OOO.OO..O...O...O.OO....$.............................O..OO.O.....O...O..O...$.....................................OO..O...O......$..................................O.OO.OO.O..OO...O.$...............................O.....O...O.......O.O$................................OO............OO...O$......................................O.......OO....$.......................................OOO...OO..O..$......................................O..O.OOO......$......................................O....OO.......$.......................................O............$..........................................O..O......$.........................................O..........$..........................................OO........$"
>.............OO.....................................
.....OO....OO.O.O...................................
....OOO....OOOO.....................................
...OO......OO.....O.................................
..OO..OO...O..O..O..................................
.OO.....O.......O..OO...............................
.OO.O...OOOO........................................
....O...OO..OO.O....................................
.....OOO....O.O.....................................
......OO...OO..O....................................
......O.....O.......................................
.OOOO.O..O..O...O...................................
.OOO...OOOOO..OOOOOOO.O.............................
O.O....O..........O..OO.............................
OOO.O...O...O.....OOO...............................
.......O.O..O.......OO..............................
.O...O.....OO........OO..O.O........................
....O.......O........OOO.O.OOO......................
...O........OOO......O....O.........................
.....O......O.O.....O.O.............................
.....O......O.OO...O....O...........................
.............O.OOOO...O.....O..O....................
............OO..OO.O.O...O.OOO......................
.................O......O..OOO...OOO................
....................O..O......OO....................
................OO....O..O..........OO..............
..................O.............O...O...............
................OO....OO........O...................
.................O...OOO........O.O.O.O.............
.................O....OO........O.....OO............
........................O........O..OOO.............
.....................O..O........O........O.........
..........................OOOO........OO...O........
.......................O......OO......OO...O........
.......................O....O............O..........
.......................O...............O............
.........................OO.O.O.......O..O..........
.........................O....O.........OOO.........
............................OOO.OO..O...O...O.OO....
.............................O..OO.O.....O...O..O...
.....................................OO..O...O......
..................................O.OO.OO.O..OO...O.
...............................O.....O...O.......O.O
................................OO............OO...O
......................................O.......OO....
.......................................OOO...OO..O..
......................................O..O.OOO......
......................................O....OO.......
.......................................O............
..........................................O..O......
.........................................O..........
..........................................OO........
</a></pre></td></tr></table></center>
<p><a name=a-2c3>:</a><b>2c/3</b> Two thirds of the speed of light - the speed of signals in a
<a href="lex_1.htm#a-2c3wire">2c/3 wire</a> or of some <a href="lex_a.htm#againstthegrain">against the grain</a> <a href="lex_n.htm#negativespaceship">negative spaceship</a>
signals in the <a href="lex_z.htm#zebrastripes">zebra stripes</a> <a href="lex_a.htm#agar">agar</a>, and also the speed of
<a href="lex_b.htm#burn">burning</a> of the <a href="lex_b.htm#blinkerfuse">blinker fuse</a> and the <a href="lex_b.htm#biblockfuse">bi-block fuse</a>.
<p><a name=a-2c3wire>:</a><b>2c/3 wire</b> A <a href="lex_w.htm#wire">wire</a> discovered by Dean Hickerson in March 1997, using
his <a href="lex_d.htm#dr">dr</a> <a href="lex_s.htm#searchprogram">search program</a>. It supports <a href="lex_s.htm#signal">signals</a> that travel through
the wire diagonally at two thirds of the <a href="lex_s.htm#speedoflight">speed of light</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......O..O.......................................$....OOOOOO.......................................$...O.............................................$...O..OOOOOO.....................................$OO.O.O.O....O....................................$OO.O.O.OOOOOO....................................$....OO.O.......O.................................$.......O..OOOOOO.................................$.......O.O.......................................$......OO.O..OOOOOO...............................$.........O.O......O..............................$.........O.O..OOOOO..............................$..........OO.O.......O...........................$.............O..OOOOOO...........................$.............O.O.................................$............OO.O..OOOOOO.........................$...............O.O......O........................$...............O.O..OOOOO........................$................OO.O.......O.....................$...................O..OOOOOO.....................$...................O.O...........................$..................OO.O..OOOOOO...................$.....................O.O......O..................$.....................O.O..OOOOO..................$......................OO.O.......O...............$.........................O..OOOOOO...............$.........................O.O.....................$........................OO.O..OOOOOO.............$...........................O.O......O............$...........................O.O..OOOOO............$............................OO.O.......O.........$...............................O..OOOOOO.........$...............................O.O...............$..............................OO.O..OOOOOO.......$.................................O.O......O......$.................................O.O..OOOOO......$..................................OO.O.......O...$.....................................O..OOOOOO...$.....................................O.O.........$....................................OO.O..OOOOOO.$.......................................O.O......O$.......................................O.O..OOO.O$........................................OO.O...O.$...........................................O..O..$...........................................O.O...$..........................................OO.O.O.$..............................................OO.$"
>......O..O.......................................
....OOOOOO.......................................
...O.............................................
...O..OOOOOO.....................................
OO.O.O.O....O....................................
OO.O.O.OOOOOO....................................
....OO.O.......O.................................
.......O..OOOOOO.................................
.......O.O.......................................
......OO.O..OOOOOO...............................
.........O.O......O..............................
.........O.O..OOOOO..............................
..........OO.O.......O...........................
.............O..OOOOOO...........................
.............O.O.................................
............OO.O..OOOOOO.........................
...............O.O......O........................
...............O.O..OOOOO........................
................OO.O.......O.....................
...................O..OOOOOO.....................
...................O.O...........................
..................OO.O..OOOOOO...................
.....................O.O......O..................
.....................O.O..OOOOO..................
......................OO.O.......O...............
.........................O..OOOOOO...............
.........................O.O.....................
........................OO.O..OOOOOO.............
...........................O.O......O............
...........................O.O..OOOOO............
............................OO.O.......O.........
...............................O..OOOOOO.........
...............................O.O...............
..............................OO.O..OOOOOO.......
.................................O.O......O......
.................................O.O..OOOOO......
..................................OO.O.......O...
.....................................O..OOOOOO...
.....................................O.O.........
....................................OO.O..OOOOOO.
.......................................O.O......O
.......................................O.O..OOO.O
........................................OO.O...O.
...........................................O..O..
...........................................O.O...
..........................................OO.O.O.
..............................................OO.
</a></pre></td></tr></table></center>
<p>Each 2<i>c</i>/3 signal is made up of two half-signals that can be
separated from each other by an arbitrary number of <a href="lex_t.htm#tick">ticks</a>.
<p>Considerable effort has been spent on finding a way to turn a 2<i>c</i>/3
signal 90 or 180 degrees, since this would by one way to prove Life
to be <a href="lex_o.htm#omniperiodic">omniperiodic</a>. There is a known 2<i>c</i>/3 converter shown under
<a href="lex_s.htm#signalelbow">signal elbow</a>, which converts a standard 2<i>c</i>/3 signal into a
double-length signal. This is usable in some situations, but
unfortunately it fails when its input is a double-length signal, so
it can't be used to complete a loop.
<p>Noam Elkies discovered a glider synthesis of a reaction that can
repeatably insert a signal into the upper end of a 2<i>c</i>/3 wire. See
<a href="lex_s.htm#stablepseudoheisenburp">stable pseudo-Heisenburp</a> for details. On 11 September 2017, Martin
Grant reduced the input reaction to five gliders, or three gliders
plus a <a href="lex_h.htm#herschel">Herschel</a>. With the Herschel option the <a href="lex_r.htm#recoverytime">recovery time</a> is
152 ticks.
<p>See also <a href="lex_1.htm#a-5c9wire">5c/9 wire</a>.
<p><a name=a-2c5spaceship>:</a><b>2c/5 spaceship</b> A <a href="lex_s.htm#spaceship">spaceship</a> travelling at two fifths of the
<a href="lex_s.htm#speedoflight">speed of light</a>. The only such spaceships that are currently known
travel orthogonally. Examples include <a href="lex_1.htm#a-30p5h2v0">30P5H2V0</a>, <a href="lex_1.htm#a-44p5h2v0">44P5H2V0</a>,
<a href="lex_1.htm#a-60p5h2v0">60P5H2V0</a>, and <a href="lex_1.htm#a-70p5h2v0">70P5H2V0</a>. As of June 2018, only 30P5H2V0 and
60P5H2V0 have known <a href="lex_g.htm#glidersynthesis">glider synthesis</a> <a href="lex_r.htm#recipe">recipes</a>.
<p><a name=a-2c7spaceship>:</a><b>2c/7 spaceship</b> A <a href="lex_s.htm#spaceship">spaceship</a> travelling at two sevenths of the
<a href="lex_s.htm#speedoflight">speed of light</a>. The only such spaceships that are currently known
travel orthogonally. The first to be found was the <a href="lex_w.htm#weekender">weekender</a>,
found by David Eppstein in January 2000. See also
<a href="lex_w.htm#weekenderdistaff">weekender distaff</a>.
<p><a name=a-2eaters>:</a><b>2 eaters</b> = <a href="lex_t.htm#twoeaters">two eaters</a>
<p><a name=a-2enginecordership>:</a><b>2-engine Cordership</b> The smallest known Cordership, with a minimum
population of 100 cells, discovered by Aidan F. Pierce on 31 December
2017. Luka Okanishi produced a 9-glider synthesis of the spaceship
on the same day.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............O............................$............O.....OOO....................$...........O.O...OO..O...................$............O...O.....O..................$............O...O........................$.................O..OO...................$..................OO...........OO........$...............................OO........$.........................................$.........................................$.........................................$.........................................$.........................................$.........................................$.OOO...................................OO$.OOO.....................O.............OO$..O............OO.........OO.............$...OO.........O.OOO........OO............$....O.........O...O..........O...........$...O...........OO.O.....OOOOO............$................O..........O.............$.........................................$.........................................$.OO......................................$.OO......................................$..O......................................$..O......................................$.O.O.....................................$O........................................$.O..OO...................................$..O...O..................................$....OO...................................$....O....................................$.........................................$.........................................$.........................................$.........................................$.........................................$.........................................$......OO.................................$......OO.................................$...................O.....................$...................OOO...................$....................OO...................$....................O....................$.........................................$..................OO.O...................$..................OOOO...................$....................OO...................$"
>............O............................
............O.....OOO....................
...........O.O...OO..O...................
............O...O.....O..................
............O...O........................
.................O..OO...................
..................OO...........OO........
...............................OO........
.........................................
.........................................
.........................................
.........................................
.........................................
.........................................
.OOO...................................OO
.OOO.....................O.............OO
..O............OO.........OO.............
...OO.........O.OOO........OO............
....O.........O...O..........O...........
...O...........OO.O.....OOOOO............
................O..........O.............
.........................................
.........................................
.OO......................................
.OO......................................
..O......................................
..O......................................
.O.O.....................................
O........................................
.O..OO...................................
..O...O..................................
....OO...................................
....O....................................
.........................................
.........................................
.........................................
.........................................
.........................................
.........................................
......OO.................................
......OO.................................
...................O.....................
...................OOO...................
....................OO...................
....................O....................
.........................................
..................OO.O...................
..................OOOO...................
....................OO...................
</a></pre></td></tr></table></center>
<p><a name=a-2glidercollision>:</a><b>2-glider collision</b> Two gliders can react with each other in many
different ways, either at right angles, or else head-on. A large
number of the reactions cleanly destroy both gliders leaving nothing.
Many of the remaining reactions cleanly create some common objects,
and so are used as the first steps in <a href="lex_g.htm#glidersynthesis">glider synthesis</a> or as part
of constructing interesting objects using <a href="lex_r.htm#rake">rakes</a>. Only a small
number of collisions can be considered <a href="lex_d.htm#dirty">dirty</a> due to creating
multiple objects or a mess.
<p>Here is a list of the possible results along with how many
different ways they can occur (ignoring reflections and rotations).
<pre>
  -------------------------------
  result     right-angle  head-on
  -------------------------------
  nothing             11       17
  <a href="lex_b.htm#beehive">beehive</a>              1        0
  <a href="lex_b.htm#bheptomino">B-heptomino</a>          1        2
  <a href="lex_b.htm#biblock">bi-block</a>             1        0
  <a href="lex_b.htm#blinker">blinker</a>              2        1
  <a href="lex_b.htm#block">block</a>                3        3
  <a href="lex_b.htm#boat">boat</a>                 0        1
  <a href="lex_e.htm#eater1">eater1</a>               1        0
  <a href="lex_g.htm#glider">glider</a>               1        1
  <a href="lex_h.htm#honeyfarm">honey farm</a>           3        2
  <a href="lex_i.htm#interchange">interchange</a>          1        0
  <a href="lex_l.htm#loaf">loaf</a>                 0        1
  <a href="lex_l.htm#lumpsofmuck">lumps of muck</a>        1        0
  <a href="lex_o.htm#octomino">octomino</a>             0        1
  <a href="lex_p.htm#piheptomino">pi-heptomino</a>         2        1
  <a href="lex_p.htm#pond">pond</a>                 1        1
  <a href="lex_t.htm#teardrop">teardrop</a>             1        0
  <a href="lex_t.htm#trafficlight">traffic light</a>        2        1
  <a href="lex_f.htm#fourskewedblocks">four skewed blocks</a>   0        1
  <a href="lex_d.htm#dirty">dirty</a>                6        0
  -------------------------------
</pre>
The messiest of the two-glider collisions in the "dirty" category is
<a href="lex_1.htm#a-2glidermess">2-glider mess</a>.
<p><a name=a-2glidermess>:</a><b>2-glider mess</b> A constellation made up of eight <a href="lex_b.htm#blinker">blinkers</a>, four
<a href="lex_b.htm#block">blocks</a>, a <a href="lex_b.htm#beehive">beehive</a> and a <a href="lex_s.htm#ship">ship</a>, plus four emitted <a href="lex_g.htm#glider">gliders</a>,
created by the following <a href="lex_1.htm#a-2glidercollision">2-glider collision</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O.........$O.O.........$.OO.........$...........O$.........OO.$..........OO$"
>..O.........
O.O.........
.OO.........
...........O
.........OO.
..........OO
</a></pre></td></tr></table></center>
Two of the blocks, two of the gliders, and the ship are the standard
signature <a href="lex_a.htm#ash">ash</a> of a <a href="lex_h.htm#herschel">Herschel</a>.
<p><a name=a-30p5h2v0>:</a><b>30P5H2V0</b> (2<i>c</i>/5 orthogonally, p5) A spaceship discovered by Paul Tooke
on 7 December 2000. With just 30 cells, it is currently the smallest
known 2<i>c</i>/5 spaceship. A <a href="lex_g.htm#glidersynthesis">glider synthesis</a> for 30P5H2V0 was found by
Martin Grant in January 2015, based on a predecessor by Tanner
Jacobi.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O........$...OOO.......$..OO.OO......$.............$.O.O.O.O..O..$OO...O...OOO.$OO...O......O$..........O.O$........O.O..$.........O..O$............O$"
>....O........
...OOO.......
..OO.OO......
.............
.O.O.O.O..O..
OO...O...OOO.
OO...O......O
..........O.O
........O.O..
.........O..O
............O
</a></pre></td></tr></table></center>
<p><a name=a-31c240>:</a><b>31c/240</b> The rate of travel of the <a href="lex_1.htm#a-31c240herschelpairclimber">31c/240 Herschel-pair climber</a>
reaction, and <a href="lex_c.htm#caterpillar">Caterpillar</a>-type spaceships based on that reaction.
Each <a href="lex_h.htm#herschel">Herschel</a> travels 31 cells orthogonally every 240 <a href="lex_t.htm#tick">ticks</a>.
<p><a name=a-31c240herschelpairclimber>:</a><b>31c/240 Herschel-pair climber</b> The mechanism defining the rate of
travel of the <a href="lex_c.htm#centipede">Centipede</a> and <a href="lex_s.htm#shieldbug">shield bug</a> spaceships. Compare
<a href="lex_p.htm#piclimber">pi climber</a>. It consists of a pair of <a href="lex_h.htm#herschel">Herschels</a> climbing two
parallel chains of blocks. Certain spacings between the block chains
allow gliders from each Herschel to delete the extra ash objects
produced by the other Herschel. Two more gliders escape, one to each
side, leaving only an exact copy of the original block chains, but
shifted forward by 9 cells:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.........................................................OO$OO.........................................................OO$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$OO.........................................................OO$OO.........................................................OO$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.......................................................OOO...$.......................................................O..O..$.......................................................O..O..$......................................................OOOO...$.......OOO............................................OO.....$........O............................................O.......$......OOO.............................................O......$......................................................O......$"
>OO.........................................................OO
OO.........................................................OO
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
OO.........................................................OO
OO.........................................................OO
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.......................................................OOO...
.......................................................O..O..
.......................................................O..O..
......................................................OOOO...
.......OOO............................................OO.....
........O............................................O.......
......OOO.............................................O......
......................................................O......
</a></pre></td></tr></table></center>
<p><a name=a-3c7spaceship>:</a><b>3c/7 spaceship</b> A <a href="lex_s.htm#spaceship">spaceship</a> travelling at three sevenths of the
<a href="lex_s.htm#speedoflight">speed of light</a>. The only such spaceships that are currently known
travel orthogonally. The first to be found was the
<a href="lex_s.htm#spaghettimonster">spaghetti monster</a>, found by Tim Coe in June 2016.
<p><a name=a-3enginecordership>:</a><b>3-engine Cordership</b> See <a href="lex_c.htm#cordership">Cordership</a>.
<p><a name=a-44p5h2v0>:</a><b>44P5H2V0</b> (2<i>c</i>/5 orthogonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Dean
Hickerson on 23 July 1991, the first 2<i>c</i>/5 spaceship to be found.
Small <a href="lex_t.htm#tagalong">tagalongs</a> were found by Robert Wainwright and David Bell that
allowed the creation of arbitrarily large 2<i>c</i>/5 spaceships. These were
the only known 2<i>c</i>/5 spaceships until the discovery of <a href="lex_1.htm#a-70p5h2v0">70P5H2V0</a> in
December 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O.....O....$...OOO...OOO...$..O..O...O..O..$.OOO.......OOO.$..O.O.....O.O..$....OO...OO....$O....O...O....O$.....O...O.....$OO...O...O...OO$..O..O...O..O..$....O.....O....$"
>....O.....O....
...OOO...OOO...
..O..O...O..O..
.OOO.......OOO.
..O.O.....O.O..
....OO...OO....
O....O...O....O
.....O...O.....
OO...O...O...OO
..O..O...O..O..
....O.....O....
</a></pre></td></tr></table></center>
<p><a name=a-45degreelwsstog>:</a><b>45-degree LWSS-to-G</b> = <a href="lex_1.htm#a-45degreemwsstog">45-degree MWSS-to-G</a>.
<p><a name=a-45degreemwsstog>:</a><b>45-degree MWSS-to-G</b> The following small <a href="lex_c.htm#converter">converter</a>, which accepts an
MWSS or LWSS as input and produces an output glider travelling at a
45-degree angle relative to the input direction.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O.OO....O.....$.........OO.O...O.O....$................O.O....$.......OOOOO...OO.OOO..$......O..O..O........O.$......OO...OO..OO.OOO..$...............OO.O....$......................O$....................OOO$...................O...$...................OO..$.OOOOO.................$O....O.................$.....O.................$O...O..................$..O.............OO.....$...............O..O....$................OO.....$........OO.............$.......O.O.............$.......O...............$......OO...............$...................OO..$...................O...$....................OOO$......................O$"
>.........O.OO....O.....
.........OO.O...O.O....
................O.O....
.......OOOOO...OO.OOO..
......O..O..O........O.
......OO...OO..OO.OOO..
...............OO.O....
......................O
....................OOO
...................O...
...................OO..
.OOOOO.................
O....O.................
.....O.................
O...O..................
..O.............OO.....
...............O..O....
................OO.....
........OO.............
.......O.O.............
.......O...............
......OO...............
...................OO..
...................O...
....................OOO
......................O
</a></pre></td></tr></table></center>
<p><a name=a-4812diamond>:</a><b>4-8-12 diamond</b> The following <a href="lex_p.htm#pureglidergenerator">pure glider generator</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OOOO....$............$..OOOOOOOO..$............$OOOOOOOOOOOO$............$..OOOOOOOO..$............$....OOOO....$"
>....OOOO....
............
..OOOOOOOO..
............
OOOOOOOOOOOO
............
..OOOOOOOO..
............
....OOOO....
</a></pre></td></tr></table></center>
<p><a name=a-4boats>:</a><b>4 boats</b> (p2)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O....$..O.O...$.O.OO...$O.O..OO.$.OO..O.O$...OO.O.$...O.O..$....O...$"
>...O....
..O.O...
.O.OO...
O.O..OO.
.OO..O.O
...OO.O.
...O.O..
....O...
</a></pre></td></tr></table></center>
<p><a name=a-4f>:</a><b>4F</b> = <a href="lex_f.htm#fastforwardforcefield">Fast Forward Force Field</a>. This term is no longer in common
use.
<p><a name=a-4gto5greaction>:</a><b>4g-to-5g reaction</b> A reaction involving 4 gliders which cleanly
produces 5 gliders. The one shown below was found by Dieter Leithner
in July 1992:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.O..........................................$.OO..........................................$.O...........................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.................O...........................$...............O.O..O........................$................OO..O.O....................O.$....................OO....................OO.$..........................................O.O$"
>O.O..........................................
.OO..........................................
.O...........................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.................O...........................
...............O.O..O........................
................OO..O.O....................O.
....................OO....................OO.
..........................................O.O
</a></pre></td></tr></table></center>
<p>The first two gliders collide to produce a <a href="lex_t.htm#trafficlight">traffic light</a> and
glider. The other two gliders react symmetrically with the evolving
<a href="lex_t.htm#trafficlight">traffic light</a> to form four gliders. A <a href="lex_g.htm#glidergun">glider gun</a> can be built by
using <a href="lex_r.htm#reflector">reflectors</a> to turn four of the output gliders so that they
repeat the reaction.
<p><a name=a-56p6h1v0>:</a><b>56P6H1V0</b> (<i>c</i>/6 orthogonally, p6) A 56-cell <a href="lex_s.htm#spaceship">spaceship</a> discovered by
Hartmut Holzwart in 2009, the smallest known <i>c</i>/6 orthogonal spaceship
as of July 2018.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OOO..........OOO.....$OOO.O.......OO.......O.OOO$....O...O..O..O..O...O....$....O.....O....O.....O....$..........OO..OO..........$.......O...O..O...O.......$.......O.O......O.O.......$........OOOOOOOOOO........$..........O....O..........$........O........O........$.......O..........O.......$........O........O........$"
>.....OOO..........OOO.....
OOO.O.......OO.......O.OOO
....O...O..O..O..O...O....
....O.....O....O.....O....
..........OO..OO..........
.......O...O..O...O.......
.......O.O......O.O.......
........OOOOOOOOOO........
..........O....O..........
........O........O........
.......O..........O.......
........O........O........
</a></pre></td></tr></table></center>
<p><a name=a-58p5h1v1>:</a><b>58P5H1V1</b> (<i>c</i>/5 diagonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Matthias
Merzenich on 5 September 2010. In terms of its minimum population of
58 cells it is the smallest known <i>c</i>/5 diagonal spaceship. It provides
sparks at its trailing edge which can perturb gliders, and this
property was used to create the first <i>c</i>/5 diagonal puffers. These
sparks also allow the attachment of tagalongs which was used to
create the first <i>c</i>/5 diagonal wickstretcher in January 2011.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................OO.$....................OO.$...................O..O$................OO.O..O$......................O$..............OO...O..O$..............OO.....O.$...............O.OOOOO.$................O......$.......................$.......................$.............OOO.......$.............O.........$...........OO..........$.....OO....O...........$.....OOO...O...........$...O....O..............$...O...O...............$.......O...............$..OO.O.O...............$OO.....O...............$OO....OO...............$..OOOO.................$"
>....................OO.
....................OO.
...................O..O
................OO.O..O
......................O
..............OO...O..O
..............OO.....O.
...............O.OOOOO.
................O......
.......................
.......................
.............OOO.......
.............O.........
...........OO..........
.....OO....O...........
.....OOO...O...........
...O....O..............
...O...O...............
.......O...............
..OO.O.O...............
OO.....O...............
OO....OO...............
..OOOO.................
</a></pre></td></tr></table></center>
<p><a name=a-5c9wire>:</a><b>5c/9 wire</b> A <a href="lex_w.htm#wire">wire</a> discovered by Dean Hickerson in April 1997, using
his <a href="lex_d.htm#dr">dr</a> <a href="lex_s.htm#searchprogram">search program</a>. It supports <a href="lex_s.htm#signal">signals</a> that travel through
the wire diagonally at five ninths of the <a href="lex_s.htm#speedoflight">speed of light</a>. See also
<a href="lex_1.htm#a-2c3wire">2c/3 wire</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O.OO............................................$....OO..O...........................................$.......O..O.........................................$..OOOOO.OO.O..O.....................................$.O..O...O..OOOO.....................................$.O.OO.O.O.O......O..................................$OO.O.OOOO.O..OOOOO..................................$...O......O.O.....OO................................$OO.O.OOOO.O..O.OO.O.O...............................$O..O.O..O.OO.O.O.O..O...............................$..OO..O..O...O.O....O.OO............................$....OO....OOOO.OO..OO..O............................$....O...O.O......O...O..............................$.....OOOO.O.OOOOO.OOO...O...........................$.........O.O....O.O..OOOO...........................$.......O...O..O...O.O......O........................$.......OO..O.O.OOOO.O..OOOOO........................$..........OO.O......O.O.....OO......................$.............O.OOOO.O..O.OO.O.O.....................$.............O.O..O.OO.O.O.O..O.....................$............OO..O..O...O.O....O.OO..................$..............OO....OOOO.OO..OO..O..................$..............O...O.O......O...O....................$...............OOOO.O.OOOOO.OOO...O.................$...................O.O....O.O..OOOO.................$.................O...O..O...O.O......O..............$.................OO..O.O.OOOO.O..OOOOO..............$....................OO.O......O.O.....OO............$.......................O.OOOO.O..O.OO.O.O...........$.......................O.O..O.OO.O.O.O..O...........$......................OO..O..O...O.O....O.OO........$........................OO....OOOO.OO..OO..O........$........................O...O.O......O...O..........$.........................OOOO.O.OOOOO.OOO...O.......$.............................O.O....O.O..OOOO.......$...........................O...O..O...O.O......O....$...........................OO..O.O.OOOO.O..OOOOO....$..............................OO.O......O.O.....OO..$.................................O.OOOO.O..O.OO.O..O$.................................O.O..O.OO.O.O.O..OO$................................OO..O..O...O.O......$..................................OO....OOOO.OO.....$..................................O...O.O......O....$...................................OOOO.O.OOOOO.O...$.......................................O.O....O.O...$.....................................O...O..O...OO..$.....................................OO..O.O.OOO..O.$........................................OO.O.....O..$............................................O.OOO...$.............................................OO.....$"
>....O.OO............................................
....OO..O...........................................
.......O..O.........................................
..OOOOO.OO.O..O.....................................
.O..O...O..OOOO.....................................
.O.OO.O.O.O......O..................................
OO.O.OOOO.O..OOOOO..................................
...O......O.O.....OO................................
OO.O.OOOO.O..O.OO.O.O...............................
O..O.O..O.OO.O.O.O..O...............................
..OO..O..O...O.O....O.OO............................
....OO....OOOO.OO..OO..O............................
....O...O.O......O...O..............................
.....OOOO.O.OOOOO.OOO...O...........................
.........O.O....O.O..OOOO...........................
.......O...O..O...O.O......O........................
.......OO..O.O.OOOO.O..OOOOO........................
..........OO.O......O.O.....OO......................
.............O.OOOO.O..O.OO.O.O.....................
.............O.O..O.OO.O.O.O..O.....................
............OO..O..O...O.O....O.OO..................
..............OO....OOOO.OO..OO..O..................
..............O...O.O......O...O....................
...............OOOO.O.OOOOO.OOO...O.................
...................O.O....O.O..OOOO.................
.................O...O..O...O.O......O..............
.................OO..O.O.OOOO.O..OOOOO..............
....................OO.O......O.O.....OO............
.......................O.OOOO.O..O.OO.O.O...........
.......................O.O..O.OO.O.O.O..O...........
......................OO..O..O...O.O....O.OO........
........................OO....OOOO.OO..OO..O........
........................O...O.O......O...O..........
.........................OOOO.O.OOOOO.OOO...O.......
.............................O.O....O.O..OOOO.......
...........................O...O..O...O.O......O....
...........................OO..O.O.OOOO.O..OOOOO....
..............................OO.O......O.O.....OO..
.................................O.OOOO.O..O.OO.O..O
.................................O.O..O.OO.O.O.O..OO
................................OO..O..O...O.O......
..................................OO....OOOO.OO.....
..................................O...O.O......O....
...................................OOOO.O.OOOOO.O...
.......................................O.O....O.O...
.....................................O...O..O...OO..
.....................................OO..O.O.OOO..O.
........................................OO.O.....O..
............................................O.OOO...
.............................................OO.....
</a></pre></td></tr></table></center>
<p><a name=a-60p312>:</a><b>60P312</b> (p312) Found by Dave Greene, 1 November 2004, based on
<a href="lex_1.htm#a-92p156">92P156</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................OO....................$....................OO....................$..........................................$..........................................$..........................................$...............................OO.........$......................OO......O..O........$......................O........OO.........$......O...............O...................$.....O.O...............O..................$.....O.O..................................$......O...................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$................................O..O......$.................................OOO......$OO......................................OO$OO......................................OO$......OOO.................................$......O..O................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$...................................O......$..................................O.O.....$..................O...............O.O.....$...................O...............O......$.........OO........O......................$........O..O......OO......................$.........OO...............................$..........................................$..........................................$..........................................$....................OO....................$....................OO....................$"
>....................OO....................
....................OO....................
..........................................
..........................................
..........................................
...............................OO.........
......................OO......O..O........
......................O........OO.........
......O...............O...................
.....O.O...............O..................
.....O.O..................................
......O...................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
................................O..O......
.................................OOO......
OO......................................OO
OO......................................OO
......OOO.................................
......O..O................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
...................................O......
..................................O.O.....
..................O...............O.O.....
...................O...............O......
.........OO........O......................
........O..O......OO......................
.........OO...............................
..........................................
..........................................
..........................................
....................OO....................
....................OO....................
</a></pre></td></tr></table></center>
<p><a name=a-60p5h2v0>:</a><b>60P5H2V0</b> (2<i>c</i>/5 orthogonally, p5) A 60-cell <a href="lex_s.htm#spaceship">spaceship</a> discovered by
Tim Coe in May 1996. It was the first non-<i>c</i>/2 orthogonal spaceship
to be successfully constructed via <a href="lex_g.htm#glidersynthesis">glider synthesis</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.......O.....$...OO.OO...OO.OO...$......OO...OO......$........O.O........$.O....O.O.O.O....O.$OOO.....O.O.....OOO$O.....O.O.O.O.....O$..O..O..O.O..O..O..$..OO...OO.OO...OO..$O.......O.O.......O$O......OO.OO......O$"
>.....O.......O.....
...OO.OO...OO.OO...
......OO...OO......
........O.O........
.O....O.O.O.O....O.
OOO.....O.O.....OOO
O.....O.O.O.O.....O
..O..O..O.O..O..O..
..OO...OO.OO...OO..
O.......O.O.......O
O......OO.OO......O
</a></pre></td></tr></table></center>
<p><a name=a-67p5h1v1>:</a><b>67P5H1V1</b> (<i>c</i>/5 diagonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Nicolay
Beluchenko in July 2006. It was the smallest known <i>c</i>/5 diagonal
spaceship until the discovery of <a href="lex_1.htm#a-58p5h1v1">58P5H1V1</a> in September 2010.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OOO..............$....O...OO............$...OO...O.............$..O.....O.............$.O.OO....OO...........$OO..O......O..........$...OO..O..............$...OO.OO..............$....O.................$.....OOOOO............$......O..OOO..OO......$.........O.OO..O.OO...$.........O...O.O..O...$..........OOOOO.....O.$.........O..O..O.....O$.....................O$................OOO...$................O.....$...............O......$................OO....$"
>.....OOO..............
....O...OO............
...OO...O.............
..O.....O.............
.O.OO....OO...........
OO..O......O..........
...OO..O..............
...OO.OO..............
....O.................
.....OOOOO............
......O..OOO..OO......
.........O.OO..O.OO...
.........O...O.O..O...
..........OOOOO.....O.
.........O..O..O.....O
.....................O
................OOO...
................O.....
...............O......
................OO....
</a></pre></td></tr></table></center>
<p><a name=a-70p5h2v0>:</a><b>70P5H2V0</b> (2<i>c</i>/5 orthogonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Hartmut
Holzwart on 5 December 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O............O..$.O.O..........O.O.$OO.OO........OO.OO$OO..............OO$..O............O..$..OOOO......OOOO..$..O..OO....OO..O..$...OO..O..O..OO...$....OO.OOOO.OO....$.....O.O..O.O.....$......O....O......$..................$.....O......O.....$...OO.OO..OO.OO...$....O........O....$....OO......OO....$"
>..O............O..
.O.O..........O.O.
OO.OO........OO.OO
OO..............OO
..O............O..
..OOOO......OOOO..
..O..OO....OO..O..
...OO..O..O..OO...
....OO.OOOO.OO....
.....O.O..O.O.....
......O....O......
..................
.....O......O.....
...OO.OO..OO.OO...
....O........O....
....OO......OO....
</a></pre></td></tr></table></center>
<p><a name=a-7x9eater>:</a><b>7x9 eater</b> A high-<a href="lex_c.htm#clearance">clearance</a> <a href="lex_e.htm#eater5">eater5</a> variant that can suppress
passing gliders in tight spaces, such as on the inside corner of an
<a href="lex_r.htm#r64">R64</a> <a href="lex_h.htm#herschelconduit">Herschel conduit</a>. Like the eater5 and <a href="lex_s.htm#sidesnagger">sidesnagger</a>, the 7x9
eater is able to eat gliders coming from two directions, though this
ability is not commonly used.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..........$..O.........$OOO.........$............$......O.....$.....O......$.....OOO....$............$............$......O...OO$.....O.O...O$.....OO...O.$.........O..$.....OOOOO.O$.....O....OO$......OOO...$........O.OO$.........O.O$"
>.O..........
..O.........
OOO.........
............
......O.....
.....O......
.....OOO....
............
............
......O...OO
.....O.O...O
.....OO...O.
.........O..
.....OOOOO.O
.....O....OO
......OOO...
........O.OO
.........O.O
</a></pre></td></tr></table></center>
<p><a name=a-83p7h1v1>:</a><b>83P7H1V1</b> = <a href="lex_l.htm#lobster">lobster</a>
<p><a name=a-86p5h1v1>:</a><b>86P5H1V1</b> (<i>c</i>/5 diagonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Jason
Summers on January 8, 2005. It was the smallest known <i>c</i>/5 diagonal
spaceship until the discovery of <a href="lex_1.htm#a-67p5h1v1">67P5H1V1</a> in July 2006.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........OOO...........$........O..............$.......O...............$...........OO..........$........OO.O...........$..............OOO......$...........O..OO..OO...$..O........OO.O...OO...$.O..O......O..OO.......$O...O..................$O...........O..O.......$O..OO.OOO...O...OO.OO..$...O...O..OO..O..O.....$.................OO..O.$.....OOOO...O.....O...O$.....OO.O.O..........O.$.....O.....O......OO...$...........OOO.........$......OO.....OO.O......$......OO...O....O......$...........O...........$.............O.O.......$..............O........$"
>.........OOO...........
........O..............
.......O...............
...........OO..........
........OO.O...........
..............OOO......
...........O..OO..OO...
..O........OO.O...OO...
.O..O......O..OO.......
O...O..................
O...........O..O.......
O..OO.OOO...O...OO.OO..
...O...O..OO..O..O.....
.................OO..O.
.....OOOO...O.....O...O
.....OO.O.O..........O.
.....O.....O......OO...
...........OOO.........
......OO.....OO.O......
......OO...O....O......
...........O...........
.............O.O.......
..............O........
</a></pre></td></tr></table></center>
<p><a name=a-90degreekickback>:</a><b>90-degree kickback</b> See <a href="lex_k.htm#kickbackreaction">kickback reaction</a>.
<p><a name=a-92p156>:</a><b>92P156</b> (p156) Discovered by Jason Summers on October 31, 2004. It is
actually an eight-barrel <a href="lex_g.htm#glidergun">glider gun</a>, with all output gliders
suppressed by <a href="lex_e.htm#eater1">eater1s</a>. Replacing each pair of eater1s with a
<a href="lex_b.htm#beehive">beehive</a> doubles the period and produces <a href="lex_1.htm#a-60p312">60P312</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................OO....................$....................OO....................$..........................................$..........................................$..........................................$........OO......................OO........$.........O............OO........O.........$.........O.O..........O.......O.O.........$.....O....OO..........O.......OO....O.....$.....OOO...............O..........OOO.....$........O........................O........$.......OO........................OO.......$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$................................O..O......$.................................OOO......$OO......................................OO$OO......................................OO$......OOO.................................$......O..O................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$.......OO........................OO.......$........O........................O........$.....OOO..........O...............OOO.....$.....O....OO.......O..........OO....O.....$.........O.O.......O..........O.O.........$.........O........OO............O.........$........OO......................OO........$..........................................$..........................................$..........................................$....................OO....................$....................OO....................$"
>....................OO....................
....................OO....................
..........................................
..........................................
..........................................
........OO......................OO........
.........O............OO........O.........
.........O.O..........O.......O.O.........
.....O....OO..........O.......OO....O.....
.....OOO...............O..........OOO.....
........O........................O........
.......OO........................OO.......
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
................................O..O......
.................................OOO......
OO......................................OO
OO......................................OO
......OOO.................................
......O..O................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
.......OO........................OO.......
........O........................O........
.....OOO..........O...............OOO.....
.....O....OO.......O..........OO....O.....
.........O.O.......O..........O.O.........
.........O........OO............O.........
........OO......................OO........
..........................................
..........................................
..........................................
....................OO....................
....................OO....................
</a></pre></td></tr></table></center>
<p><a name=a-9hd>:</a><b>9hd</b> Separated by 9 <a href="lex_h.htm#halfdiagonal">half diagonals</a>. Specifically used to describe
the distance between the two <a href="lex_c.htm#constructionlane">construction lanes</a> in the
<a href="lex_l.htm#linearpropagator">linear propagator</a>.
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
</body>