1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (1)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">
<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
<p><a name=a-0hddemonoid>:</a><b>0hd Demonoid</b> See <a href="lex_d.htm#demonoid">Demonoid</a>.
<p><a name=a-101>:</a><b>101</b> (p5) Found by Achim Flammenkamp in August 1994. The name was
suggested by Bill Gosper, noting that the <a href="lex_p.htm#phase">phase</a> shown below
displays the period in binary.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO......OO....$...O.O......O.O...$...O..........O...$OO.O..........O.OO$OO.O.O..OO..O.O.OO$...O.O.O..O.O.O...$...O.O.O..O.O.O...$OO.O.O..OO..O.O.OO$OO.O..........O.OO$...O..........O...$...O.O......O.O...$....OO......OO....$"
>....OO......OO....
...O.O......O.O...
...O..........O...
OO.O..........O.OO
OO.O.O..OO..O.O.OO
...O.O.O..O.O.O...
...O.O.O..O.O.O...
OO.O.O..OO..O.O.OO
OO.O..........O.OO
...O..........O...
...O.O......O.O...
....OO......OO....
</a></pre></td></tr></table></center>
<p><a name=a-10hddemonoid>:</a><b>10hd Demonoid</b> See <a href="lex_d.htm#demonoid">Demonoid</a>.
<p><a name=a-119p4h1v0>:</a><b>119P4H1V0</b> (<i>c</i>/4 orthogonally, p4) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Dean
Hickerson in December 1989, the first spaceship of its kind to be
found. Hickerson then found a small <a href="lex_t.htm#tagalong">tagalong</a> for this spaceship
which could be attached to one side or both. These three variants of
119P4H1V0 were the only known <i>c</i>/4 orthogonal spaceships until July
1992 when Hartmut Holzwart discovered a larger spaceship, 163P4H1V0.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................................O.$................O...............O.O$......O.O......O.....OO........O...$......O....O....O.OOOOOO....OO.....$......O.OOOOOOOO..........O..O.OOO.$.........O.....O.......OOOO....OOO.$....OO.................OOO.O.......$.O..OO.......OO........OO..........$.O..O..............................$O..................................$.O..O..............................$.O..OO.......OO........OO..........$....OO.................OOO.O.......$.........O.....O.......OOOO....OOO.$......O.OOOOOOOO..........O..O.OOO.$......O....O....O.OOOOOO....OO.....$......O.O......O.....OO........O...$................O...............O.O$.................................O.$"
>.................................O.
................O...............O.O
......O.O......O.....OO........O...
......O....O....O.OOOOOO....OO.....
......O.OOOOOOOO..........O..O.OOO.
.........O.....O.......OOOO....OOO.
....OO.................OOO.O.......
.O..OO.......OO........OO..........
.O..O..............................
O..................................
.O..O..............................
.O..OO.......OO........OO..........
....OO.................OOO.O.......
.........O.....O.......OOOO....OOO.
......O.OOOOOOOO..........O..O.OOO.
......O....O....O.OOOOOO....OO.....
......O.O......O.....OO........O...
................O...............O.O
.................................O.
</a></pre></td></tr></table></center>
<p><a name=a-123>:</a><b>1-2-3</b> (p3) Found by Dave Buckingham, August 1972. This is one of only
three essentially different p3 <a href="lex_o.htm#oscillator">oscillators</a> with only three cells in
the <a href="lex_r.htm#rotor">rotor</a>. The others are <a href="lex_s.htm#stillater">stillater</a> and <a href="lex_c.htm#cuphook">cuphook</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO......$O..O......$OO.O.OO...$.O.O..O...$.O....O.OO$..OOO.O.OO$.....O....$....O.....$....OO....$"
>..OO......
O..O......
OO.O.OO...
.O.O..O...
.O....O.OO
..OOO.O.OO
.....O....
....O.....
....OO....
</a></pre></td></tr></table></center>
<p><a name=a-1234>:</a><b>1-2-3-4</b> (p4) See also <a href="lex_a.htm#achimsp4">Achim's p4</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$....O.O....$...O.O.O...$...O...O...$OO.O.O.O.OO$O.O.....O.O$...OOOOO...$...........$.....O.....$....O.O....$.....O.....$"
>.....O.....
....O.O....
...O.O.O...
...O...O...
OO.O.O.O.OO
O.O.....O.O
...OOOOO...
...........
.....O.....
....O.O....
.....O.....
</a></pre></td></tr></table></center>
<p><a name=a-135degreemwsstog>:</a><b>135-degree MWSS-to-G</b> The following <a href="lex_c.htm#converter">converter</a>, discovered by
Matthias Merzenich in July 2013. It accepts an <a href="lex_m.htm#mwss">MWSS</a> as input, and
produces an output <a href="lex_g.htm#glider">glider</a> travelling at a 135-degree angle relative
to the input direction.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......OO......$......O.O.OO.O$........O.O.OO$........OO....$..............$..............$.OOOOO.....OO.$O....O.....OO.$.....O........$O...O.........$..O...........$"
>......OO......
......O.O.OO.O
........O.O.OO
........OO....
..............
..............
.OOOOO.....OO.
O....O.....OO.
.....O........
O...O.........
..O...........
</a></pre></td></tr></table></center>
<p><a name=a-14ner>:</a><b>14-ner</b> = <a href="lex_f.htm#fourteener">fourteener</a>
<p><a name=a-17c45spaceship>:</a><b>17c/45 spaceship</b> A <a href="lex_s.htm#spaceship">spaceship</a> travelling at seventeen forty-fifths
of the <a href="lex_s.htm#speedoflight">speed of light</a>. This was the first known <a href="lex_m.htm#macrospaceship">macro-spaceship</a>
speed. See <a href="lex_c.htm#caterpillar">Caterpillar</a> for details.
<p><a name=a-180degreekickback>:</a><b>180-degree kickback</b> The only other two-<a href="lex_g.htm#glider">glider</a> collision besides the
standard <a href="lex_k.htm#kickback">kickback</a> that produces a clean output glider with no
leftover <a href="lex_a.htm#ash">ash</a>. The 180-degree change in direction is occasionally
useful in <a href="lex_g.htm#glidersynthesis">glider synthesis</a>, but is rarely used in <a href="lex_s.htm#signal">signal</a>
circuitry or in <a href="lex_s.htm#selfsupporting">self-supporting</a> patterns like the <a href="lex_c.htm#caterpillar">Caterpillar</a> or
<a href="lex_c.htm#centipede">Centipede</a>, because 90-degree collisions are generally much easier
to arrange.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.$O..$OOO$...$...$.OO$O.O$..O$"
>.O.
O..
OOO
...
...
.OO
O.O
..O
</a></pre></td></tr></table></center>
<p><a name=a-1gseed>:</a><b>1G seed</b> See <a href="lex_s.htm#seed">seed</a>.
<p><a name=a-21c6spaceship>:</a><b>(2,1)c/6 spaceship</b> A <a href="lex_k.htm#knightship">knightship</a> that travels obliquely at the
fastest possible speed. To date the only known example of a
spaceship with this velocity is <a href="lex_s.htm#sirrobin">Sir Robin</a>.
<p><a name=a-235c79herschelclimber>:</a><b>(23,5)c/79 Herschel climber</b> The following glider-supported
<a href="lex_h.htm#herschelclimber">Herschel climber</a> reaction used in the <a href="lex_s.htm#selfsupporting">self-supporting</a> <a href="lex_w.htm#waterbear">waterbear</a>
<a href="lex_k.htm#knightship">knightship</a>, which can be repeated every 79 ticks, moving the
<a href="lex_h.htm#herschel">Herschel</a> 23 cells to the right and 5 cells upward, and releasing
two <a href="lex_g.htm#glider">gliders</a> to the northwest and southwest. As the diagram shows,
it is possible to substitute a loaf or other <a href="lex_s.htm#stilllife">still lifes</a> for some
or all of the support gliders. This fact is used to advantage at the
front end of the waterbear.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............O.O...............O..$...............OO...............O.O.$................O...............O..O$.................................OO.$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$O...................................$O.O.................................$OOO.................................$..O.................................$"
>...............O.O...............O..
...............OO...............O.O.
................O...............O..O
.................................OO.
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
O...................................
O.O.................................
OOO.................................
..O.................................
</a></pre></td></tr></table></center>
<p><a name=a-24cellquadraticgrowth>:</a><b>24-cell quadratic growth</b> A 39786x143 <a href="lex_q.htm#quadraticgrowth">quadratic growth</a> pattern found
by Michael Simkin in October 2014, two days after
<a href="lex_1.htm#a-25cellquadraticgrowth">25-cell quadratic growth</a> and a week before
<a href="lex_s.htm#switchenginepingpong">switch-engine ping-pong</a>.
<p><a name=a-25cellquadraticgrowth>:</a><b>25-cell quadratic growth</b> A 25-cell quadratic growth pattern found by
Michael Simkin in October 2014, with a bounding box of 21372x172. It
was the smallest-population quadratic growth pattern for two days,
until the discovery of <a href="lex_1.htm#a-24cellquadraticgrowth">24-cell quadratic growth</a>. It superseded
<a href="lex_w.htm#wedge">wedge</a>, which had held the record for eight years. See
<a href="lex_s.htm#switchenginepingpong">switch-engine ping-pong</a> for the lowest-population
<a href="lex_s.htm#superlineargrowth">superlinear growth</a> pattern as of July 2018, along with a list of
the record-holders.
<p><a name=a-25p3h1v01>:</a><b>25P3H1V0.1</b> (<i>c</i>/3 orthogonally, p3) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Dean
Hickerson in August 1989. It was the first <i>c</i>/3 spaceship to be
discovered. In terms of its 25 cells, it is tied with <a href="lex_1.htm#a-25p3h1v02">25P3H1V0.2</a> as
the smallest <i>c</i>/3 spaceship. Unlike 25P3H1V0.2, it has a population
of 25 in all of its phases, as well as a smaller bounding box.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......OO.O.....$....OO.O.OO.OOO.$.OOOO..OO......O$O....O...O...OO.$.OO.............$"
>.......OO.O.....
....OO.O.OO.OOO.
.OOOO..OO......O
O....O...O...OO.
.OO.............
</a></pre></td></tr></table></center>
Martin Grant discovered a glider synthesis for 25P3H1V0.1 on 6
January 2015.
<p><a name=a-25p3h1v02>:</a><b>25P3H1V0.2</b> (<i>c</i>/3 orthogonally, p3) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by David
Bell in early 1992, with a minimum of 25 cells - the lowest number of
cells known for any <i>c</i>/3 spaceship. A note in
<a href="lex_s.htm#spaceshipsinconwayslife">Spaceships in Conway's Life</a> indicates that it was found with a
search that limited the number of live cells in each column, and
possibly also the maximum cross-section (4 cells in this case). See
also <a href="lex_e.htm#edgerepairspaceship">edge-repair spaceship</a> for a very similar <i>c</i>/3 spaceship with a
minimum population of 26.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........O.....$........OOO.OOO.$.......OO......O$..O...O..O...OO.$.OOOO...........$O...O...........$.O.O..O.........$.....O..........$"
>..........O.....
........OOO.OOO.
.......OO......O
..O...O..O...OO.
.OOOO...........
O...O...........
.O.O..O.........
.....O..........
</a></pre></td></tr></table></center>
In December 2017 a collaborative effort found a 26-glider synthesis
for this spaceship.
<p><a name=a-26cellquadraticgrowth>:</a><b>26-cell quadratic growth</b> = <a href="lex_w.htm#wedge">wedge</a>.
<p><a name=a-295p5h1v1>:</a><b>295P5H1V1</b> (<i>c</i>/5 diagonally, p5) The first <a href="lex_s.htm#spaceship">spaceship</a> of its type to be
discovered, found by Jason Summers on 22 November 2000.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.............OO.....................................$.....OO....OO.O.O...................................$....OOO....OOOO.....................................$...OO......OO.....O.................................$..OO..OO...O..O..O..................................$.OO.....O.......O..OO...............................$.OO.O...OOOO........................................$....O...OO..OO.O....................................$.....OOO....O.O.....................................$......OO...OO..O....................................$......O.....O.......................................$.OOOO.O..O..O...O...................................$.OOO...OOOOO..OOOOOOO.O.............................$O.O....O..........O..OO.............................$OOO.O...O...O.....OOO...............................$.......O.O..O.......OO..............................$.O...O.....OO........OO..O.O........................$....O.......O........OOO.O.OOO......................$...O........OOO......O....O.........................$.....O......O.O.....O.O.............................$.....O......O.OO...O....O...........................$.............O.OOOO...O.....O..O....................$............OO..OO.O.O...O.OOO......................$.................O......O..OOO...OOO................$....................O..O......OO....................$................OO....O..O..........OO..............$..................O.............O...O...............$................OO....OO........O...................$.................O...OOO........O.O.O.O.............$.................O....OO........O.....OO............$........................O........O..OOO.............$.....................O..O........O........O.........$..........................OOOO........OO...O........$.......................O......OO......OO...O........$.......................O....O............O..........$.......................O...............O............$.........................OO.O.O.......O..O..........$.........................O....O.........OOO.........$............................OOO.OO..O...O...O.OO....$.............................O..OO.O.....O...O..O...$.....................................OO..O...O......$..................................O.OO.OO.O..OO...O.$...............................O.....O...O.......O.O$................................OO............OO...O$......................................O.......OO....$.......................................OOO...OO..O..$......................................O..O.OOO......$......................................O....OO.......$.......................................O............$..........................................O..O......$.........................................O..........$..........................................OO........$"
>.............OO.....................................
.....OO....OO.O.O...................................
....OOO....OOOO.....................................
...OO......OO.....O.................................
..OO..OO...O..O..O..................................
.OO.....O.......O..OO...............................
.OO.O...OOOO........................................
....O...OO..OO.O....................................
.....OOO....O.O.....................................
......OO...OO..O....................................
......O.....O.......................................
.OOOO.O..O..O...O...................................
.OOO...OOOOO..OOOOOOO.O.............................
O.O....O..........O..OO.............................
OOO.O...O...O.....OOO...............................
.......O.O..O.......OO..............................
.O...O.....OO........OO..O.O........................
....O.......O........OOO.O.OOO......................
...O........OOO......O....O.........................
.....O......O.O.....O.O.............................
.....O......O.OO...O....O...........................
.............O.OOOO...O.....O..O....................
............OO..OO.O.O...O.OOO......................
.................O......O..OOO...OOO................
....................O..O......OO....................
................OO....O..O..........OO..............
..................O.............O...O...............
................OO....OO........O...................
.................O...OOO........O.O.O.O.............
.................O....OO........O.....OO............
........................O........O..OOO.............
.....................O..O........O........O.........
..........................OOOO........OO...O........
.......................O......OO......OO...O........
.......................O....O............O..........
.......................O...............O............
.........................OO.O.O.......O..O..........
.........................O....O.........OOO.........
............................OOO.OO..O...O...O.OO....
.............................O..OO.O.....O...O..O...
.....................................OO..O...O......
..................................O.OO.OO.O..OO...O.
...............................O.....O...O.......O.O
................................OO............OO...O
......................................O.......OO....
.......................................OOO...OO..O..
......................................O..O.OOO......
......................................O....OO.......
.......................................O............
..........................................O..O......
.........................................O..........
..........................................OO........
</a></pre></td></tr></table></center>
<p><a name=a-2c3>:</a><b>2c/3</b> Two thirds of the speed of light - the speed of signals in a
<a href="lex_1.htm#a-2c3wire">2c/3 wire</a> or of some <a href="lex_a.htm#againstthegrain">against the grain</a> <a href="lex_n.htm#negativespaceship">negative spaceship</a>
signals in the <a href="lex_z.htm#zebrastripes">zebra stripes</a> <a href="lex_a.htm#agar">agar</a>, and also the speed of
<a href="lex_b.htm#burn">burning</a> of the <a href="lex_b.htm#blinkerfuse">blinker fuse</a> and the <a href="lex_b.htm#biblockfuse">bi-block fuse</a>.
<p><a name=a-2c3wire>:</a><b>2c/3 wire</b> A <a href="lex_w.htm#wire">wire</a> discovered by Dean Hickerson in March 1997, using
his <a href="lex_d.htm#dr">dr</a> <a href="lex_s.htm#searchprogram">search program</a>. It supports <a href="lex_s.htm#signal">signals</a> that travel through
the wire diagonally at two thirds of the <a href="lex_s.htm#speedoflight">speed of light</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......O..O.......................................$....OOOOOO.......................................$...O.............................................$...O..OOOOOO.....................................$OO.O.O.O....O....................................$OO.O.O.OOOOOO....................................$....OO.O.......O.................................$.......O..OOOOOO.................................$.......O.O.......................................$......OO.O..OOOOOO...............................$.........O.O......O..............................$.........O.O..OOOOO..............................$..........OO.O.......O...........................$.............O..OOOOOO...........................$.............O.O.................................$............OO.O..OOOOOO.........................$...............O.O......O........................$...............O.O..OOOOO........................$................OO.O.......O.....................$...................O..OOOOOO.....................$...................O.O...........................$..................OO.O..OOOOOO...................$.....................O.O......O..................$.....................O.O..OOOOO..................$......................OO.O.......O...............$.........................O..OOOOOO...............$.........................O.O.....................$........................OO.O..OOOOOO.............$...........................O.O......O............$...........................O.O..OOOOO............$............................OO.O.......O.........$...............................O..OOOOOO.........$...............................O.O...............$..............................OO.O..OOOOOO.......$.................................O.O......O......$.................................O.O..OOOOO......$..................................OO.O.......O...$.....................................O..OOOOOO...$.....................................O.O.........$....................................OO.O..OOOOOO.$.......................................O.O......O$.......................................O.O..OOO.O$........................................OO.O...O.$...........................................O..O..$...........................................O.O...$..........................................OO.O.O.$..............................................OO.$"
>......O..O.......................................
....OOOOOO.......................................
...O.............................................
...O..OOOOOO.....................................
OO.O.O.O....O....................................
OO.O.O.OOOOOO....................................
....OO.O.......O.................................
.......O..OOOOOO.................................
.......O.O.......................................
......OO.O..OOOOOO...............................
.........O.O......O..............................
.........O.O..OOOOO..............................
..........OO.O.......O...........................
.............O..OOOOOO...........................
.............O.O.................................
............OO.O..OOOOOO.........................
...............O.O......O........................
...............O.O..OOOOO........................
................OO.O.......O.....................
...................O..OOOOOO.....................
...................O.O...........................
..................OO.O..OOOOOO...................
.....................O.O......O..................
.....................O.O..OOOOO..................
......................OO.O.......O...............
.........................O..OOOOOO...............
.........................O.O.....................
........................OO.O..OOOOOO.............
...........................O.O......O............
...........................O.O..OOOOO............
............................OO.O.......O.........
...............................O..OOOOOO.........
...............................O.O...............
..............................OO.O..OOOOOO.......
.................................O.O......O......
.................................O.O..OOOOO......
..................................OO.O.......O...
.....................................O..OOOOOO...
.....................................O.O.........
....................................OO.O..OOOOOO.
.......................................O.O......O
.......................................O.O..OOO.O
........................................OO.O...O.
...........................................O..O..
...........................................O.O...
..........................................OO.O.O.
..............................................OO.
</a></pre></td></tr></table></center>
<p>Each 2<i>c</i>/3 signal is made up of two half-signals that can be
separated from each other by an arbitrary number of <a href="lex_t.htm#tick">ticks</a>.
<p>Considerable effort has been spent on finding a way to turn a 2<i>c</i>/3
signal 90 or 180 degrees, since this would by one way to prove Life
to be <a href="lex_o.htm#omniperiodic">omniperiodic</a>. There is a known 2<i>c</i>/3 converter shown under
<a href="lex_s.htm#signalelbow">signal elbow</a>, which converts a standard 2<i>c</i>/3 signal into a
double-length signal. This is usable in some situations, but
unfortunately it fails when its input is a double-length signal, so
it can't be used to complete a loop.
<p>Noam Elkies discovered a glider synthesis of a reaction that can
repeatably insert a signal into the upper end of a 2<i>c</i>/3 wire. See
<a href="lex_s.htm#stablepseudoheisenburp">stable pseudo-Heisenburp</a> for details. On 11 September 2017, Martin
Grant reduced the input reaction to five gliders, or three gliders
plus a <a href="lex_h.htm#herschel">Herschel</a>. With the Herschel option the <a href="lex_r.htm#recoverytime">recovery time</a> is
152 ticks.
<p>See also <a href="lex_1.htm#a-5c9wire">5c/9 wire</a>.
<p><a name=a-2c5spaceship>:</a><b>2c/5 spaceship</b> A <a href="lex_s.htm#spaceship">spaceship</a> travelling at two fifths of the
<a href="lex_s.htm#speedoflight">speed of light</a>. The only such spaceships that are currently known
travel orthogonally. Examples include <a href="lex_1.htm#a-30p5h2v0">30P5H2V0</a>, <a href="lex_1.htm#a-44p5h2v0">44P5H2V0</a>,
<a href="lex_1.htm#a-60p5h2v0">60P5H2V0</a>, and <a href="lex_1.htm#a-70p5h2v0">70P5H2V0</a>. As of June 2018, only 30P5H2V0 and
60P5H2V0 have known <a href="lex_g.htm#glidersynthesis">glider synthesis</a> <a href="lex_r.htm#recipe">recipes</a>.
<p><a name=a-2c7spaceship>:</a><b>2c/7 spaceship</b> A <a href="lex_s.htm#spaceship">spaceship</a> travelling at two sevenths of the
<a href="lex_s.htm#speedoflight">speed of light</a>. The only such spaceships that are currently known
travel orthogonally. The first to be found was the <a href="lex_w.htm#weekender">weekender</a>,
found by David Eppstein in January 2000. See also
<a href="lex_w.htm#weekenderdistaff">weekender distaff</a>.
<p><a name=a-2eaters>:</a><b>2 eaters</b> = <a href="lex_t.htm#twoeaters">two eaters</a>
<p><a name=a-2enginecordership>:</a><b>2-engine Cordership</b> The smallest known Cordership, with a minimum
population of 100 cells, discovered by Aidan F. Pierce on 31 December
2017. Luka Okanishi produced a 9-glider synthesis of the spaceship
on the same day.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............O............................$............O.....OOO....................$...........O.O...OO..O...................$............O...O.....O..................$............O...O........................$.................O..OO...................$..................OO...........OO........$...............................OO........$.........................................$.........................................$.........................................$.........................................$.........................................$.........................................$.OOO...................................OO$.OOO.....................O.............OO$..O............OO.........OO.............$...OO.........O.OOO........OO............$....O.........O...O..........O...........$...O...........OO.O.....OOOOO............$................O..........O.............$.........................................$.........................................$.OO......................................$.OO......................................$..O......................................$..O......................................$.O.O.....................................$O........................................$.O..OO...................................$..O...O..................................$....OO...................................$....O....................................$.........................................$.........................................$.........................................$.........................................$.........................................$.........................................$......OO.................................$......OO.................................$...................O.....................$...................OOO...................$....................OO...................$....................O....................$.........................................$..................OO.O...................$..................OOOO...................$....................OO...................$"
>............O............................
............O.....OOO....................
...........O.O...OO..O...................
............O...O.....O..................
............O...O........................
.................O..OO...................
..................OO...........OO........
...............................OO........
.........................................
.........................................
.........................................
.........................................
.........................................
.........................................
.OOO...................................OO
.OOO.....................O.............OO
..O............OO.........OO.............
...OO.........O.OOO........OO............
....O.........O...O..........O...........
...O...........OO.O.....OOOOO............
................O..........O.............
.........................................
.........................................
.OO......................................
.OO......................................
..O......................................
..O......................................
.O.O.....................................
O........................................
.O..OO...................................
..O...O..................................
....OO...................................
....O....................................
.........................................
.........................................
.........................................
.........................................
.........................................
.........................................
......OO.................................
......OO.................................
...................O.....................
...................OOO...................
....................OO...................
....................O....................
.........................................
..................OO.O...................
..................OOOO...................
....................OO...................
</a></pre></td></tr></table></center>
<p><a name=a-2glidercollision>:</a><b>2-glider collision</b> Two gliders can react with each other in many
different ways, either at right angles, or else head-on. A large
number of the reactions cleanly destroy both gliders leaving nothing.
Many of the remaining reactions cleanly create some common objects,
and so are used as the first steps in <a href="lex_g.htm#glidersynthesis">glider synthesis</a> or as part
of constructing interesting objects using <a href="lex_r.htm#rake">rakes</a>. Only a small
number of collisions can be considered <a href="lex_d.htm#dirty">dirty</a> due to creating
multiple objects or a mess.
<p>Here is a list of the possible results along with how many
different ways they can occur (ignoring reflections and rotations).
<pre>
-------------------------------
result right-angle head-on
-------------------------------
nothing 11 17
<a href="lex_b.htm#beehive">beehive</a> 1 0
<a href="lex_b.htm#bheptomino">B-heptomino</a> 1 2
<a href="lex_b.htm#biblock">bi-block</a> 1 0
<a href="lex_b.htm#blinker">blinker</a> 2 1
<a href="lex_b.htm#block">block</a> 3 3
<a href="lex_b.htm#boat">boat</a> 0 1
<a href="lex_e.htm#eater1">eater1</a> 1 0
<a href="lex_g.htm#glider">glider</a> 1 1
<a href="lex_h.htm#honeyfarm">honey farm</a> 3 2
<a href="lex_i.htm#interchange">interchange</a> 1 0
<a href="lex_l.htm#loaf">loaf</a> 0 1
<a href="lex_l.htm#lumpsofmuck">lumps of muck</a> 1 0
<a href="lex_o.htm#octomino">octomino</a> 0 1
<a href="lex_p.htm#piheptomino">pi-heptomino</a> 2 1
<a href="lex_p.htm#pond">pond</a> 1 1
<a href="lex_t.htm#teardrop">teardrop</a> 1 0
<a href="lex_t.htm#trafficlight">traffic light</a> 2 1
<a href="lex_f.htm#fourskewedblocks">four skewed blocks</a> 0 1
<a href="lex_d.htm#dirty">dirty</a> 6 0
-------------------------------
</pre>
The messiest of the two-glider collisions in the "dirty" category is
<a href="lex_1.htm#a-2glidermess">2-glider mess</a>.
<p><a name=a-2glidermess>:</a><b>2-glider mess</b> A constellation made up of eight <a href="lex_b.htm#blinker">blinkers</a>, four
<a href="lex_b.htm#block">blocks</a>, a <a href="lex_b.htm#beehive">beehive</a> and a <a href="lex_s.htm#ship">ship</a>, plus four emitted <a href="lex_g.htm#glider">gliders</a>,
created by the following <a href="lex_1.htm#a-2glidercollision">2-glider collision</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O.........$O.O.........$.OO.........$...........O$.........OO.$..........OO$"
>..O.........
O.O.........
.OO.........
...........O
.........OO.
..........OO
</a></pre></td></tr></table></center>
Two of the blocks, two of the gliders, and the ship are the standard
signature <a href="lex_a.htm#ash">ash</a> of a <a href="lex_h.htm#herschel">Herschel</a>.
<p><a name=a-30p5h2v0>:</a><b>30P5H2V0</b> (2<i>c</i>/5 orthogonally, p5) A spaceship discovered by Paul Tooke
on 7 December 2000. With just 30 cells, it is currently the smallest
known 2<i>c</i>/5 spaceship. A <a href="lex_g.htm#glidersynthesis">glider synthesis</a> for 30P5H2V0 was found by
Martin Grant in January 2015, based on a predecessor by Tanner
Jacobi.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O........$...OOO.......$..OO.OO......$.............$.O.O.O.O..O..$OO...O...OOO.$OO...O......O$..........O.O$........O.O..$.........O..O$............O$"
>....O........
...OOO.......
..OO.OO......
.............
.O.O.O.O..O..
OO...O...OOO.
OO...O......O
..........O.O
........O.O..
.........O..O
............O
</a></pre></td></tr></table></center>
<p><a name=a-31c240>:</a><b>31c/240</b> The rate of travel of the <a href="lex_1.htm#a-31c240herschelpairclimber">31c/240 Herschel-pair climber</a>
reaction, and <a href="lex_c.htm#caterpillar">Caterpillar</a>-type spaceships based on that reaction.
Each <a href="lex_h.htm#herschel">Herschel</a> travels 31 cells orthogonally every 240 <a href="lex_t.htm#tick">ticks</a>.
<p><a name=a-31c240herschelpairclimber>:</a><b>31c/240 Herschel-pair climber</b> The mechanism defining the rate of
travel of the <a href="lex_c.htm#centipede">Centipede</a> and <a href="lex_s.htm#shieldbug">shield bug</a> spaceships. Compare
<a href="lex_p.htm#piclimber">pi climber</a>. It consists of a pair of <a href="lex_h.htm#herschel">Herschels</a> climbing two
parallel chains of blocks. Certain spacings between the block chains
allow gliders from each Herschel to delete the extra ash objects
produced by the other Herschel. Two more gliders escape, one to each
side, leaving only an exact copy of the original block chains, but
shifted forward by 9 cells:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.........................................................OO$OO.........................................................OO$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$OO.........................................................OO$OO.........................................................OO$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.............................................................$.......................................................OOO...$.......................................................O..O..$.......................................................O..O..$......................................................OOOO...$.......OOO............................................OO.....$........O............................................O.......$......OOO.............................................O......$......................................................O......$"
>OO.........................................................OO
OO.........................................................OO
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
OO.........................................................OO
OO.........................................................OO
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
.......................................................OOO...
.......................................................O..O..
.......................................................O..O..
......................................................OOOO...
.......OOO............................................OO.....
........O............................................O.......
......OOO.............................................O......
......................................................O......
</a></pre></td></tr></table></center>
<p><a name=a-3c7spaceship>:</a><b>3c/7 spaceship</b> A <a href="lex_s.htm#spaceship">spaceship</a> travelling at three sevenths of the
<a href="lex_s.htm#speedoflight">speed of light</a>. The only such spaceships that are currently known
travel orthogonally. The first to be found was the
<a href="lex_s.htm#spaghettimonster">spaghetti monster</a>, found by Tim Coe in June 2016.
<p><a name=a-3enginecordership>:</a><b>3-engine Cordership</b> See <a href="lex_c.htm#cordership">Cordership</a>.
<p><a name=a-44p5h2v0>:</a><b>44P5H2V0</b> (2<i>c</i>/5 orthogonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Dean
Hickerson on 23 July 1991, the first 2<i>c</i>/5 spaceship to be found.
Small <a href="lex_t.htm#tagalong">tagalongs</a> were found by Robert Wainwright and David Bell that
allowed the creation of arbitrarily large 2<i>c</i>/5 spaceships. These were
the only known 2<i>c</i>/5 spaceships until the discovery of <a href="lex_1.htm#a-70p5h2v0">70P5H2V0</a> in
December 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O.....O....$...OOO...OOO...$..O..O...O..O..$.OOO.......OOO.$..O.O.....O.O..$....OO...OO....$O....O...O....O$.....O...O.....$OO...O...O...OO$..O..O...O..O..$....O.....O....$"
>....O.....O....
...OOO...OOO...
..O..O...O..O..
.OOO.......OOO.
..O.O.....O.O..
....OO...OO....
O....O...O....O
.....O...O.....
OO...O...O...OO
..O..O...O..O..
....O.....O....
</a></pre></td></tr></table></center>
<p><a name=a-45degreelwsstog>:</a><b>45-degree LWSS-to-G</b> = <a href="lex_1.htm#a-45degreemwsstog">45-degree MWSS-to-G</a>.
<p><a name=a-45degreemwsstog>:</a><b>45-degree MWSS-to-G</b> The following small <a href="lex_c.htm#converter">converter</a>, which accepts an
MWSS or LWSS as input and produces an output glider travelling at a
45-degree angle relative to the input direction.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O.OO....O.....$.........OO.O...O.O....$................O.O....$.......OOOOO...OO.OOO..$......O..O..O........O.$......OO...OO..OO.OOO..$...............OO.O....$......................O$....................OOO$...................O...$...................OO..$.OOOOO.................$O....O.................$.....O.................$O...O..................$..O.............OO.....$...............O..O....$................OO.....$........OO.............$.......O.O.............$.......O...............$......OO...............$...................OO..$...................O...$....................OOO$......................O$"
>.........O.OO....O.....
.........OO.O...O.O....
................O.O....
.......OOOOO...OO.OOO..
......O..O..O........O.
......OO...OO..OO.OOO..
...............OO.O....
......................O
....................OOO
...................O...
...................OO..
.OOOOO.................
O....O.................
.....O.................
O...O..................
..O.............OO.....
...............O..O....
................OO.....
........OO.............
.......O.O.............
.......O...............
......OO...............
...................OO..
...................O...
....................OOO
......................O
</a></pre></td></tr></table></center>
<p><a name=a-4812diamond>:</a><b>4-8-12 diamond</b> The following <a href="lex_p.htm#pureglidergenerator">pure glider generator</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OOOO....$............$..OOOOOOOO..$............$OOOOOOOOOOOO$............$..OOOOOOOO..$............$....OOOO....$"
>....OOOO....
............
..OOOOOOOO..
............
OOOOOOOOOOOO
............
..OOOOOOOO..
............
....OOOO....
</a></pre></td></tr></table></center>
<p><a name=a-4boats>:</a><b>4 boats</b> (p2)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O....$..O.O...$.O.OO...$O.O..OO.$.OO..O.O$...OO.O.$...O.O..$....O...$"
>...O....
..O.O...
.O.OO...
O.O..OO.
.OO..O.O
...OO.O.
...O.O..
....O...
</a></pre></td></tr></table></center>
<p><a name=a-4f>:</a><b>4F</b> = <a href="lex_f.htm#fastforwardforcefield">Fast Forward Force Field</a>. This term is no longer in common
use.
<p><a name=a-4gto5greaction>:</a><b>4g-to-5g reaction</b> A reaction involving 4 gliders which cleanly
produces 5 gliders. The one shown below was found by Dieter Leithner
in July 1992:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.O..........................................$.OO..........................................$.O...........................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.................O...........................$...............O.O..O........................$................OO..O.O....................O.$....................OO....................OO.$..........................................O.O$"
>O.O..........................................
.OO..........................................
.O...........................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.................O...........................
...............O.O..O........................
................OO..O.O....................O.
....................OO....................OO.
..........................................O.O
</a></pre></td></tr></table></center>
<p>The first two gliders collide to produce a <a href="lex_t.htm#trafficlight">traffic light</a> and
glider. The other two gliders react symmetrically with the evolving
<a href="lex_t.htm#trafficlight">traffic light</a> to form four gliders. A <a href="lex_g.htm#glidergun">glider gun</a> can be built by
using <a href="lex_r.htm#reflector">reflectors</a> to turn four of the output gliders so that they
repeat the reaction.
<p><a name=a-56p6h1v0>:</a><b>56P6H1V0</b> (<i>c</i>/6 orthogonally, p6) A 56-cell <a href="lex_s.htm#spaceship">spaceship</a> discovered by
Hartmut Holzwart in 2009, the smallest known <i>c</i>/6 orthogonal spaceship
as of July 2018.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OOO..........OOO.....$OOO.O.......OO.......O.OOO$....O...O..O..O..O...O....$....O.....O....O.....O....$..........OO..OO..........$.......O...O..O...O.......$.......O.O......O.O.......$........OOOOOOOOOO........$..........O....O..........$........O........O........$.......O..........O.......$........O........O........$"
>.....OOO..........OOO.....
OOO.O.......OO.......O.OOO
....O...O..O..O..O...O....
....O.....O....O.....O....
..........OO..OO..........
.......O...O..O...O.......
.......O.O......O.O.......
........OOOOOOOOOO........
..........O....O..........
........O........O........
.......O..........O.......
........O........O........
</a></pre></td></tr></table></center>
<p><a name=a-58p5h1v1>:</a><b>58P5H1V1</b> (<i>c</i>/5 diagonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Matthias
Merzenich on 5 September 2010. In terms of its minimum population of
58 cells it is the smallest known <i>c</i>/5 diagonal spaceship. It provides
sparks at its trailing edge which can perturb gliders, and this
property was used to create the first <i>c</i>/5 diagonal puffers. These
sparks also allow the attachment of tagalongs which was used to
create the first <i>c</i>/5 diagonal wickstretcher in January 2011.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................OO.$....................OO.$...................O..O$................OO.O..O$......................O$..............OO...O..O$..............OO.....O.$...............O.OOOOO.$................O......$.......................$.......................$.............OOO.......$.............O.........$...........OO..........$.....OO....O...........$.....OOO...O...........$...O....O..............$...O...O...............$.......O...............$..OO.O.O...............$OO.....O...............$OO....OO...............$..OOOO.................$"
>....................OO.
....................OO.
...................O..O
................OO.O..O
......................O
..............OO...O..O
..............OO.....O.
...............O.OOOOO.
................O......
.......................
.......................
.............OOO.......
.............O.........
...........OO..........
.....OO....O...........
.....OOO...O...........
...O....O..............
...O...O...............
.......O...............
..OO.O.O...............
OO.....O...............
OO....OO...............
..OOOO.................
</a></pre></td></tr></table></center>
<p><a name=a-5c9wire>:</a><b>5c/9 wire</b> A <a href="lex_w.htm#wire">wire</a> discovered by Dean Hickerson in April 1997, using
his <a href="lex_d.htm#dr">dr</a> <a href="lex_s.htm#searchprogram">search program</a>. It supports <a href="lex_s.htm#signal">signals</a> that travel through
the wire diagonally at five ninths of the <a href="lex_s.htm#speedoflight">speed of light</a>. See also
<a href="lex_1.htm#a-2c3wire">2c/3 wire</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O.OO............................................$....OO..O...........................................$.......O..O.........................................$..OOOOO.OO.O..O.....................................$.O..O...O..OOOO.....................................$.O.OO.O.O.O......O..................................$OO.O.OOOO.O..OOOOO..................................$...O......O.O.....OO................................$OO.O.OOOO.O..O.OO.O.O...............................$O..O.O..O.OO.O.O.O..O...............................$..OO..O..O...O.O....O.OO............................$....OO....OOOO.OO..OO..O............................$....O...O.O......O...O..............................$.....OOOO.O.OOOOO.OOO...O...........................$.........O.O....O.O..OOOO...........................$.......O...O..O...O.O......O........................$.......OO..O.O.OOOO.O..OOOOO........................$..........OO.O......O.O.....OO......................$.............O.OOOO.O..O.OO.O.O.....................$.............O.O..O.OO.O.O.O..O.....................$............OO..O..O...O.O....O.OO..................$..............OO....OOOO.OO..OO..O..................$..............O...O.O......O...O....................$...............OOOO.O.OOOOO.OOO...O.................$...................O.O....O.O..OOOO.................$.................O...O..O...O.O......O..............$.................OO..O.O.OOOO.O..OOOOO..............$....................OO.O......O.O.....OO............$.......................O.OOOO.O..O.OO.O.O...........$.......................O.O..O.OO.O.O.O..O...........$......................OO..O..O...O.O....O.OO........$........................OO....OOOO.OO..OO..O........$........................O...O.O......O...O..........$.........................OOOO.O.OOOOO.OOO...O.......$.............................O.O....O.O..OOOO.......$...........................O...O..O...O.O......O....$...........................OO..O.O.OOOO.O..OOOOO....$..............................OO.O......O.O.....OO..$.................................O.OOOO.O..O.OO.O..O$.................................O.O..O.OO.O.O.O..OO$................................OO..O..O...O.O......$..................................OO....OOOO.OO.....$..................................O...O.O......O....$...................................OOOO.O.OOOOO.O...$.......................................O.O....O.O...$.....................................O...O..O...OO..$.....................................OO..O.O.OOO..O.$........................................OO.O.....O..$............................................O.OOO...$.............................................OO.....$"
>....O.OO............................................
....OO..O...........................................
.......O..O.........................................
..OOOOO.OO.O..O.....................................
.O..O...O..OOOO.....................................
.O.OO.O.O.O......O..................................
OO.O.OOOO.O..OOOOO..................................
...O......O.O.....OO................................
OO.O.OOOO.O..O.OO.O.O...............................
O..O.O..O.OO.O.O.O..O...............................
..OO..O..O...O.O....O.OO............................
....OO....OOOO.OO..OO..O............................
....O...O.O......O...O..............................
.....OOOO.O.OOOOO.OOO...O...........................
.........O.O....O.O..OOOO...........................
.......O...O..O...O.O......O........................
.......OO..O.O.OOOO.O..OOOOO........................
..........OO.O......O.O.....OO......................
.............O.OOOO.O..O.OO.O.O.....................
.............O.O..O.OO.O.O.O..O.....................
............OO..O..O...O.O....O.OO..................
..............OO....OOOO.OO..OO..O..................
..............O...O.O......O...O....................
...............OOOO.O.OOOOO.OOO...O.................
...................O.O....O.O..OOOO.................
.................O...O..O...O.O......O..............
.................OO..O.O.OOOO.O..OOOOO..............
....................OO.O......O.O.....OO............
.......................O.OOOO.O..O.OO.O.O...........
.......................O.O..O.OO.O.O.O..O...........
......................OO..O..O...O.O....O.OO........
........................OO....OOOO.OO..OO..O........
........................O...O.O......O...O..........
.........................OOOO.O.OOOOO.OOO...O.......
.............................O.O....O.O..OOOO.......
...........................O...O..O...O.O......O....
...........................OO..O.O.OOOO.O..OOOOO....
..............................OO.O......O.O.....OO..
.................................O.OOOO.O..O.OO.O..O
.................................O.O..O.OO.O.O.O..OO
................................OO..O..O...O.O......
..................................OO....OOOO.OO.....
..................................O...O.O......O....
...................................OOOO.O.OOOOO.O...
.......................................O.O....O.O...
.....................................O...O..O...OO..
.....................................OO..O.O.OOO..O.
........................................OO.O.....O..
............................................O.OOO...
.............................................OO.....
</a></pre></td></tr></table></center>
<p><a name=a-60p312>:</a><b>60P312</b> (p312) Found by Dave Greene, 1 November 2004, based on
<a href="lex_1.htm#a-92p156">92P156</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................OO....................$....................OO....................$..........................................$..........................................$..........................................$...............................OO.........$......................OO......O..O........$......................O........OO.........$......O...............O...................$.....O.O...............O..................$.....O.O..................................$......O...................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$................................O..O......$.................................OOO......$OO......................................OO$OO......................................OO$......OOO.................................$......O..O................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$...................................O......$..................................O.O.....$..................O...............O.O.....$...................O...............O......$.........OO........O......................$........O..O......OO......................$.........OO...............................$..........................................$..........................................$..........................................$....................OO....................$....................OO....................$"
>....................OO....................
....................OO....................
..........................................
..........................................
..........................................
...............................OO.........
......................OO......O..O........
......................O........OO.........
......O...............O...................
.....O.O...............O..................
.....O.O..................................
......O...................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
................................O..O......
.................................OOO......
OO......................................OO
OO......................................OO
......OOO.................................
......O..O................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
...................................O......
..................................O.O.....
..................O...............O.O.....
...................O...............O......
.........OO........O......................
........O..O......OO......................
.........OO...............................
..........................................
..........................................
..........................................
....................OO....................
....................OO....................
</a></pre></td></tr></table></center>
<p><a name=a-60p5h2v0>:</a><b>60P5H2V0</b> (2<i>c</i>/5 orthogonally, p5) A 60-cell <a href="lex_s.htm#spaceship">spaceship</a> discovered by
Tim Coe in May 1996. It was the first non-<i>c</i>/2 orthogonal spaceship
to be successfully constructed via <a href="lex_g.htm#glidersynthesis">glider synthesis</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.......O.....$...OO.OO...OO.OO...$......OO...OO......$........O.O........$.O....O.O.O.O....O.$OOO.....O.O.....OOO$O.....O.O.O.O.....O$..O..O..O.O..O..O..$..OO...OO.OO...OO..$O.......O.O.......O$O......OO.OO......O$"
>.....O.......O.....
...OO.OO...OO.OO...
......OO...OO......
........O.O........
.O....O.O.O.O....O.
OOO.....O.O.....OOO
O.....O.O.O.O.....O
..O..O..O.O..O..O..
..OO...OO.OO...OO..
O.......O.O.......O
O......OO.OO......O
</a></pre></td></tr></table></center>
<p><a name=a-67p5h1v1>:</a><b>67P5H1V1</b> (<i>c</i>/5 diagonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Nicolay
Beluchenko in July 2006. It was the smallest known <i>c</i>/5 diagonal
spaceship until the discovery of <a href="lex_1.htm#a-58p5h1v1">58P5H1V1</a> in September 2010.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OOO..............$....O...OO............$...OO...O.............$..O.....O.............$.O.OO....OO...........$OO..O......O..........$...OO..O..............$...OO.OO..............$....O.................$.....OOOOO............$......O..OOO..OO......$.........O.OO..O.OO...$.........O...O.O..O...$..........OOOOO.....O.$.........O..O..O.....O$.....................O$................OOO...$................O.....$...............O......$................OO....$"
>.....OOO..............
....O...OO............
...OO...O.............
..O.....O.............
.O.OO....OO...........
OO..O......O..........
...OO..O..............
...OO.OO..............
....O.................
.....OOOOO............
......O..OOO..OO......
.........O.OO..O.OO...
.........O...O.O..O...
..........OOOOO.....O.
.........O..O..O.....O
.....................O
................OOO...
................O.....
...............O......
................OO....
</a></pre></td></tr></table></center>
<p><a name=a-70p5h2v0>:</a><b>70P5H2V0</b> (2<i>c</i>/5 orthogonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Hartmut
Holzwart on 5 December 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O............O..$.O.O..........O.O.$OO.OO........OO.OO$OO..............OO$..O............O..$..OOOO......OOOO..$..O..OO....OO..O..$...OO..O..O..OO...$....OO.OOOO.OO....$.....O.O..O.O.....$......O....O......$..................$.....O......O.....$...OO.OO..OO.OO...$....O........O....$....OO......OO....$"
>..O............O..
.O.O..........O.O.
OO.OO........OO.OO
OO..............OO
..O............O..
..OOOO......OOOO..
..O..OO....OO..O..
...OO..O..O..OO...
....OO.OOOO.OO....
.....O.O..O.O.....
......O....O......
..................
.....O......O.....
...OO.OO..OO.OO...
....O........O....
....OO......OO....
</a></pre></td></tr></table></center>
<p><a name=a-7x9eater>:</a><b>7x9 eater</b> A high-<a href="lex_c.htm#clearance">clearance</a> <a href="lex_e.htm#eater5">eater5</a> variant that can suppress
passing gliders in tight spaces, such as on the inside corner of an
<a href="lex_r.htm#r64">R64</a> <a href="lex_h.htm#herschelconduit">Herschel conduit</a>. Like the eater5 and <a href="lex_s.htm#sidesnagger">sidesnagger</a>, the 7x9
eater is able to eat gliders coming from two directions, though this
ability is not commonly used.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..........$..O.........$OOO.........$............$......O.....$.....O......$.....OOO....$............$............$......O...OO$.....O.O...O$.....OO...O.$.........O..$.....OOOOO.O$.....O....OO$......OOO...$........O.OO$.........O.O$"
>.O..........
..O.........
OOO.........
............
......O.....
.....O......
.....OOO....
............
............
......O...OO
.....O.O...O
.....OO...O.
.........O..
.....OOOOO.O
.....O....OO
......OOO...
........O.OO
.........O.O
</a></pre></td></tr></table></center>
<p><a name=a-83p7h1v1>:</a><b>83P7H1V1</b> = <a href="lex_l.htm#lobster">lobster</a>
<p><a name=a-86p5h1v1>:</a><b>86P5H1V1</b> (<i>c</i>/5 diagonally, p5) A <a href="lex_s.htm#spaceship">spaceship</a> discovered by Jason
Summers on January 8, 2005. It was the smallest known <i>c</i>/5 diagonal
spaceship until the discovery of <a href="lex_1.htm#a-67p5h1v1">67P5H1V1</a> in July 2006.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........OOO...........$........O..............$.......O...............$...........OO..........$........OO.O...........$..............OOO......$...........O..OO..OO...$..O........OO.O...OO...$.O..O......O..OO.......$O...O..................$O...........O..O.......$O..OO.OOO...O...OO.OO..$...O...O..OO..O..O.....$.................OO..O.$.....OOOO...O.....O...O$.....OO.O.O..........O.$.....O.....O......OO...$...........OOO.........$......OO.....OO.O......$......OO...O....O......$...........O...........$.............O.O.......$..............O........$"
>.........OOO...........
........O..............
.......O...............
...........OO..........
........OO.O...........
..............OOO......
...........O..OO..OO...
..O........OO.O...OO...
.O..O......O..OO.......
O...O..................
O...........O..O.......
O..OO.OOO...O...OO.OO..
...O...O..OO..O..O.....
.................OO..O.
.....OOOO...O.....O...O
.....OO.O.O..........O.
.....O.....O......OO...
...........OOO.........
......OO.....OO.O......
......OO...O....O......
...........O...........
.............O.O.......
..............O........
</a></pre></td></tr></table></center>
<p><a name=a-90degreekickback>:</a><b>90-degree kickback</b> See <a href="lex_k.htm#kickbackreaction">kickback reaction</a>.
<p><a name=a-92p156>:</a><b>92P156</b> (p156) Discovered by Jason Summers on October 31, 2004. It is
actually an eight-barrel <a href="lex_g.htm#glidergun">glider gun</a>, with all output gliders
suppressed by <a href="lex_e.htm#eater1">eater1s</a>. Replacing each pair of eater1s with a
<a href="lex_b.htm#beehive">beehive</a> doubles the period and produces <a href="lex_1.htm#a-60p312">60P312</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................OO....................$....................OO....................$..........................................$..........................................$..........................................$........OO......................OO........$.........O............OO........O.........$.........O.O..........O.......O.O.........$.....O....OO..........O.......OO....O.....$.....OOO...............O..........OOO.....$........O........................O........$.......OO........................OO.......$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$................................O..O......$.................................OOO......$OO......................................OO$OO......................................OO$......OOO.................................$......O..O................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$.......OO........................OO.......$........O........................O........$.....OOO..........O...............OOO.....$.....O....OO.......O..........OO....O.....$.........O.O.......O..........O.O.........$.........O........OO............O.........$........OO......................OO........$..........................................$..........................................$..........................................$....................OO....................$....................OO....................$"
>....................OO....................
....................OO....................
..........................................
..........................................
..........................................
........OO......................OO........
.........O............OO........O.........
.........O.O..........O.......O.O.........
.....O....OO..........O.......OO....O.....
.....OOO...............O..........OOO.....
........O........................O........
.......OO........................OO.......
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
................................O..O......
.................................OOO......
OO......................................OO
OO......................................OO
......OOO.................................
......O..O................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
.......OO........................OO.......
........O........................O........
.....OOO..........O...............OOO.....
.....O....OO.......O..........OO....O.....
.........O.O.......O..........O.O.........
.........O........OO............O.........
........OO......................OO........
..........................................
..........................................
..........................................
....................OO....................
....................OO....................
</a></pre></td></tr></table></center>
<p><a name=a-9hd>:</a><b>9hd</b> Separated by 9 <a href="lex_h.htm#halfdiagonal">half diagonals</a>. Specifically used to describe
the distance between the two <a href="lex_c.htm#constructionlane">construction lanes</a> in the
<a href="lex_l.htm#linearpropagator">linear propagator</a>.
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
</body>
|