File: lex_a.htm

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (584 lines) | stat: -rwxr-xr-x 36,901 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (A)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">

<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
<p><a name=achimsp144>:</a><b>Achim's p144</b> (p144) This was found (minus the blocks shown below) on
a cylinder of width 22 by Achim Flammenkamp in July 1994. Dean
Hickerson reduced it to a finite form using <a href="lex_f.htm#figure8">figure-8s</a> the same day.
The neater finite form shown here, replacing the figure-8s with
blocks, was found by David Bell in August 1994. See <a href="lex_f.htm#factory">factory</a> for a
use of this oscillator.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO........................OO$OO........................OO$..................OO........$.................O..O.......$..................OO........$..............O.............$.............O.O............$............O...O...........$............O..O............$............................$............O..O............$...........O...O............$............O.O.............$.............O..............$........OO..................$.......O..O.................$........OO..................$OO........................OO$OO........................OO$"
>OO........................OO
OO........................OO
..................OO........
.................O..O.......
..................OO........
..............O.............
.............O.O............
............O...O...........
............O..O............
............................
............O..O............
...........O...O............
............O.O.............
.............O..............
........OO..................
.......O..O.................
........OO..................
OO........................OO
OO........................OO
</a></pre></td></tr></table></center>
<p><a name=achimsp16>:</a><b>Achim's p16</b> (p16) Found by Achim Flammenkamp, July 1994.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......OO....$.......O.O...$..O....O.OO..$.OO.....O....$O..O.........$OOO..........$.............$..........OOO$.........O..O$....O.....OO.$..OO.O....O..$...O.O.......$....OO.......$"
>.......OO....
.......O.O...
..O....O.OO..
.OO.....O....
O..O.........
OOO..........
.............
..........OOO
.........O..O
....O.....OO.
..OO.O....O..
...O.O.......
....OO.......
</a></pre></td></tr></table></center>
<p><a name=achimsp4>:</a><b>Achim's p4</b> (p4) Dave Buckingham found this in a less compact form
(using two halves of <a href="lex_s.htm#sombreros">sombreros</a>) in 1976. The form shown here was
found by Achim Flammenkamp in 1988. The <a href="lex_r.htm#rotor">rotor</a> is two copies of the
rotor of <a href="lex_1.htm#a-1234">1-2-3-4</a>, so the oscillator is sometimes called the "dual
1-2-3-4".
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO...OO..$.O..O.O..O.$.O.OO.OO.O.$OO.......OO$..O.O.O.O..$OO.......OO$.O.OO.OO.O.$.O..O.O..O.$..OO...OO..$"
>..OO...OO..
.O..O.O..O.
.O.OO.OO.O.
OO.......OO
..O.O.O.O..
OO.......OO
.O.OO.OO.O.
.O..O.O..O.
..OO...OO..
</a></pre></td></tr></table></center>
<p><a name=achimsp5>:</a><b>Achim's p5</b> = <a href="lex_p.htm#pseudobarberpole">pseudo-barberpole</a>
<p><a name=achimsp8>:</a><b>Achim's p8</b> (p8) Found by Achim Flammenkamp, July 1994.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO......$O........$.O...O...$.O...OO..$...O.O...$..OO...O.$...O...O.$........O$......OO.$"
>.OO......
O........
.O...O...
.O...OO..
...O.O...
..OO...O.
...O...O.
........O
......OO.
</a></pre></td></tr></table></center>
<p><a name=acorn>:</a><b>acorn</b> (stabilizes at time 5206) A <a href="lex_m.htm#methuselah">methuselah</a> found by Charles
Corderman. It has a final population of 633 and covers an area of
215 by 168 cells, not counting the 13 gliders it produces. Its <a href="#ash">ash</a>
consists of typical stable objects and blinkers, along with the
relatively rare <a href="lex_m.htm#mango">mango</a> and a temporary <a href="lex_e.htm#eater1">eater1</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.....$...O...$OO..OOO$"
>.O.....
...O...
OO..OOO
</a></pre></td></tr></table></center>
<p><a name=aforall>:</a><b>A for all</b> (p6) Found by Dean Hickerson in March 1993.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO....$...O..O...$...OOOO...$.O.O..O.O.$O........O$O........O$.O.O..O.O.$...OOOO...$...O..O...$....OO....$"
>....OO....
...O..O...
...OOOO...
.O.O..O.O.
O........O
O........O
.O.O..O.O.
...OOOO...
...O..O...
....OO....
</a></pre></td></tr></table></center>
<p><a name=againstthegrain>:</a><b>against the grain</b> A term used for <a href="lex_n.htm#negativespaceship">negative spaceships</a> travelling in
<a href="lex_z.htm#zebrastripes">zebra stripes</a> agar, perpendicular to the stripes, and also for
<a href="#againstthegraingreyship">against-the-grain grey ships</a>.
<p>Below is a sample <a href="lex_s.htm#signal">signal</a>, found by Hartmut Holzwart in April
2006, that travels against the grain at <a href="lex_1.htm#a-2c3">2c/3</a>. This "negative
spaceship" travels upward and will quickly reach the edge of the
finite patch of stabilized agar shown here.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O..O..O..O..O..O..O..O..O..O..O...$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.....................................$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.....................................$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.....................................$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...................................O$.OOOOOOOOOOOOOOOOO..OOOOOOOOOOOOOOOO.$.....................................$.OOOOOOOOOOOOOOO......OOOOOOOOOOOOOO.$O...............O....O..............O$.OOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOO.$.....................................$.OOOOOOOOOOOOO...OOOO...OOOOOOOOOOOO.$O.................OO................O$.OOOOOOOOOOOO............OOOOOOOOOOO.$.............O..........O............$.OOOOOOOOOOOOOO........OOOOOOOOOOOOO.$O..............O......O.............O$.OOOOOOOOOOOOOOO......OOOOOOOOOOOOOO.$..........OO....O....O....OO.........$.OOOOOOO......OOOO..OOOO......OOOOOO.$O.......O...OO...O..O...OO...O......O$.OOOOOOO.........O..O.........OOOOOO.$.........O.....O......O.....O........$.OOOOOOOOO......O....O......OOOOOOOO.$O.........O....OO.OO.OO....O........O$.OOOOOOOOOOO....O....O....OOOOOOOOOO.$............OO....OO....OO...........$.OOOOOOO..OOO.O..O..O..O.OOO..OOOOOO.$O..............OOO..OOO.............O$.OOOOO......OOO.O....O.OOO......OOOO.$......O....O..............O....O.....$.OOOOOO........O......O........OOOOO.$O......O...OO..O..OO..O..OO...O.....O$.OOOOOOOO.....O.OO..OO.O.....OOOOOOO.$.........O..O.OO......OO.O..O........$.OOOOOOOOO...OO........OO...OOOOOOOO.$O..........O..............O.........O$.OOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOO.$.................OOOO................$.OOOOOOOOOOOOOOOOO..OOOOOOOOOOOOOOOO.$O...................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$...O..O..O..O..O..O..O..O..O..O..O...$"
>...O..O..O..O..O..O..O..O..O..O..O...
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.....................................
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.....................................
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.....................................
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...................................O
.OOOOOOOOOOOOOOOOO..OOOOOOOOOOOOOOOO.
.....................................
.OOOOOOOOOOOOOOO......OOOOOOOOOOOOOO.
O...............O....O..............O
.OOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOO.
.....................................
.OOOOOOOOOOOOO...OOOO...OOOOOOOOOOOO.
O.................OO................O
.OOOOOOOOOOOO............OOOOOOOOOOO.
.............O..........O............
.OOOOOOOOOOOOOO........OOOOOOOOOOOOO.
O..............O......O.............O
.OOOOOOOOOOOOOOO......OOOOOOOOOOOOOO.
..........OO....O....O....OO.........
.OOOOOOO......OOOO..OOOO......OOOOOO.
O.......O...OO...O..O...OO...O......O
.OOOOOOO.........O..O.........OOOOOO.
.........O.....O......O.....O........
.OOOOOOOOO......O....O......OOOOOOOO.
O.........O....OO.OO.OO....O........O
.OOOOOOOOOOO....O....O....OOOOOOOOOO.
............OO....OO....OO...........
.OOOOOOO..OOO.O..O..O..O.OOO..OOOOOO.
O..............OOO..OOO.............O
.OOOOO......OOO.O....O.OOO......OOOO.
......O....O..............O....O.....
.OOOOOO........O......O........OOOOO.
O......O...OO..O..OO..O..OO...O.....O
.OOOOOOOO.....O.OO..OO.O.....OOOOOOO.
.........O..O.OO......OO.O..O........
.OOOOOOOOO...OO........OO...OOOOOOOO.
O..........O..............O.........O
.OOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOO.
.................OOOO................
.OOOOOOOOOOOOOOOOO..OOOOOOOOOOOOOOOO.
O...................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
...O..O..O..O..O..O..O..O..O..O..O...
</a></pre></td></tr></table></center>
<p>Holzwart proved in 2006 that 2<i>c</i>/3 is the maximum speed at which
signals can move non-destructively against the grain through zebra
stripes agar.
<p><a name=againstthegraingreyship>:</a><b>against-the-grain grey ship</b> A <a href="lex_g.htm#greyship">grey ship</a> in which the region of
density 1/2 consists of lines of ON cells lying perpendicular to the
direction in which the spaceship moves. See also
<a href="lex_w.htm#withthegraingreyship">with-the-grain grey ship</a>.
<p><a name=agar>:</a><b>agar</b> Any pattern covering the whole plane that is periodic in both
space and time. The simplest (nonempty) agar is the <a href="lex_s.htm#stable">stable</a> one
extended by the known <a href="lex_s.htm#spacefiller">spacefillers</a>. For some more examples see
<a href="lex_c.htm#chickenwire">chicken wire</a>, <a href="lex_h.htm#houndstoothagar">houndstooth agar</a>, <a href="lex_o.htm#onionrings">onion rings</a>, <a href="lex_s.htm#squaredance">squaredance</a> and
<a href="lex_v.htm#venetianblinds">Venetian blinds</a>. Tiling the plane with the pattern <tt>O......O</tt>
produces another interesting example: a p6 agar which has a phase of
<a href="lex_d.htm#density">density</a> 3/4, which is the highest yet obtained for any phase of an
oscillating pattern. See <a href="lex_l.htm#lonedotagar">lone dot agar</a> for an agar composed of
isolated cells.
<p><a name=aircraftcarrier>:</a><b>aircraft carrier</b> (p1) This is the smallest <a href="lex_s.htm#stilllife">still life</a> that has more
than one <a href="lex_i.htm#island">island</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..$O..O$..OO$"
>OO..
O..O
..OO
</a></pre></td></tr></table></center>
<p><a name=airforce>:</a><b>airforce</b> (p7) Found by Dave Buckingham in 1972. The rotor consists
of two copies of that used in the <a href="lex_b.htm#burloaferimeter">burloaferimeter</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O......$......O.O.....$.......O......$..............$.....OOOOO....$....O.....O.OO$...O.OO...O.OO$...O.O..O.O...$OO.O...OO.O...$OO.O.....O....$....OOOOO.....$..............$......O.......$.....O.O......$......O.......$"
>.......O......
......O.O.....
.......O......
..............
.....OOOOO....
....O.....O.OO
...O.OO...O.OO
...O.O..O.O...
OO.O...OO.O...
OO.O.....O....
....OOOOO.....
..............
......O.......
.....O.O......
......O.......
</a></pre></td></tr></table></center>
<p><a name=ak47reaction>:</a><b>AK47 reaction</b> The following reaction (found by Rich Schroeppel and
Dave Buckingham) in which a honey farm predecessor, catalysed by an
eater and a block, reappears at another location 47 generations
later, having produced a glider and a traffic light. This was in
1990 the basis for the Dean Hickerson's construction of the first
<a href="lex_t.htm#true">true</a> p94 gun, and for a very small (but <a href="lex_p.htm#pseudo">pseudo</a>) p94 glider gun
found by Paul Callahan in July 1994. (The original true p94 gun was
enormous, and has now been superseded by comparatively small
<a href="lex_h.htm#herschelloop">Herschel loop</a> guns and Mike Playle's tiny <a href="#ak94gun">AK94 gun</a>.)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O....$....O.O...$...O...O..$...O...O..$...O...O..$....O.O...$.....O....$..........$..OO......$...O......$OOO.....OO$O.......OO$"
>.....O....
....O.O...
...O...O..
...O...O..
...O...O..
....O.O...
.....O....
..........
..OO......
...O......
OOO.....OO
O.......OO
</a></pre></td></tr></table></center>
<p><a name=ak94gun>:</a><b>AK94 gun</b> The smallest known gun using the <a href="#ak47reaction">AK47 reaction</a>, found by
Mike Playle in May 2013 using his <a href="lex_b.htm#bellman">Bellman</a> program.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O.......O.......OO.............$.......OOO.....OOO.....OO.............$..........O.......O...................$.........OO......OO................OO.$..............................OO..O..O$..............................O.O..OO.$.................................OO...$.....O............................O...$.....OOO..........................O.OO$........O......................OO.O..O$.......OO......................OO.OO..$......................................$......................................$.................O....................$..OO.OO.........O.O..........OO.......$O..O.OO........O...O.........O........$OO.O...........O...O..........OOO.....$...O...........O...O............O.....$...OO...........O.O...................$.OO..O.O.........O....................$O..O..OO..............................$.OO................OO.................$...................O..................$.............OO.....OOO...............$.............OO.......O...............$"
>.......O.......O.......OO.............
.......OOO.....OOO.....OO.............
..........O.......O...................
.........OO......OO................OO.
..............................OO..O..O
..............................O.O..OO.
.................................OO...
.....O............................O...
.....OOO..........................O.OO
........O......................OO.O..O
.......OO......................OO.OO..
......................................
......................................
.................O....................
..OO.OO.........O.O..........OO.......
O..O.OO........O...O.........O........
OO.O...........O...O..........OOO.....
...O...........O...O............O.....
...OO...........O.O...................
.OO..O.O.........O....................
O..O..OO..............................
.OO................OO.................
...................O..................
.............OO.....OOO...............
.............OO.......O...............
</a></pre></td></tr></table></center>
<p><a name=aljolson>:</a><b>Al Jolson</b> = <a href="lex_j.htm#jolson">Jolson</a>
<p><a name=almostknightship>:</a><b>almost knightship</b> A promising <a href="lex_p.htm#partialresult">partial result</a> discovered by Eugene
Langvagen in March 2004. This was an early near miss in the ongoing
search for a small <a href="lex_e.htm#elementary">elementary</a> (2,1)<i>c</i>/6 <a href="lex_k.htm#knightship">knightship</a>. After six
generations, only two cells are incorrect.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OOO......$...OO..OO....$..O..OOO.OO..$.OOO.........$...OO....OO..$OO.O.........$OO..OOO......$....OO.O.....$OO.OOO.......$.O...O.OO....$.....O.OO....$O...O....O...$O...O..OOO.OO$O............$.O.O..O......$.....O.....OO$......O.OO...$......OO..O..$...........O.$"
>....OOO......
...OO..OO....
..O..OOO.OO..
.OOO.........
...OO....OO..
OO.O.........
OO..OOO......
....OO.O.....
OO.OOO.......
.O...O.OO....
.....O.OO....
O...O....O...
O...O..OOO.OO
O............
.O.O..O......
.....O.....OO
......O.OO...
......OO..O..
...........O.
</a></pre></td></tr></table></center>
<p><a name=almosymmetric>:</a><b>almosymmetric</b> (p2) Found in 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O....$OO..O.O..$O.O......$.......OO$.O.......$O......O.$OO.O.O...$.....O...$"
>....O....
OO..O.O..
O.O......
.......OO
.O.......
O......O.
OO.O.O...
.....O...
</a></pre></td></tr></table></center>
<p><a name=ambidextrous>:</a><b>ambidextrous</b> A type of <a href="lex_h.htm#herscheltransceiver">Herschel transceiver</a> where the <a href="lex_r.htm#receiver">receiver</a>
can be used in either of two mirror-image orientations. See also
<a href="lex_c.htm#chirality">chirality</a>.
<p><a name=anteater>:</a><b>anteater</b> A pattern that consumes <a href="#ants">ants</a>. Matthias Merzenich
discovered a <i>c</i>/5 anteater on 15 April 2011. See <a href="lex_w.htm#wavestretcher">wavestretcher</a> for
details.
<p><a name=antlers>:</a><b>antlers</b> = <a href="lex_m.htm#mooseantlers">moose antlers</a>
<p><a name=ants>:</a><b>ants</b> (p5 wick) The standard form is shown below. It is also possible
for any ant to be displaced by one or two cells relative to either or
both of its neighbouring ants. Dean Hickerson found <a href="lex_f.htm#fencepost">fenceposts</a> for
both ends of this wick in October 1992 and February 1993. See
<a href="lex_e.htm#electricfence">electric fence</a>, and also <a href="lex_w.htm#wickstretcher">wickstretcher</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...OO...OO...OO...OO...OO...OO...OO...OO..$..OO...OO...OO...OO...OO...OO...OO...OO...OO$..OO...OO...OO...OO...OO...OO...OO...OO...OO$OO...OO...OO...OO...OO...OO...OO...OO...OO..$"
>OO...OO...OO...OO...OO...OO...OO...OO...OO..
..OO...OO...OO...OO...OO...OO...OO...OO...OO
..OO...OO...OO...OO...OO...OO...OO...OO...OO
OO...OO...OO...OO...OO...OO...OO...OO...OO..
</a></pre></td></tr></table></center>
<p><a name=antstretcher>:</a><b>antstretcher</b> Any <a href="lex_w.htm#wickstretcher">wickstretcher</a> or <a href="lex_w.htm#wavestretcher">wavestretcher</a> that stretches
<a href="#ants">ants</a>. Nicolay Beluchenko and Hartmut Holzwart constructed the
following small <a href="lex_e.htm#extensible">extensible</a> antstretcher in January 2006:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................................................OO.......$.....................................................OO........$...............................................OO.....O........$..............................................OO.....OO........$................................................O....O.O..OO...$..................................................OO...OO.OOOO.$..................................................OO..........O$..............................................................O$........................................................O......$..........................................................OO...$...............................................................$..........................................................OOO..$.........................................................OO..O.$...............................OO..........................O...$..............................OO...............................$...............................O.O...................OOO..O....$..........................O....OOO...................O..OOO....$.........................OOOOO.OOO..O.OO................OO.....$.........................O..OO......O...OO.OO.........OO.OO....$...................................O....OO...OO.OO.......OO....$...........................OO..OO.OO..OO.....OO...OO.O.O.......$...................................O.......OO.....OO...........$.....................OOO...O.....OO.............OO....O........$.....................O.....O..O.OO...................O.........$......................O...OO.O.................................$.........................OO...O.O..............................$.............OOO..........O....................................$.............O.....OOO..OO.....................................$..............O..OO.OOO.OO.....................................$................O..........O...................................$.................O.O.OO....O...................................$...................OO.O........................................$.................OO...O.O......................................$................OO.............................................$..................O............................................$...............OO..............................................$..............OOO..............................................$.............OO.O..............................................$............OOOO.O.............................................$.................OOO...........................................$..................OO...........................................$..........OOO.OO...............................................$.........O...OOO...............................................$............OOO................................................$........O.O.O..................................................$.......OOOO....................................................$.......O.......................................................$........OO.....................................................$.........O..O..................................................$OO.............................................................$O.O...OOO......................................................$O...O....O.....................................................$...OO..........................................................$...O.....O.....................................................$"
>......................................................OO.......
.....................................................OO........
...............................................OO.....O........
..............................................OO.....OO........
................................................O....O.O..OO...
..................................................OO...OO.OOOO.
..................................................OO..........O
..............................................................O
........................................................O......
..........................................................OO...
...............................................................
..........................................................OOO..
.........................................................OO..O.
...............................OO..........................O...
..............................OO...............................
...............................O.O...................OOO..O....
..........................O....OOO...................O..OOO....
.........................OOOOO.OOO..O.OO................OO.....
.........................O..OO......O...OO.OO.........OO.OO....
...................................O....OO...OO.OO.......OO....
...........................OO..OO.OO..OO.....OO...OO.O.O.......
...................................O.......OO.....OO...........
.....................OOO...O.....OO.............OO....O........
.....................O.....O..O.OO...................O.........
......................O...OO.O.................................
.........................OO...O.O..............................
.............OOO..........O....................................
.............O.....OOO..OO.....................................
..............O..OO.OOO.OO.....................................
................O..........O...................................
.................O.O.OO....O...................................
...................OO.O........................................
.................OO...O.O......................................
................OO.............................................
..................O............................................
...............OO..............................................
..............OOO..............................................
.............OO.O..............................................
............OOOO.O.............................................
.................OOO...........................................
..................OO...........................................
..........OOO.OO...............................................
.........O...OOO...............................................
............OOO................................................
........O.O.O..................................................
.......OOOO....................................................
.......O.......................................................
........OO.....................................................
.........O..O..................................................
OO.............................................................
O.O...OOO......................................................
O...O....O.....................................................
...OO..........................................................
...O.....O.....................................................
</a></pre></td></tr></table></center>
<p><a name=anvil>:</a><b>anvil</b> The following <a href="lex_i.htm#inductioncoil">induction coil</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOOO..$O....O.$.OOO.O.$...O.OO$"
>.OOOO..
O....O.
.OOO.O.
...O.OO
</a></pre></td></tr></table></center>
<p><a name=apgluxe>:</a><b>apgluxe</b> See <a href="#apgsearch">apgsearch</a>
<p><a name=apgmera>:</a><b>apgmera</b> See <a href="#apgsearch">apgsearch</a>.
<p><a name=apgnano>:</a><b>apgnano</b> See <a href="#apgsearch">apgsearch</a>.
<p><a name=apgsearch>:</a><b>apgsearch</b> One of several versions of a client-side Ash Pattern
Generator <a href="lex_s.htm#soup">soup</a> search script by Adam P. Goucher, for use with
Conway's Life and a wide variety of other rules. Development of the
original <a href="lex_g.htm#golly">Golly</a>-based Python script started in August 2014. After
the addition in 2016 of apgnano (native C++) and apgmera
(self-modifying, 256-bit SIMD compatibility), development continues
in 2017 with apgluxe (Larger Than Life and Generations rules, more
soup shapes). Several customized variants of the Python script have
also been created by other programmers, to perform types of searches
not supported by Goucher's original apgsearch 1.x.
<p>All of these versions of the search utility work with a "haul" that
usually consists of many thousands or millions of random soup
patterns. Each soup is run to stability, and detailed object
<a href="lex_c.htm#census">census</a> results are reported to <a href="lex_c.htm#catagolue">Catagolue</a>. For any rare objects
discovered in the <a href="#ash">ash</a>, the source soup can be easily retrieved from
the Catagolue server.
<p><a name=apps>:</a><b>APPS</b> (<i>c</i>/5 orthogonally, p30) An asymmetric <a href="lex_p.htm#pps">PPS</a>. The same as the
<a href="lex_s.htm#spps">SPPS</a>, but with the two halves 15 generations out of phase with one
another. Found by Alan Hensel in May 1998.
<p><a name=ark>:</a><b>ark</b> A pair of mutually stabilizing <a href="lex_s.htm#switchengine">switch engines</a>. The archetype
is <a href="lex_n.htm#noahsark">Noah's ark</a>. The diagram below shows an ark found by Nick Gotts
that takes until generation 736692 to stabilize, and can therefore be
considered as a <a href="lex_m.htm#methuselah">methuselah</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........................O....$............................O...$.............................O..$............................O...$...........................O....$.............................OOO$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$................................$OO..............................$..O.............................$..O.............................$...OOOO.........................$"
>...........................O....
............................O...
.............................O..
............................O...
...........................O....
.............................OOO
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
................................
OO..............................
..O.............................
..O.............................
...OOOO.........................
</a></pre></td></tr></table></center>
<p><a name=arm>:</a><b>arm</b> A long extension, sometimes also called a "wing", hanging off
from the main body of a <a href="lex_s.htm#spaceship">spaceship</a> or <a href="lex_p.htm#puffer">puffer</a> perpendicular to the
direction of travel. For example, here is a sparking <i>c</i>/3 spaceship
which contains two arms.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............OOO............$...........O...............$..........OO...............$....O.OO..OO..OOO..........$...OO.OO.OO.....O....OO....$..O..OO...O.OO....OO.OO....$........OOOO......OO...O...$....O.O.OO........OO.......$......O....................$...OO......................$..OO..O....................$....OOO.OO.................$O..O.....OOO...............$.O.OOOO.O...O..............$........OO....O......O.....$.........O....OO....OO.OOO.$........O...O..OO..OO.....O$..........O..O.O..O.....OO.$...........O.OOO....O......$............OOO..OOO.O.....$...........OO...OOO........$..................O..O.....$...................O.......$"
>............OOO............
...........O...............
..........OO...............
....O.OO..OO..OOO..........
...OO.OO.OO.....O....OO....
..O..OO...O.OO....OO.OO....
........OOOO......OO...O...
....O.O.OO........OO.......
......O....................
...OO......................
..OO..O....................
....OOO.OO.................
O..O.....OOO...............
.O.OOOO.O...O..............
........OO....O......O.....
.........O....OO....OO.OOO.
........O...O..OO..OO.....O
..........O..O.O..O.....OO.
...........O.OOO....O......
............OOO..OOO.O.....
...........OO...OOO........
..................O..O.....
...................O.......
</a></pre></td></tr></table></center>
Many known spaceships have multiple arms, usually fairly narrow.
This is an artefact of the search methods used to find such
spaceships, rather than an indication of what a "typical" spaceship
might look like.
<p>For an alternate meaning see <a href="lex_c.htm#constructionarm">construction arm</a>.
<p><a name=armless>:</a><b>armless</b> A method of generating <a href="lex_s.htm#slowsalvo">slow salvos</a> across a wide range of
lanes without using a <a href="lex_c.htm#constructionarm">construction arm</a> with a movable <a href="lex_e.htm#elbow">elbow</a>.
Instead, streams of gliders on two fixed opposing <a href="lex_l.htm#lane">lanes</a> collide
with each other to produce clean 90-degree output gliders. Slowing
down one of the streams by 8<i>N</i> ticks will move the output lanes of the
gliders toward the source of that stream by <i>N</i> <a href="lex_f.htm#fulldiagonal">full diagonals</a>. This
construction method was used to create the supporting slow salvos in
the <a href="lex_h.htm#halfbakedknightship">half-baked knightships</a>, and also in the <a href="lex_p.htm#parallelhbkgun">Parallel HBK gun</a>.
<p><a name=ash>:</a><b>ash</b> The <a href="lex_s.htm#stable">stable</a> or oscillating objects left behind when a chaotic
reaction stabilizes, or "burns out". Experiments show that for random
<a href="lex_s.htm#soup">soups</a> with moderate initial densities (say 0.25 to 0.5) the
resulting ash has a density of about 0.0287. (This is, of course,
based on what happens in finite fields. In infinite fields the
situation may conceivably be different in the long run because of the
effect of certain initially very rare objects such as <a href="lex_r.htm#replicator">replicators</a>.)
<p><a name=asynchronous>:</a><b>asynchronous</b> Indicates that precise relative timing is not needed for
two or more input <a href="lex_s.htm#signal">signals</a> entering a <a href="lex_c.htm#circuit">circuit</a>, or two or more sets
of <a href="lex_g.htm#glider">gliders</a> participating in a <a href="lex_g.htm#glidersynthesis">glider synthesis</a>. In some cases
the signals or sets of gliders can arrive in any order at all - i.e.,
they have non-overlapping effects.
<p>However, in some cases such as <a href="lex_s.htm#slowsalvo">slow salvo</a> constructions, there is
a required order for some of the incoming signals. These signals can
still be referred to as "asynchronous" because the number of ticks
between them is infinitely adjustable: arbitrarily long delays can
be added with no change to the final result. Compare <a href="lex_s.htm#synchronized">synchronized</a>.
<p><a name=average>:</a><b>aVerage</b> (p5) Found by Dave Buckingham, 1973. The average number of
live <a href="lex_r.htm#rotor">rotor</a> cells is five (V), which is also the period.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO........$....OOO......$..O....O.....$.O.OOOO.O....$.O.O....O..O.$OO.OOO..O.O.O$.O.O....O..O.$.O.OOOO.O....$..O....O.....$....OOO......$...OO........$"
>...OO........
....OOO......
..O....O.....
.O.OOOO.O....
.O.O....O..O.
OO.OOO..O.O.O
.O.O....O..O.
.O.OOOO.O....
..O....O.....
....OOO......
...OO........
</a></pre></td></tr></table></center>
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
</body>