1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (F)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">
<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
<p><a name=f116>:</a><b>F116</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in February 1997.
After 116 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> at (32, 1) relative to the
input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 138 ticks; this can be reduced to 120
ticks by adding extra mechanisms to suppress the internal glider. It
is <a href="lex_s.htm#spartan">Spartan</a> only if the following conduit is a <a href="lex_d.htm#dependentconduit">dependent conduit</a>,
so that the <a href="lex_w.htm#weld">welded</a> <a href="#fng">FNG</a> eater can be removed. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a>
in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O..........................$........OOO........................$...........O.......................$..........OO.......................$...................................$...................................$...................................$...................................$...................................$...................................$...................................$...................................$...................................$...................................$O..................................$O.O.............................O..$OOO.............................O..$..O.............................OOO$..................................O$...................................$...................................$...................................$...................................$.........................OO........$...................OO.....O........$...................O.O.OOO.........$............OO.......O.O...........$............OO.......OO............$"
>........O..........................
........OOO........................
...........O.......................
..........OO.......................
...................................
...................................
...................................
...................................
...................................
...................................
...................................
...................................
...................................
...................................
O..................................
O.O.............................O..
OOO.............................O..
..O.............................OOO
..................................O
...................................
...................................
...................................
...................................
.........................OO........
...................OO.....O........
...................O.O.OOO.........
............OO.......O.O...........
............OO.......OO............
</a></pre></td></tr></table></center>
<p><a name=f117>:</a><b>F117</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in July 1996. It
is made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, <a href="lex_h.htm#hfx58b">HFx58B</a> + <a href="lex_b.htm#bfx59h">BFx59H</a>. After
117 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> at (40, -6) relative to the
input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 63 ticks. It can be made <a href="lex_s.htm#spartan">Spartan</a> by
replacing the <a href="lex_s.htm#snake">snake</a> with an <a href="lex_e.htm#eater1">eater1</a> in one of two orientations. A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................OO.....................$.......................O.....................$..........O...........O......................$..........OOO.........OO.....................$.............O...............................$OO..........OO...............................$.O...........................................$.O.O.........................................$..OO.........................................$.........................OO...............O..$.........................OO...............O..$..........................................OOO$............................................O$.............................................$.............................................$..O..........................................$..O.O........................................$..OOO........................................$....O...........OO...........................$................O............................$.................OOO.........................$...................O.........................$"
>......................OO.....................
.......................O.....................
..........O...........O......................
..........OOO.........OO.....................
.............O...............................
OO..........OO...............................
.O...........................................
.O.O.........................................
..OO.........................................
.........................OO...............O..
.........................OO...............O..
..........................................OOO
............................................O
.............................................
.............................................
..O..........................................
..O.O........................................
..OOO........................................
....O...........OO...........................
................O............................
.................OOO.........................
...................O.........................
</a></pre></td></tr></table></center>
<p><a name=f166>:</a><b>F166</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in May 1997. It is
composed of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HFx107B + <a href="lex_b.htm#bfx59h">BFx59H</a>. The F166
and <a href="lex_l.htm#lx200">Lx200</a> conduits are the two original <a href="lex_d.htm#dependentconduit">dependent conduits</a>
(several more have since been discovered). After 166 ticks, it
produces a <a href="lex_h.htm#herschel">Herschel</a> at (49, 3) relative to the input. Its
<a href="lex_r.htm#recoverytime">recovery time</a> is 116 ticks. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern
below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................................OO.....................$..................................O.....................$.................................O......................$.................................OO.....................$........................................................$........................................................$.OO.....................................................$OOO.OO..................................................$.OO.OOO.OO..............................................$OOO.OO..OO..........................OO...............O..$OO..................................OO...............O..$.....................................................OOO$.......................................................O$........................................................$........................................................$........................................................$......OO................................................$.....O.O......................................OO........$.....O.........................................O........$....OO.........................OO...........OOO.........$...............................OO...........O...........$........................................................$........................................................$.................OO.....................................$..................O.....................................$...............OOO......................................$...............O........................................$...........................OO...........................$...........................O............................$............................OOO.........................$..............................O.........................$"
>.................................OO.....................
..................................O.....................
.................................O......................
.................................OO.....................
........................................................
........................................................
.OO.....................................................
OOO.OO..................................................
.OO.OOO.OO..............................................
OOO.OO..OO..........................OO...............O..
OO..................................OO...............O..
.....................................................OOO
.......................................................O
........................................................
........................................................
........................................................
......OO................................................
.....O.O......................................OO........
.....O.........................................O........
....OO.........................OO...........OOO.........
...............................OO...........O...........
........................................................
........................................................
.................OO.....................................
..................O.....................................
...............OOO......................................
...............O........................................
...........................OO...........................
...........................O............................
............................OOO.........................
..............................O.........................
</a></pre></td></tr></table></center>
The F166 can be made <a href="lex_s.htm#spartan">Spartan</a> by replacing the <a href="lex_s.htm#snake">snake</a> with an
<a href="lex_e.htm#eater1">eater1</a> in one of two orientations. The input shown here is a
<a href="lex_h.htm#herschelgreatgrandparent">Herschel great-grandparent</a>, since the input reaction is catalysed
by the <a href="lex_t.htm#transparent">transparent</a> block before the Herschel's standard form can
appear.
<p><a name=f171>:</a><b>F171</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, the seventeenth <a href="lex_h.htm#herschelconduit">Herschel conduit</a>,
discovered by Brice Due in August 2006 in a search using only
<a href="lex_e.htm#eater">eaters</a> as <a href="lex_c.htm#catalyst">catalysts</a>. This was the first new Herschel conduit
discovery since 1998. After 171 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> at
(29, -17) relative to the input. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern
below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........O......................$..........OOO....................$.............O...................$............OO...................$.....O...........................$.....OOO.........................$........O........................$.......OO........................$.................................$..............................O..$....OO........................O..$.....O........................OOO$.....O.O........................O$......OO.........................$.................................$.................................$O................................$OOO..............................$...O.............................$..OO.............................$.................................$.................................$.................................$.................................$.................................$.................................$.O...............................$.O.O.............................$.OOO.............................$...O.............................$.................................$..........OO.....................$...........O.....................$........OOO......................$........O........................$"
>..........O......................
..........OOO....................
.............O...................
............OO...................
.....O...........................
.....OOO.........................
........O........................
.......OO........................
.................................
..............................O..
....OO........................O..
.....O........................OOO
.....O.O........................O
......OO.........................
.................................
.................................
O................................
OOO..............................
...O.............................
..OO.............................
.................................
.................................
.................................
.................................
.................................
.................................
.O...............................
.O.O.............................
.OOO.............................
...O.............................
.................................
..........OO.....................
...........O.....................
........OOO......................
........O........................
</a></pre></td></tr></table></center>
<p>The conduit's <a href="lex_r.htm#recoverytime">recovery time</a> is 227 ticks, slower than many of the
original sixteen conduits because of the delayed destruction of a
temporary blinker, though the circuit itself is clearly <a href="lex_s.htm#spartan">Spartan</a>.
The recovery time can be improved to 120 ticks by adding <a href="lex_s.htm#sparker">sparkers</a>
of various periods to suppress the blinker. See <a href="lex_c.htm#clock">clock</a> for a
period-2 example.
<p>The central eater in the group of three to the northwest can be
removed to release an additional <a href="lex_g.htm#glider">glider</a> output signal on a
<a href="lex_t.htm#transparent">transparent</a> <a href="lex_l.htm#lane">lane</a>.
<p><a name=factory>:</a><b>factory</b> Another word for <a href="lex_g.htm#gun">gun</a>, but not used in the case of glider
guns. The term is also used for a pattern that repeatedly
manufactures objects other than <a href="lex_s.htm#spaceship">spaceships</a> or <a href="lex_r.htm#rake">rakes</a>. In this
case the new objects do not move out of the way, and therefore must
be used up in some way before the next one is made. The following
shows an example of a p144 gun which consists of a p144 block factory
whose output is converted into gliders by a p72 oscillator.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................OO........................OO$.......................OO........................OO$.........................................OO........$........................................O..O.......$.........................................OO........$...................................................$....................................OOO............$....................................O.O............$.........OO.........................OOO............$.........OO.........................OO.............$........O..O.......................OOO.............$........O..O.OO....................O.O.............$........O....OO....................OOO.............$..........OO.OO....................................$...............................OO..................$.....................OO.......O..O.................$.....................OO........OO..................$.................................................OO$.................................................OO$...................................................$....OO..................O..........................$OO....OOOO..........OO..OO.OOO.....................$OO..OO.OOO..........OO....OOOO.....................$....O...................OO.........................$"
>.......................OO........................OO
.......................OO........................OO
.........................................OO........
........................................O..O.......
.........................................OO........
...................................................
....................................OOO............
....................................O.O............
.........OO.........................OOO............
.........OO.........................OO.............
........O..O.......................OOO.............
........O..O.OO....................O.O.............
........O....OO....................OOO.............
..........OO.OO....................................
...............................OO..................
.....................OO.......O..O.................
.....................OO........OO..................
.................................................OO
.................................................OO
...................................................
....OO..................O..........................
OO....OOOO..........OO..OO.OOO.....................
OO..OO.OOO..........OO....OOOO.....................
....O...................OO.........................
</a></pre></td></tr></table></center>
This gun is David Bell's improvement of the one Bill Gosper found in
July 1994. The p72 oscillator is by Robert Wainwright in 1990, and
the block factory is <a href="lex_a.htm#achimsp144">Achim's p144</a> minus one of its stabilizing
blocks. For a block factory using stable components and triggered by
an input <a href="lex_h.htm#herschel">Herschel</a>, see also <a href="lex_k.htm#keeper">keeper</a>.
<p><a name=familiarfours>:</a><b>familiar fours</b> Common patterns of four identical objects. The five
commonest are <a href="lex_t.htm#trafficlight">traffic light</a> (4 blinkers), <a href="lex_h.htm#honeyfarm">honey farm</a> (4
beehives), <a href="lex_b.htm#blockade">blockade</a> (4 blocks), <a href="#fleet">fleet</a> (4 ships, although really 2
ship-ties) and <a href="lex_b.htm#bakery">bakery</a> (4 loaves, although really 2 bi-loaves).
Also sometimes included is <a href="#fourskewedblocks">four skewed blocks</a>.
<p><a name=fanout>:</a><b>fanout</b> A mechanism that emits two or more objects of some type for
each one that it receives. Typically the objects are <a href="lex_g.htm#glider">gliders</a> or
<a href="lex_h.htm#herschel">Herschels</a>; <a href="lex_g.htm#gliderduplicator">glider duplicators</a> are a special case.
<p><a name=fastforwardforcefield>:</a><b>Fast Forward Force Field</b> The following reaction found by Dieter
Leithner in May 1994. In the absence of the incoming LWSS the
gliders would simply annihilate one another, but as shown they allow
the LWSS to advance 11 spaces in the course of the next 6
generations.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O......O..$........O......OO$..OO..OOO.....OO.$OO.OO............$OOOO.........O...$.OO.........OO...$............O.O..$"
>.......O......O..
........O......OO
..OO..OOO.....OO.
OO.OO............
OOOO.........O...
.OO.........OO...
............O.O..
</a></pre></td></tr></table></center>
<p>The illusion of super-light-speed travel is caused by an LWSS that
is always created, but is then destroyed in some cases, by a signal
catching up to it from behind that necessarily never travels faster
than the <a href="lex_s.htm#speedoflight">speed of light</a>. It is not possible to make any use of the
apparent super-light-speed signal. The front end of an output LWSS
can't be distinguished from the alternative dying <a href="lex_s.htm#spark">spark</a> output
until several more ticks have passed. Not surprisingly, this extra
time is enough to drop the average speed of information transmission
safely below <i>c</i>.
<p>Leithner named the Fast Forward Force Field in honour of his
favourite science fiction writer, the physicist Robert L. Forward.
See also <a href="lex_s.htm#stargate">star gate</a> and <a href="lex_s.htm#speedbooster">speed booster</a>.
<p><a name=fate>:</a><b>fate</b> The result of evolving a pattern until its final behaviour is
known. This answers such questions such as whether or not the
pattern remains finite, what its growth rate is, what <a href="lex_p.htm#period">period</a> the
final state may settle into, and what its final <a href="lex_c.htm#census">census</a> is. All
small Life objects seem to eventually settle down into a mix of
oscillators, simple spaceships, and occasionally small puffers. See
<a href="lex_m.htm#methuselah">methuselah</a>, <a href="lex_s.htm#soup">soup</a>, <a href="lex_a.htm#ash">ash</a>.
<p>Most sufficiently large random patterns are expected to grow
forever due to the production of <a href="lex_s.htm#switchengine">switch engines</a> at their boundary.
Engineered Life objects - and therefore also sufficiently large and
unlikely random patterns - can have more interesting behaviour, such
as <a href="lex_b.htm#breeder">breeders</a>, <a href="lex_s.htm#sawtooth">sawtooths</a>, and prime calculators. Some objects have
even been constructed or designed having an <a href="lex_u.htm#unknownfate">unknown fate</a>.
<p><a name=father>:</a><b>father</b> = <a href="lex_p.htm#parent">parent</a>
<p><a name=fd>:</a><b>fd</b> Abbreviation for <a href="#fulldiagonal">full diagonals</a>.
<p><a name=featherweightspaceship>:</a><b>featherweight spaceship</b> = <a href="lex_g.htm#glider">glider</a>
<p><a name=fencepost>:</a><b>fencepost</b> Any pattern that stabilizes one end of a <a href="lex_w.htm#wick">wick</a>.
<p><a name=fermatprimecalculator>:</a><b>Fermat prime calculator</b> A pattern constructed by Jason Summers in
January 2000 that exhibits <a href="lex_i.htm#infinitegrowth">infinite growth</a> if and only if there are
no Fermat primes greater than 65537. The question of whether or not
it really does exhibit infinite growth is therefore equivalent to a
well-known and long-standing unsolved mathematical problem. It will,
however, still be growing at generation 10<sup>2585827975</sup>. The pattern is
based on Dean Hickerson's <a href="lex_p.htm#primer">primer</a> and <a href="lex_c.htm#cabertosser">caber tosser</a> patterns and a
p8 <a href="lex_b.htm#beehive">beehive</a> <a href="lex_p.htm#puffer">puffer</a> by Hartmut Holzwart.
<p><a name=fheptomino>:</a><b>F-heptomino</b> Name given by Conway to the following <a href="lex_h.htm#heptomino">heptomino</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..$.O..$.O..$.OOO$"
>OO..
.O..
.O..
.OOO
</a></pre></td></tr></table></center>
<p><a name=figure8>:</a><b>figure-8</b> (p8) A <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#sparker">sparker</a> found by Simon Norton in 1970.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO...$OOO...$OOO...$...OOO$...OOO$...OOO$"
>OOO...
OOO...
OOO...
...OOO
...OOO
...OOO
</a></pre></td></tr></table></center>
<p><a name=filter>:</a><b>filter</b> Any <a href="lex_o.htm#oscillator">oscillator</a> used to delete some but not all of the
<a href="lex_s.htm#spaceship">spaceships</a> in a stream. An example is the <a href="lex_b.htm#blocker">blocker</a>, which can be
positioned so as to delete every other <a href="lex_g.htm#glider">glider</a> in a stream of period
8<i>n</i>+4, and can also do the same for <a href="lex_l.htm#lwss">LWSS</a> streams. Other examples
are the <a href="lex_m.htm#mwemulator">MW emulator</a> and <a href="lex_t.htm#tnosedp4">T-nosed p4</a> (either of which can be used
to delete every other LWSS in a stream of period 4<i>n</i>+2), the
<a href="#fountain">fountain</a> (which does the same for <a href="lex_m.htm#mwss">MWSS</a> streams) and a number of
others, such as the p6 <a href="lex_p.htm#pipsquirter">pipsquirter</a>, the <a href="lex_p.htm#pentadecathlon">pentadecathlon</a> and the
p72 oscillator shown under <a href="#factory">factory</a>. Another example, a p4
oscillator deleting every other HWSS in a stream of period 4<i>n</i>+2, is
shown below. (The p4 oscillator here was found, with a slightly
larger <a href="lex_s.htm#stator">stator</a>, by Dean Hickerson in November 1994.)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OOOO............$....OO...OOOOOO...........$OOOO.OO..OOOO.OO..........$OOOOOO.......OO...........$.OOOO.....................$..........................$................OO........$..............O....O......$..........................$.............O.O..O.O.....$...........OOOO.OO.OOOO...$........O.O....O..O....O.O$........OO.OO.O....O.OO.OO$...........O.O......O.O...$........OO.O.O......O.O.OO$........OO.O..........O.OO$...........O.O.OOOO.O.O...$...........O.O......O.O...$..........OO.O.OOOO.O.OO..$..........O..OOO..OOO..O..$............O..OOOO..O....$...........OO.O....O.OO...$...........O..O....O..O...$............O..O..O..O....$.............OO....OO.....$"
>..........OOOO............
....OO...OOOOOO...........
OOOO.OO..OOOO.OO..........
OOOOOO.......OO...........
.OOOO.....................
..........................
................OO........
..............O....O......
..........................
.............O.O..O.O.....
...........OOOO.OO.OOOO...
........O.O....O..O....O.O
........OO.OO.O....O.OO.OO
...........O.O......O.O...
........OO.O.O......O.O.OO
........OO.O..........O.OO
...........O.O.OOOO.O.O...
...........O.O......O.O...
..........OO.O.OOOO.O.OO..
..........O..OOO..OOO..O..
............O..OOOO..O....
...........OO.O....O.OO...
...........O..O....O..O...
............O..O..O..O....
.............OO....OO.....
</a></pre></td></tr></table></center>
<p><a name=filterstream>:</a><b>filter stream</b> A <a href="lex_s.htm#stream">stream</a> of <a href="lex_s.htm#spaceship">spaceships</a> in which there are periodic
gaps in the stream. This can thin out another crossing stream by
deleting the <a href="lex_s.htm#spaceship">spaceships</a> in the second stream except where the gaps
occur. The filter stream is not affected by the deletions so that
the same stream can thin out multiple other streams. The
<a href="lex_c.htm#caterpillar">Caterpillar</a> uses filter streams of <a href="lex_m.htm#mwss">MWSSs</a> in which there is a gap
every 6 spaceships. Here is part of a filter stream that thins a
glider stream by 2/3:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................................O.............................$.................................O............................$...............................OOO............................$..............................................................$..............................................................$..............................................................$..............................................................$.......................................O......................$........................................O.....................$......................................OOO.....................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................O...............$...............................................O..............$.............................................OOO..............$..............................................................$..............................................................$..O.............O...........................O.............O...$O...O.........O...O.......................O...O.........O...O.$.....O.............O...........................O.............O$O....O........O....O......................O....O........O....O$.OOOOO.........OOOOO.......................OOOOO.........OOOOO$"
>................................O.............................
.................................O............................
...............................OOO............................
..............................................................
..............................................................
..............................................................
..............................................................
.......................................O......................
........................................O.....................
......................................OOO.....................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................O...............
...............................................O..............
.............................................OOO..............
..............................................................
..............................................................
..O.............O...........................O.............O...
O...O.........O...O.......................O...O.........O...O.
.....O.............O...........................O.............O
O....O........O....O......................O....O........O....O
.OOOOO.........OOOOO.......................OOOOO.........OOOOO
</a></pre></td></tr></table></center>
<p><a name=finger>:</a><b>finger</b> A protruding cell in an <a href="lex_o.htm#oscillator">oscillator</a> or <a href="lex_d.htm#dyingspark">dying spark</a>, with
the ability to modify a nearby active reaction. Like a <a href="lex_t.htm#thumb">thumb</a>, a
finger cell appears at the edge of a reaction envelope and is the
only live cell in its row or column. The finger spark remains alive
for two ticks before dying, whereas a thumb cell dies after one tick.
Because the key cell is kept alive for an extra tick, an alternate
technical term is "held (orthogonal) bit spark". A "held diagonal
bit spark" is not possible in B3/S23 for obvious reasons.
<p><a name=fire>:</a><b>fire</b> An encoded signal used in combination with <a href="lex_p.htm#push">push</a> and <a href="lex_p.htm#pull">pull</a>
<a href="lex_e.htm#elbowoperation">elbow operations</a> in a simple <a href="lex_c.htm#constructionarm">construction arm</a>. When a FIRE
signal is sent, the construction-arm elbow produces an output glider,
usually at 90 degrees from the construction arm. This terminology is
generally used when there is only a single recipe for such a glider
output, or only one recipe for each glider colour (e.g., FIRE WHITE,
FIRE BLACK).
<p><a name=fireship>:</a><b>fireship</b> (<i>c</i>/10 orthogonally, p10) A variant of the <a href="lex_c.htm#copperhead">copperhead</a> with
a trailing component that emits several large <a href="lex_s.htm#spark">sparks</a>, discovered by
Simon Ekström on 20 March 2016. The interaction between the
copperhead and the additional component is minimal enough that the
extension technically fits the definition of a <a href="lex_t.htm#tagalong">tagalong</a>. However,
the extension slightly modifies two of the <a href="lex_p.htm#phase">phases</a> of the spaceship,
starting two ticks after the phase shown below, so it's also valid to
classify the fireship as a distinct spaceship.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO....$...OOOO...$..........$..OOOOOO..$...OOOO...$..........$..OO..OO..$OO.O..O.OO$...O..O...$..........$..........$....OO....$....OO....$..........$.O.O..O.O.$O..O..O..O$O........O$O........O$OO......OO$..OOOOOO..$"
>....OO....
...OOOO...
..........
..OOOOOO..
...OOOO...
..........
..OO..OO..
OO.O..O.OO
...O..O...
..........
..........
....OO....
....OO....
..........
.O.O..O.O.
O..O..O..O
O........O
O........O
OO......OO
..OOOOOO..
</a></pre></td></tr></table></center>
<p><a name=firespitting>:</a><b>fire-spitting</b> (p3) Found by Nicolay Beluchenko, September 2003.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O......$.OOO......$O.........$.O.OOO....$.O.....O..$..O..O....$..O.O..O.O$........OO$"
>...O......
.OOO......
O.........
.O.OOO....
.O.....O..
..O..O....
..O.O..O.O
........OO
</a></pre></td></tr></table></center>
<p><a name=firstnaturalglider>:</a><b>first natural glider</b> The glider produced at T=21 during the
<a href="lex_e.htm#evolution">evolution</a> of a <a href="lex_h.htm#herschel">Herschel</a>. This is the most common signal output
from a <a href="lex_h.htm#herschelconduit">Herschel conduit</a>.
<p><a name=fish>:</a><b>fish</b> A generic term for <a href="lex_l.htm#lwss">LWSS</a>, <a href="lex_m.htm#mwss">MWSS</a> and <a href="lex_h.htm#hwss">HWSS</a>, or, more
generally, for any <a href="lex_s.htm#spaceship">spaceship</a>. In recent years <a href="lex_w.htm#wss">*WSS</a> is much more
commonly used to refer to the small orthogonal <i>c</i>/2 spaceships.
<p><a name=fishhook>:</a><b>fishhook</b> = <a href="lex_e.htm#eater1">eater1</a>
<p><a name=fleet>:</a><b>fleet</b> (p1) A common formation of two <a href="lex_s.htm#shiptie">ship-ties</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO....$....O.O...$.....OO...$.......OO.$OO.....O.O$O.O.....OO$.OO.......$...OO.....$...O.O....$....OO....$"
>....OO....
....O.O...
.....OO...
.......OO.
OO.....O.O
O.O.....OO
.OO.......
...OO.....
...O.O....
....OO....
</a></pre></td></tr></table></center>
<p><a name=flipflop>:</a><b>flip-flop</b> Any p2 <a href="lex_o.htm#oscillator">oscillator</a>. However, the term is also used in two
more specific (and non-equivalent) senses: (a) any p2 oscillator
whose two <a href="lex_p.htm#phase">phases</a> are mirror images of one another, and (b) any p2
oscillator in which all <a href="lex_r.htm#rotor">rotor</a> cells die from <a href="lex_u.htm#underpopulation">underpopulation</a>. In
the latter sense it contrasts with <a href="lex_o.htm#onoff">on-off</a>. The term has also been
used even more specifically for the 12-cell flip-flop shown under
<a href="lex_p.htm#phoenix">phoenix</a>.
<p><a name=flipflops>:</a><b>flip-flops</b> Another name for the flip-flop shown under <a href="lex_p.htm#phoenix">phoenix</a>.
<p><a name=flipper>:</a><b>flipper</b> Any <a href="lex_o.htm#oscillator">oscillator</a> or <a href="lex_s.htm#spaceship">spaceship</a> that forms its mirror image
halfway through its period.
<p><a name=flotilla>:</a><b>flotilla</b> A <a href="lex_s.htm#spaceship">spaceship</a> composed of a number of smaller interacting
spaceships. Often one or more of these is not a true spaceship and
could not survive without the support of the others. The following
example shows an <a href="lex_o.htm#owss">OWSS</a> escorted by two <a href="lex_h.htm#hwss">HWSS</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OOOO.......$...OOOOOO......$..OO.OOOO......$...OO..........$...............$...........OO..$.O............O$O..............$O.............O$OOOOOOOOOOOOOO.$...............$...............$....OOOO.......$...OOOOOO......$..OO.OOOO......$...OO..........$"
>....OOOO.......
...OOOOOO......
..OO.OOOO......
...OO..........
...............
...........OO..
.O............O
O..............
O.............O
OOOOOOOOOOOOOO.
...............
...............
....OOOO.......
...OOOOOO......
..OO.OOOO......
...OO..........
</a></pre></td></tr></table></center>
<p><a name=fly>:</a><b>fly</b> A certain <i>c</i>/3 <a href="lex_t.htm#tagalong">tagalong</a> found by David Bell, April 1992. Shown
here attached to the back of a small spaceship (also by Bell).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O...............................$.O.O..............................$.O.O......................O.O...O.$.O.......................OO.O.O..O$...........OOO........O.........O.$OO.........OO..O.OO...O..OOOO.....$.O.O.........OOOO..O.O..OO....OO..$.OO........O..O...OOO.....OOO.....$..O.......O....O..OO..OO..O..O....$...O..O...O....O..OOO.O.O....OO...$.......O.OO....O..OOOO.....O......$....OO...OO....O..OOOO.....O......$....O.O...O....O..OOO.O.O....OO...$...OO.....O....O..OO..OO..O..O....$....O.O....O..O...OOO.....OOO.....$.....O.......OOOO..O.O..OO....OO..$...........OO..O.OO...O..OOOO.....$...........OOO........O.........O.$.........................OO.O.O..O$..........................O.O...O.$"
>..O...............................
.O.O..............................
.O.O......................O.O...O.
.O.......................OO.O.O..O
...........OOO........O.........O.
OO.........OO..O.OO...O..OOOO.....
.O.O.........OOOO..O.O..OO....OO..
.OO........O..O...OOO.....OOO.....
..O.......O....O..OO..OO..O..O....
...O..O...O....O..OOO.O.O....OO...
.......O.OO....O..OOOO.....O......
....OO...OO....O..OOOO.....O......
....O.O...O....O..OOO.O.O....OO...
...OO.....O....O..OO..OO..O..O....
....O.O....O..O...OOO.....OOO.....
.....O.......OOOO..O.O..OO....OO..
...........OO..O.OO...O..OOOO.....
...........OOO........O.........O.
.........................OO.O.O..O
..........................O.O...O.
</a></pre></td></tr></table></center>
<p><a name=flybydeletion>:</a><b>fly-by deletion</b> A reaction performed by a passing <a href="lex_c.htm#convoy">convoy</a> of
<a href="lex_s.htm#spaceship">spaceships</a> which deletes a common stationary object without harming
the convoy. Fly-by deletion is often used in the construction of
<a href="lex_p.htm#puffer">puffers</a> and <a href="lex_s.htm#spaceship">spaceships</a> to clean up unwanted debris.
<p>For <i>c</i>/2 convoys this is not usually difficult since the <a href="lex_l.htm#lwss">LWSS</a>,
<a href="lex_m.htm#mwss">MWSS</a>, and <a href="lex_h.htm#hwss">HWSS</a> <a href="lex_s.htm#spaceship">spaceships</a> have such useful <a href="lex_s.htm#spark">sparks</a>. However,
some objects are more difficult to delete. For example, deleting a
<a href="lex_t.htm#tub">tub</a> appears to require an unusual p4 spaceship.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................O.........$......................O.O........$.......................O.........$.................................$.................................$.................................$................OOO..............$OOO.............O..O.............$O..O....OOO.....O...........OOO..$O.......O..O....O...O.......O..O.$O...O..O...O....O...O.......O....$O......O.O...O..O...........O...O$.O..OO........O.O...........O...O$.OOOOO........O.............O....$....OO......O...OOO..........O.O.$.OO..............................$"
>.......................O.........
......................O.O........
.......................O.........
.................................
.................................
.................................
................OOO..............
OOO.............O..O.............
O..O....OOO.....O...........OOO..
O.......O..O....O...O.......O..O.
O...O..O...O....O...O.......O....
O......O.O...O..O...........O...O
.O..OO........O.O...........O...O
.OOOOO........O.............O....
....OO......O...OOO..........O.O.
.OO..............................
</a></pre></td></tr></table></center>
<p>The deletion of a <a href="lex_p.htm#pond">pond</a> appears to require a convoy which is 89
cells in width containing a very unusual p4 spaceship which has 273
cells. There are small objects which have no known fly-by deletion
reactions. However, as in the case of <a href="lex_r.htm#reanimation">reanimation</a>, hitting them
with the output of <a href="lex_r.htm#rake">rakes</a> is an effective brute force method.
<p><a name=flyingmachine>:</a><b>flying machine</b> = <a href="lex_s.htm#schickengine">Schick engine</a>
<p><a name=fng>:</a><b>FNG</b> = <a href="#firstnaturalglider">first natural glider</a>.
<p><a name=foreandback>:</a><b>fore and back</b> (p2) Compare <a href="lex_s.htm#snakepit">snake pit</a>. Found by Achim Flammenkamp,
July 1994.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.OO..$OO.O.O.$......O$OOO.OOO$O......$.O.O.OO$..OO.OO$"
>OO.OO..
OO.O.O.
......O
OOO.OOO
O......
.O.O.OO
..OO.OO
</a></pre></td></tr></table></center>
<p><a name=forwardglider>:</a><b>forward glider</b> A <a href="lex_g.htm#glider">glider</a> which moves at least partly in the same
direction as the <a href="lex_p.htm#puffer">puffer</a>(s) or <a href="lex_s.htm#spaceship">spaceship</a>(s) under consideration.
<p><a name=fountain>:</a><b>fountain</b> (p4) Found by Dean Hickerson in November 1994, and named by
Bill Gosper. See also <a href="#filter">filter</a> and <a href="lex_s.htm#superfountain">superfountain</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O.........$...................$...OO.O.....O.OO...$...O.....O.....O...$....OO.OO.OO.OO....$...................$......OO...OO......$OO...............OO$O..O...O.O.O...O..O$.OOO.OOOOOOOOO.OOO.$....O....O....O....$...OO.........OO...$...O...........O...$.....O.......O.....$....OO.......OO....$"
>.........O.........
...................
...OO.O.....O.OO...
...O.....O.....O...
....OO.OO.OO.OO....
...................
......OO...OO......
OO...............OO
O..O...O.O.O...O..O
.OOO.OOOOOOOOO.OOO.
....O....O....O....
...OO.........OO...
...O...........O...
.....O.......O.....
....OO.......OO....
</a></pre></td></tr></table></center>
<p><a name=fourskewedblocks>:</a><b>four skewed blocks</b> (p1) The following <a href="lex_c.htm#constellation">constellation</a>, sometimes
considered to be one of the <a href="#familiarfours">familiar fours</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO.....$...OO.....$..........$..........$..........$........OO$OO......OO$OO........$..........$..........$..........$.....OO...$.....OO...$"
>...OO.....
...OO.....
..........
..........
..........
........OO
OO......OO
OO........
..........
..........
..........
.....OO...
.....OO...
</a></pre></td></tr></table></center>
This is most commonly created by a symmetric <a href="lex_1.htm#a-2glidercollision">2-glider collision</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO.....$O.O.....$..O..O..$.....O.O$.....OO.$"
>.OO.....
O.O.....
..O..O..
.....O.O
.....OO.
</a></pre></td></tr></table></center>
<p><a name=fourteener>:</a><b>fourteener</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO.$OO..O.O$O.....O$.OOOOO.$...O...$"
>....OO.
OO..O.O
O.....O
.OOOOO.
...O...
</a></pre></td></tr></table></center>
<p><a name=fox>:</a><b>fox</b> (p2) This is the smallest asymmetric p2 oscillator. Found by
Dave Buckingham, July 1977.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O..$....O..$..O..O.$OO.....$....O.O$..O.O.O$......O$"
>....O..
....O..
..O..O.
OO.....
....O.O
..O.O.O
......O
</a></pre></td></tr></table></center>
<p><a name=freezedried>:</a><b>freeze-dried</b> A term used for a <a href="lex_g.htm#gliderconstructible">glider constructible</a> <a href="lex_s.htm#seed">seed</a> that can
activated in some way to produce a complex object. For example, a
"freeze-dried salvo" is a constellation of constructible objects
which, when <a href="lex_t.htm#trigger">triggered</a> by a single glider, produces a unidirectional
glider <a href="lex_s.htm#salvo">salvo</a>, and nothing else. Freeze-dried salvos can be useful
in <a href="lex_s.htm#slowsalvo">slow salvo</a> constructions, especially when an active circuit has
to destroy or reconstruct itself in a limited amount of time.
Gradual modification by a <a href="lex_c.htm#constructionarm">construction arm</a> may be too slow, or the
circuit doing the construction may itself be the object that must be
modified.
<p>The concept may be applied to other types of objects. For example,
one possible way to build a gun for a <a href="lex_w.htm#waterbear">waterbear</a> would be to program
a construction arm to build a freeze-dried waterbear seed, and then
trigger it when the construction is complete.
<p><a name=frenchkiss>:</a><b>French kiss</b> (p3) Found by Robert Wainwright, July 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.........$OOO.......$...O......$..O..OO...$..O....O..$...OO..O..$......O...$.......OOO$.........O$"
>O.........
OOO.......
...O......
..O..OO...
..O....O..
...OO..O..
......O...
.......OOO
.........O
</a></pre></td></tr></table></center>
For many years this was one of the best-known small oscillators with
no known <a href="lex_g.htm#glidersynthesis">glider synthesis</a>. In October 2013 Martin Grant completed
a 23-glider construction.
<p><a name=frogii>:</a><b>frog II</b> (p3) Found by Dave Buckingham, October 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO...OO..$..O.O.O.O..$....O.O....$...O.O.O...$...OO.OO...$.OO.....OO.$O..O.O.O..O$.O.O...O.O.$OO.O...O.OO$....OOO....$...........$...O.OO....$...OO.O....$"
>..OO...OO..
..O.O.O.O..
....O.O....
...O.O.O...
...OO.OO...
.OO.....OO.
O..O.O.O..O
.O.O...O.O.
OO.O...O.OO
....OOO....
...........
...O.OO....
...OO.O....
</a></pre></td></tr></table></center>
<p><a name=frothingpuffer>:</a><b>frothing puffer</b> A frothing puffer (or a frothing spaceship) is a
<a href="lex_p.htm#puffer">puffer</a> (or <a href="lex_s.htm#spaceship">spaceship</a>) whose back end appears to be unstable and
breaking apart, but which nonetheless survives. The <a href="lex_e.htm#exhaust">exhaust</a>
festers and clings to the back of the puffer/spaceship before
breaking off. The first known frothing puffers were <i>c</i>/2, and most
were found by slightly modifying the back ends of p2 spaceships. A
number of these have periods which are not a multiple of 4 (as with
some <a href="lex_l.htm#linepuffer">line puffers</a>). Paul Tooke has also found <i>c</i>/3 frothing
puffers.
<p>The following p78 <i>c</i>/2 frothing puffer was found by Paul Tooke in
April 2001.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O.................O.......$......OOO...............OOO......$.....OO....OOO.....OOO....OO.....$...OO.O..OOO..O...O..OOO..O.OO...$....O.O..O.O...O.O...O.O..O.O....$.OO.O.O.O.O....O.O....O.O.O.O.OO.$.OO...O.O....O.....O....O.O...OO.$.OOO.O...O....O.O.O....O...O.OOO.$OO.........OO.O.O.O.OO.........OO$............O.......O............$.........OO.O.......O.OO.........$..........O...........O..........$.......OO.O...........O.OO.......$.......OO...............OO.......$.......O.O.O.OOO.OOO.O.O.O.......$......OO...O...O.O...O...OO......$......O..O...O.O.O.O...O..O......$.........OO....O.O....OO.........$.....OO....O...O.O...O....OO.....$.........O.OO.O...O.OO.O.........$..........O.O.O.O.O.O.O..........$............O..O.O..O............$...........O.O.....O.O...........$"
>.......O.................O.......
......OOO...............OOO......
.....OO....OOO.....OOO....OO.....
...OO.O..OOO..O...O..OOO..O.OO...
....O.O..O.O...O.O...O.O..O.O....
.OO.O.O.O.O....O.O....O.O.O.O.OO.
.OO...O.O....O.....O....O.O...OO.
.OOO.O...O....O.O.O....O...O.OOO.
OO.........OO.O.O.O.OO.........OO
............O.......O............
.........OO.O.......O.OO.........
..........O...........O..........
.......OO.O...........O.OO.......
.......OO...............OO.......
.......O.O.O.OOO.OOO.O.O.O.......
......OO...O...O.O...O...OO......
......O..O...O.O.O.O...O..O......
.........OO....O.O....OO.........
.....OO....O...O.O...O....OO.....
.........O.OO.O...O.OO.O.........
..........O.O.O.O.O.O.O..........
............O..O.O..O............
...........O.O.....O.O...........
</a></pre></td></tr></table></center>
<p><a name=frothingspaceship>:</a><b>frothing spaceship</b> See <a href="#frothingpuffer">frothing puffer</a>.
<p><a name=frozen>:</a><b>frozen</b> = <a href="#freezedried">freeze-dried</a>.
<p><a name=fulldiagonal>:</a><b>full diagonal</b> Diagonal distance measurement, abbreviated "fd", often
appropriate when a <a href="lex_c.htm#constructionarm">construction arm</a> <a href="lex_e.htm#elbow">elbow</a> or similar
diagonally-adjustable mechanism is present.
<p><a name=fumarole>:</a><b>fumarole</b> (p5) Found by Dean Hickerson in September 1989. In terms of
its 7x8 bounding box this is the smallest p5 oscillator.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO...$.O....O.$.O....O.$.O....O.$..O..O..$O.O..O.O$OO....OO$"
>...OO...
.O....O.
.O....O.
.O....O.
..O..O..
O.O..O.O
OO....OO
</a></pre></td></tr></table></center>
<p><a name=fuse>:</a><b>fuse</b> A <a href="lex_w.htm#wick">wick</a> <a href="lex_b.htm#burn">burning</a> at one end. For examples, see <a href="lex_b.htm#baker">baker</a>,
<a href="lex_b.htm#beaconmaker">beacon maker</a>, <a href="lex_b.htm#blinkership">blinker ship</a>, <a href="lex_b.htm#boatmaker">boat maker</a>, <a href="lex_c.htm#cow">cow</a>, <a href="lex_h.htm#harvester">harvester</a>,
<a href="lex_l.htm#lightspeedwire">lightspeed wire</a>, <a href="lex_p.htm#piship">pi ship</a>, <a href="lex_r.htm#reversefuse">reverse fuse</a>, <a href="lex_s.htm#superstring">superstring</a> and
<a href="lex_w.htm#washerwoman">washerwoman</a>. Useful fuses are usually <a href="lex_c.htm#clean">clean</a>, but see also
<a href="lex_r.htm#reburnablefuse">reburnable fuse</a>.
<p>A fuse can <a href="lex_b.htm#burn">burn</a> arbitrarily slowly, as demonstrated by the
example <a href="lex_b.htm#blockic">Blockic</a> fuse below. A <a href="lex_s.htm#signal">signal</a>, alternating between
<a href="lex_g.htm#glider">glider</a> and <a href="lex_m.htm#mwss">MWSS</a> form, travels up and down between two rows of
blocks in a series of <a href="lex_o.htm#onetime">one-time</a> <a href="lex_t.htm#turner">turner</a> reactions. The spacing
shown here causes the fuse to burn 24 cells to the right every 240
generations, for a speed of <i>c</i>/10. Moving the bottom half further
from the top half by any even number of cells will slow down the
burning even further.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........OO......................OO......................$.........OO......................OO......................$.........................................................$.........................................................$.....OO.......OO.............OO.......OO.............OO..$.OO..OO.......OO.........OO..OO.......OO.........OO..OO..$.OO................OO....OO................OO....OO......$...................OO......................OO............$.........................................................$.........................................................$.........................................................$.........................................................$............OO....OO................OO....OO.............$............OO....OO................OO....OO.............$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$OO....OO................OO....OO................OO....OO.$OO....OO................OO....OO................OO....OO.$.........................................................$.........................................................$.........................................................$.........................................................$.OO....OO......................OO......................OO$O.O....OO....OO................OO....OO................OO$..O..........OO..OO.......OO.........OO..OO.......OO.....$.................OO.......OO.............OO.......OO.....$.........................................................$.........................................................$.....................OO......................OO..........$.....................OO......................OO..........$"
>.........OO......................OO......................
.........OO......................OO......................
.........................................................
.........................................................
.....OO.......OO.............OO.......OO.............OO..
.OO..OO.......OO.........OO..OO.......OO.........OO..OO..
.OO................OO....OO................OO....OO......
...................OO......................OO............
.........................................................
.........................................................
.........................................................
.........................................................
............OO....OO................OO....OO.............
............OO....OO................OO....OO.............
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
OO....OO................OO....OO................OO....OO.
OO....OO................OO....OO................OO....OO.
.........................................................
.........................................................
.........................................................
.........................................................
.OO....OO......................OO......................OO
O.O....OO....OO................OO....OO................OO
..O..........OO..OO.......OO.........OO..OO.......OO.....
.................OO.......OO.............OO.......OO.....
.........................................................
.........................................................
.....................OO......................OO..........
.....................OO......................OO..........
</a></pre></td></tr></table></center>
<p><a name=fx119>:</a><b>Fx119</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in September 1996.
After 119 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (20, 14)
relative to the input. Its recovery time is 231 ticks; this can be
reduced somewhat by suppressing the output Herschel's glider, or by
adding extra <a href="lex_c.htm#catalyst">catalysts</a> to make the reaction settle more quickly. A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O......................$O.O....................$OOO....................$..O....................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.........OO...........O$....OO...OO.........OOO$....OO..............O..$....................O..$.......................$...OO..................$....O....OO............$.OOO.....OO............$.O.....................$"
>O......................
O.O....................
OOO....................
..O....................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.........OO...........O
....OO...OO.........OOO
....OO..............O..
....................O..
.......................
...OO..................
....O....OO............
.OOO.....OO............
.O.....................
</a></pre></td></tr></table></center>
<p><a name=fx119inserter>:</a><b>Fx119 inserter</b> A <a href="lex_h.htm#herscheltoglider">Herschel-to-glider</a> <a href="lex_c.htm#converter">converter</a> and <a href="lex_e.htm#edgeshooter">edge shooter</a>
based on an <a href="#fx119">Fx119</a> Herschel conduit:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O....................$.........O.O..................$.........OOO..................$...........O..................$..............................$..............................$..............................$..............................$..OO......OO..................$...O.......O..................$OOO.....OOO...................$O.......O.....................$..............................$..............................$..............................$..................OO..........$.............OO...OO..........$.............OO...............$..............................$..............................$............OO............OO..$.............O....OO......O...$..........OOO.....OO.......OOO$..........O..................O$"
>.........O....................
.........O.O..................
.........OOO..................
...........O..................
..............................
..............................
..............................
..............................
..OO......OO..................
...O.......O..................
OOO.....OOO...................
O.......O.....................
..............................
..............................
..............................
..................OO..........
.............OO...OO..........
.............OO...............
..............................
..............................
............OO............OO..
.............O....OO......O...
..........OOO.....OO.......OOO
..........O..................O
</a></pre></td></tr></table></center>
<p>This edge shooter has an unusually high 27<a href="lex_h.htm#hd">hd</a> clearance, one of
the highest known for a single small component. The only known
higher-clearance edge shooters are injectors making use of multiple
interacting spaceships. This makes the Fx119 inserter ideal for the
construction of wide <a href="lex_c.htm#convoy">convoys</a> whose total width can fit within its
clearance distance.
<p>The component creates a large cloud of <a href="lex_s.htm#smoke">smoke</a> behind its emitted
glider which lasts for over 90 generations. In spite of this, many
tightly packed convoys can be made by injecting later gliders behind
others in the convoy, helped along by the insertion reaction which is
able to catch up to the existing gliders. The Fx119 inserter can
place a glider on the same lane as a passing glider and as close as
15 ticks behind, which is only one step away from the minimum
possible following distance.
<p><a name=fx153>:</a><b>Fx153</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in February 1997.
It is made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HF94B + <a href="lex_b.htm#bfx59h">BFx59H</a>. After
153 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (48, -4) relative to
the input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 69 ticks. It can be made
<a href="lex_s.htm#spartan">Spartan</a> by replacing the <a href="lex_s.htm#snake">snake</a> with an <a href="lex_e.htm#eater1">eater1</a> in one of two
orientations. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the
output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........................OO..........................$OO........................O..........................$.O.............OO......OOO...........................$.O.O...........OO......O.............................$..OO.................................................$.....................................................$.....................................................$.....................................................$....................................................O$..................................................OOO$.................................OO...............O..$..O..............................OO...............O..$..O.O................................................$..OOO................................................$....O................................................$.....................................................$.....................................................$..............................OO.....................$..............................O......................$...........OO...OO.............O.....................$............O...O.............OO.....................$.........OOO.....OOO.................................$.........O.........O.................................$"
>.........................OO..........................
OO........................O..........................
.O.............OO......OOO...........................
.O.O...........OO......O.............................
..OO.................................................
.....................................................
.....................................................
.....................................................
....................................................O
..................................................OOO
.................................OO...............O..
..O..............................OO...............O..
..O.O................................................
..OOO................................................
....O................................................
.....................................................
.....................................................
..............................OO.....................
..............................O......................
...........OO...OO.............O.....................
............O...O.............OO.....................
.........OOO.....OOO.................................
.........O.........O.................................
</a></pre></td></tr></table></center>
<p><a name=fx158>:</a><b>Fx158</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in July 1996.
After 158 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (27, -5)
relative to the input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 176 ticks. It is the
only known small conduit that does not produce its output Herschel
via the usual <a href="lex_h.htm#herschelgreatgrandparent">Herschel great-grandparent</a>, so it cannot be followed
by a <a href="lex_d.htm#dependentconduit">dependent conduit</a>. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below
marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O....OO..............$........O.O..O.O.......OO.....$.......O..OOOO.........O......$.......O.O....O......O.O......$.....OOO.OO..OO......OO.......$....O.........................$.O..OOOO.OO...................$.OOO...O.OO...................$....O.........................$...OO.........................$..............................$..............................$..............................$..............................$..............................$..............................$.............................O$...........................OOO$...........................O..$...........................O..$O.............................$O.O...........................$OOO...........................$..O...........................$..............................$...............OO.............$.........OO....O.O............$..........O......O............$.......OOO.......OO...........$.......O......................$"
>.........O....OO..............
........O.O..O.O.......OO.....
.......O..OOOO.........O......
.......O.O....O......O.O......
.....OOO.OO..OO......OO.......
....O.........................
.O..OOOO.OO...................
.OOO...O.OO...................
....O.........................
...OO.........................
..............................
..............................
..............................
..............................
..............................
..............................
.............................O
...........................OOO
...........................O..
...........................O..
O.............................
O.O...........................
OOO...........................
..O...........................
..............................
...............OO.............
.........OO....O.O............
..........O......O............
.......OOO.......OO...........
.......O......................
</a></pre></td></tr></table></center>
<p><a name=fx176>:</a><b>Fx176</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in October 1997. It
is made up of three <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HF95P + PF35W + WFx46H.
After 176 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (45, 0)
relative to the input. The <a href="lex_r.htm#recoverytime">recovery time</a> of the standard form
shown here is 92 ticks, but see the <a href="lex_p.htm#pf35w">PF35W</a> entry for a variant
discovered in November 2017 that lowers the repeat time to 73 ticks.
A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............................OO..................$..............................OO..................$..................................................$.................OO...............................$..................O...............................$..................O.O.............................$...................OO.............................$..................................................$..................................................$..............OO..................................$......O.......OO..................................$......OOO.........................................$.........O........................................$........OO........................................$..................................................$OO................................................$.O................................................$.O.O.....................................OO.......$..OO......................................O.......$..........................................O.O.....$...........................................O.O....$............................................O...OO$................................................OO$..................................................$..................................................$..O...............................................$..O.O...............................OO...........O$..OOO...............................OO.........OOO$....O..........................................O..$...............................................O..$..............OO........OO........................$..............OO..OO.....O........................$..................O.O.OOO.........................$....................O.O...........................$....................OO....OO......................$.........................O.O....OO................$.........................O......OO................$........................OO........................$"
>..............................OO..................
..............................OO..................
..................................................
.................OO...............................
..................O...............................
..................O.O.............................
...................OO.............................
..................................................
..................................................
..............OO..................................
......O.......OO..................................
......OOO.........................................
.........O........................................
........OO........................................
..................................................
OO................................................
.O................................................
.O.O.....................................OO.......
..OO......................................O.......
..........................................O.O.....
...........................................O.O....
............................................O...OO
................................................OO
..................................................
..................................................
..O...............................................
..O.O...............................OO...........O
..OOO...............................OO.........OOO
....O..........................................O..
...............................................O..
..............OO........OO........................
..............OO..OO.....O........................
..................O.O.OOO.........................
....................O.O...........................
....................OO....OO......................
.........................O.O....OO................
.........................O......OO................
........................OO........................
</a></pre></td></tr></table></center>
<p><a name=fx77>:</a><b>Fx77</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in August 1996.
After 77 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (25, -8)
relative to the input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 61 ticks; this can be
reduced slightly by suppressing the output Herschel's glider, as in
the <a href="lex_l.htm#l112">L112</a> case. A <a href="lex_p.htm#pipsquirter">pipsquirter</a> can replace the blinker-suppressing
eater to produce an extra glider output. It is one of the simplest
known <a href="lex_s.htm#spartan">Spartan</a> conduits, and one of the few <a href="lex_e.htm#elementaryconduit">elementary conduits</a> in
the original set of sixteen.
<p>In January 2016, Tanner Jacobi discovered a <a href="lex_s.htm#spartan">Spartan</a> method of
extracting an extra glider output (top variant below). A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> marks the output location for each variant.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O............................$.OOO..........................$....O.........................$...OO...........OO...........O$................OO.........OOO$...........................O..$...........................O..$..............................$..............................$..............................$..O...........................$..O.O.........................$..OOO.........................$....O.........................$..............................$..............................$..............................$..............................$..............................$............OO......OO........$...........O..O.....OO........$...........O..O...............$............OO................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$O.............................$OOO...........................$...O..........................$..OO...........OO...........O.$...............OO.........OOO.$..........................O...$..........................O...$..............................$..............................$..............................$.O............................$.O.O..........................$.OOO..........................$...O..........................$..............................$..............................$..............................$..............................$..............................$................OO............$................O.O...........$..................O...........$..................OO..........$"
>.O............................
.OOO..........................
....O.........................
...OO...........OO...........O
................OO.........OOO
...........................O..
...........................O..
..............................
..............................
..............................
..O...........................
..O.O.........................
..OOO.........................
....O.........................
..............................
..............................
..............................
..............................
..............................
............OO......OO........
...........O..O.....OO........
...........O..O...............
............OO................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
O.............................
OOO...........................
...O..........................
..OO...........OO...........O.
...............OO.........OOO.
..........................O...
..........................O...
..............................
..............................
..............................
.O............................
.O.O..........................
.OOO..........................
...O..........................
..............................
..............................
..............................
..............................
..............................
................OO............
................O.O...........
..................O...........
..................OO..........
</a></pre></td></tr></table></center>
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
</body>
|