File: lex_f.htm

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (1095 lines) | stat: -rwxr-xr-x 77,789 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (F)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">

<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
<p><a name=f116>:</a><b>F116</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in February 1997.
After 116 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> at (32, 1) relative to the
input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 138 ticks; this can be reduced to 120
ticks by adding extra mechanisms to suppress the internal glider. It
is <a href="lex_s.htm#spartan">Spartan</a> only if the following conduit is a <a href="lex_d.htm#dependentconduit">dependent conduit</a>,
so that the <a href="lex_w.htm#weld">welded</a> <a href="#fng">FNG</a> eater can be removed. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a>
in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O..........................$........OOO........................$...........O.......................$..........OO.......................$...................................$...................................$...................................$...................................$...................................$...................................$...................................$...................................$...................................$...................................$O..................................$O.O.............................O..$OOO.............................O..$..O.............................OOO$..................................O$...................................$...................................$...................................$...................................$.........................OO........$...................OO.....O........$...................O.O.OOO.........$............OO.......O.O...........$............OO.......OO............$"
>........O..........................
........OOO........................
...........O.......................
..........OO.......................
...................................
...................................
...................................
...................................
...................................
...................................
...................................
...................................
...................................
...................................
O..................................
O.O.............................O..
OOO.............................O..
..O.............................OOO
..................................O
...................................
...................................
...................................
...................................
.........................OO........
...................OO.....O........
...................O.O.OOO.........
............OO.......O.O...........
............OO.......OO............
</a></pre></td></tr></table></center>
<p><a name=f117>:</a><b>F117</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in July 1996. It
is made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, <a href="lex_h.htm#hfx58b">HFx58B</a> + <a href="lex_b.htm#bfx59h">BFx59H</a>. After
117 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> at (40, -6) relative to the
input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 63 ticks. It can be made <a href="lex_s.htm#spartan">Spartan</a> by
replacing the <a href="lex_s.htm#snake">snake</a> with an <a href="lex_e.htm#eater1">eater1</a> in one of two orientations. A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................OO.....................$.......................O.....................$..........O...........O......................$..........OOO.........OO.....................$.............O...............................$OO..........OO...............................$.O...........................................$.O.O.........................................$..OO.........................................$.........................OO...............O..$.........................OO...............O..$..........................................OOO$............................................O$.............................................$.............................................$..O..........................................$..O.O........................................$..OOO........................................$....O...........OO...........................$................O............................$.................OOO.........................$...................O.........................$"
>......................OO.....................
.......................O.....................
..........O...........O......................
..........OOO.........OO.....................
.............O...............................
OO..........OO...............................
.O...........................................
.O.O.........................................
..OO.........................................
.........................OO...............O..
.........................OO...............O..
..........................................OOO
............................................O
.............................................
.............................................
..O..........................................
..O.O........................................
..OOO........................................
....O...........OO...........................
................O............................
.................OOO.........................
...................O.........................
</a></pre></td></tr></table></center>
<p><a name=f166>:</a><b>F166</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in May 1997. It is
composed of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HFx107B + <a href="lex_b.htm#bfx59h">BFx59H</a>. The F166
and <a href="lex_l.htm#lx200">Lx200</a> conduits are the two original <a href="lex_d.htm#dependentconduit">dependent conduits</a>
(several more have since been discovered). After 166 ticks, it
produces a <a href="lex_h.htm#herschel">Herschel</a> at (49, 3) relative to the input. Its
<a href="lex_r.htm#recoverytime">recovery time</a> is 116 ticks. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern
below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................................OO.....................$..................................O.....................$.................................O......................$.................................OO.....................$........................................................$........................................................$.OO.....................................................$OOO.OO..................................................$.OO.OOO.OO..............................................$OOO.OO..OO..........................OO...............O..$OO..................................OO...............O..$.....................................................OOO$.......................................................O$........................................................$........................................................$........................................................$......OO................................................$.....O.O......................................OO........$.....O.........................................O........$....OO.........................OO...........OOO.........$...............................OO...........O...........$........................................................$........................................................$.................OO.....................................$..................O.....................................$...............OOO......................................$...............O........................................$...........................OO...........................$...........................O............................$............................OOO.........................$..............................O.........................$"
>.................................OO.....................
..................................O.....................
.................................O......................
.................................OO.....................
........................................................
........................................................
.OO.....................................................
OOO.OO..................................................
.OO.OOO.OO..............................................
OOO.OO..OO..........................OO...............O..
OO..................................OO...............O..
.....................................................OOO
.......................................................O
........................................................
........................................................
........................................................
......OO................................................
.....O.O......................................OO........
.....O.........................................O........
....OO.........................OO...........OOO.........
...............................OO...........O...........
........................................................
........................................................
.................OO.....................................
..................O.....................................
...............OOO......................................
...............O........................................
...........................OO...........................
...........................O............................
............................OOO.........................
..............................O.........................
</a></pre></td></tr></table></center>
The F166 can be made <a href="lex_s.htm#spartan">Spartan</a> by replacing the <a href="lex_s.htm#snake">snake</a> with an
<a href="lex_e.htm#eater1">eater1</a> in one of two orientations. The input shown here is a
<a href="lex_h.htm#herschelgreatgrandparent">Herschel great-grandparent</a>, since the input reaction is catalysed
by the <a href="lex_t.htm#transparent">transparent</a> block before the Herschel's standard form can
appear.
<p><a name=f171>:</a><b>F171</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, the seventeenth <a href="lex_h.htm#herschelconduit">Herschel conduit</a>,
discovered by Brice Due in August 2006 in a search using only
<a href="lex_e.htm#eater">eaters</a> as <a href="lex_c.htm#catalyst">catalysts</a>. This was the first new Herschel conduit
discovery since 1998. After 171 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> at
(29, -17) relative to the input. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern
below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........O......................$..........OOO....................$.............O...................$............OO...................$.....O...........................$.....OOO.........................$........O........................$.......OO........................$.................................$..............................O..$....OO........................O..$.....O........................OOO$.....O.O........................O$......OO.........................$.................................$.................................$O................................$OOO..............................$...O.............................$..OO.............................$.................................$.................................$.................................$.................................$.................................$.................................$.O...............................$.O.O.............................$.OOO.............................$...O.............................$.................................$..........OO.....................$...........O.....................$........OOO......................$........O........................$"
>..........O......................
..........OOO....................
.............O...................
............OO...................
.....O...........................
.....OOO.........................
........O........................
.......OO........................
.................................
..............................O..
....OO........................O..
.....O........................OOO
.....O.O........................O
......OO.........................
.................................
.................................
O................................
OOO..............................
...O.............................
..OO.............................
.................................
.................................
.................................
.................................
.................................
.................................
.O...............................
.O.O.............................
.OOO.............................
...O.............................
.................................
..........OO.....................
...........O.....................
........OOO......................
........O........................
</a></pre></td></tr></table></center>
<p>The conduit's <a href="lex_r.htm#recoverytime">recovery time</a> is 227 ticks, slower than many of the
original sixteen conduits because of the delayed destruction of a
temporary blinker, though the circuit itself is clearly <a href="lex_s.htm#spartan">Spartan</a>.
The recovery time can be improved to 120 ticks by adding <a href="lex_s.htm#sparker">sparkers</a>
of various periods to suppress the blinker. See <a href="lex_c.htm#clock">clock</a> for a
period-2 example.
<p>The central eater in the group of three to the northwest can be
removed to release an additional <a href="lex_g.htm#glider">glider</a> output signal on a
<a href="lex_t.htm#transparent">transparent</a> <a href="lex_l.htm#lane">lane</a>.
<p><a name=factory>:</a><b>factory</b> Another word for <a href="lex_g.htm#gun">gun</a>, but not used in the case of glider
guns. The term is also used for a pattern that repeatedly
manufactures objects other than <a href="lex_s.htm#spaceship">spaceships</a> or <a href="lex_r.htm#rake">rakes</a>. In this
case the new objects do not move out of the way, and therefore must
be used up in some way before the next one is made. The following
shows an example of a p144 gun which consists of a p144 block factory
whose output is converted into gliders by a p72 oscillator.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................OO........................OO$.......................OO........................OO$.........................................OO........$........................................O..O.......$.........................................OO........$...................................................$....................................OOO............$....................................O.O............$.........OO.........................OOO............$.........OO.........................OO.............$........O..O.......................OOO.............$........O..O.OO....................O.O.............$........O....OO....................OOO.............$..........OO.OO....................................$...............................OO..................$.....................OO.......O..O.................$.....................OO........OO..................$.................................................OO$.................................................OO$...................................................$....OO..................O..........................$OO....OOOO..........OO..OO.OOO.....................$OO..OO.OOO..........OO....OOOO.....................$....O...................OO.........................$"
>.......................OO........................OO
.......................OO........................OO
.........................................OO........
........................................O..O.......
.........................................OO........
...................................................
....................................OOO............
....................................O.O............
.........OO.........................OOO............
.........OO.........................OO.............
........O..O.......................OOO.............
........O..O.OO....................O.O.............
........O....OO....................OOO.............
..........OO.OO....................................
...............................OO..................
.....................OO.......O..O.................
.....................OO........OO..................
.................................................OO
.................................................OO
...................................................
....OO..................O..........................
OO....OOOO..........OO..OO.OOO.....................
OO..OO.OOO..........OO....OOOO.....................
....O...................OO.........................
</a></pre></td></tr></table></center>
This gun is David Bell's improvement of the one Bill Gosper found in
July 1994. The p72 oscillator is by Robert Wainwright in 1990, and
the block factory is <a href="lex_a.htm#achimsp144">Achim's p144</a> minus one of its stabilizing
blocks. For a block factory using stable components and triggered by
an input <a href="lex_h.htm#herschel">Herschel</a>, see also <a href="lex_k.htm#keeper">keeper</a>.
<p><a name=familiarfours>:</a><b>familiar fours</b> Common patterns of four identical objects. The five
commonest are <a href="lex_t.htm#trafficlight">traffic light</a> (4 blinkers), <a href="lex_h.htm#honeyfarm">honey farm</a> (4
beehives), <a href="lex_b.htm#blockade">blockade</a> (4 blocks), <a href="#fleet">fleet</a> (4 ships, although really 2
ship-ties) and <a href="lex_b.htm#bakery">bakery</a> (4 loaves, although really 2 bi-loaves).
Also sometimes included is <a href="#fourskewedblocks">four skewed blocks</a>.
<p><a name=fanout>:</a><b>fanout</b> A mechanism that emits two or more objects of some type for
each one that it receives. Typically the objects are <a href="lex_g.htm#glider">gliders</a> or
<a href="lex_h.htm#herschel">Herschels</a>; <a href="lex_g.htm#gliderduplicator">glider duplicators</a> are a special case.
<p><a name=fastforwardforcefield>:</a><b>Fast Forward Force Field</b> The following reaction found by Dieter
Leithner in May 1994. In the absence of the incoming LWSS the
gliders would simply annihilate one another, but as shown they allow
the LWSS to advance 11 spaces in the course of the next 6
generations.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O......O..$........O......OO$..OO..OOO.....OO.$OO.OO............$OOOO.........O...$.OO.........OO...$............O.O..$"
>.......O......O..
........O......OO
..OO..OOO.....OO.
OO.OO............
OOOO.........O...
.OO.........OO...
............O.O..
</a></pre></td></tr></table></center>
<p>The illusion of super-light-speed travel is caused by an LWSS that
is always created, but is then destroyed in some cases, by a signal
catching up to it from behind that necessarily never travels faster
than the <a href="lex_s.htm#speedoflight">speed of light</a>. It is not possible to make any use of the
apparent super-light-speed signal. The front end of an output LWSS
can't be distinguished from the alternative dying <a href="lex_s.htm#spark">spark</a> output
until several more ticks have passed. Not surprisingly, this extra
time is enough to drop the average speed of information transmission
safely below <i>c</i>.
<p>Leithner named the Fast Forward Force Field in honour of his
favourite science fiction writer, the physicist Robert L. Forward.
See also <a href="lex_s.htm#stargate">star gate</a> and <a href="lex_s.htm#speedbooster">speed booster</a>.
<p><a name=fate>:</a><b>fate</b> The result of evolving a pattern until its final behaviour is
known. This answers such questions such as whether or not the
pattern remains finite, what its growth rate is, what <a href="lex_p.htm#period">period</a> the
final state may settle into, and what its final <a href="lex_c.htm#census">census</a> is. All
small Life objects seem to eventually settle down into a mix of
oscillators, simple spaceships, and occasionally small puffers. See
<a href="lex_m.htm#methuselah">methuselah</a>, <a href="lex_s.htm#soup">soup</a>, <a href="lex_a.htm#ash">ash</a>.
<p>Most sufficiently large random patterns are expected to grow
forever due to the production of <a href="lex_s.htm#switchengine">switch engines</a> at their boundary.
Engineered Life objects - and therefore also sufficiently large and
unlikely random patterns - can have more interesting behaviour, such
as <a href="lex_b.htm#breeder">breeders</a>, <a href="lex_s.htm#sawtooth">sawtooths</a>, and prime calculators. Some objects have
even been constructed or designed having an <a href="lex_u.htm#unknownfate">unknown fate</a>.
<p><a name=father>:</a><b>father</b> = <a href="lex_p.htm#parent">parent</a>
<p><a name=fd>:</a><b>fd</b> Abbreviation for <a href="#fulldiagonal">full diagonals</a>.
<p><a name=featherweightspaceship>:</a><b>featherweight spaceship</b> = <a href="lex_g.htm#glider">glider</a>
<p><a name=fencepost>:</a><b>fencepost</b> Any pattern that stabilizes one end of a <a href="lex_w.htm#wick">wick</a>.
<p><a name=fermatprimecalculator>:</a><b>Fermat prime calculator</b> A pattern constructed by Jason Summers in
January 2000 that exhibits <a href="lex_i.htm#infinitegrowth">infinite growth</a> if and only if there are
no Fermat primes greater than 65537. The question of whether or not
it really does exhibit infinite growth is therefore equivalent to a
well-known and long-standing unsolved mathematical problem. It will,
however, still be growing at generation 10<sup>2585827975</sup>. The pattern is
based on Dean Hickerson's <a href="lex_p.htm#primer">primer</a> and <a href="lex_c.htm#cabertosser">caber tosser</a> patterns and a
p8 <a href="lex_b.htm#beehive">beehive</a> <a href="lex_p.htm#puffer">puffer</a> by Hartmut Holzwart.
<p><a name=fheptomino>:</a><b>F-heptomino</b> Name given by Conway to the following <a href="lex_h.htm#heptomino">heptomino</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..$.O..$.O..$.OOO$"
>OO..
.O..
.O..
.OOO
</a></pre></td></tr></table></center>
<p><a name=figure8>:</a><b>figure-8</b> (p8) A <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#sparker">sparker</a> found by Simon Norton in 1970.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO...$OOO...$OOO...$...OOO$...OOO$...OOO$"
>OOO...
OOO...
OOO...
...OOO
...OOO
...OOO
</a></pre></td></tr></table></center>
<p><a name=filter>:</a><b>filter</b> Any <a href="lex_o.htm#oscillator">oscillator</a> used to delete some but not all of the
<a href="lex_s.htm#spaceship">spaceships</a> in a stream. An example is the <a href="lex_b.htm#blocker">blocker</a>, which can be
positioned so as to delete every other <a href="lex_g.htm#glider">glider</a> in a stream of period
8<i>n</i>+4, and can also do the same for <a href="lex_l.htm#lwss">LWSS</a> streams. Other examples
are the <a href="lex_m.htm#mwemulator">MW emulator</a> and <a href="lex_t.htm#tnosedp4">T-nosed p4</a> (either of which can be used
to delete every other LWSS in a stream of period 4<i>n</i>+2), the
<a href="#fountain">fountain</a> (which does the same for <a href="lex_m.htm#mwss">MWSS</a> streams) and a number of
others, such as the p6 <a href="lex_p.htm#pipsquirter">pipsquirter</a>, the <a href="lex_p.htm#pentadecathlon">pentadecathlon</a> and the
p72 oscillator shown under <a href="#factory">factory</a>. Another example, a p4
oscillator deleting every other HWSS in a stream of period 4<i>n</i>+2, is
shown below. (The p4 oscillator here was found, with a slightly
larger <a href="lex_s.htm#stator">stator</a>, by Dean Hickerson in November 1994.)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OOOO............$....OO...OOOOOO...........$OOOO.OO..OOOO.OO..........$OOOOOO.......OO...........$.OOOO.....................$..........................$................OO........$..............O....O......$..........................$.............O.O..O.O.....$...........OOOO.OO.OOOO...$........O.O....O..O....O.O$........OO.OO.O....O.OO.OO$...........O.O......O.O...$........OO.O.O......O.O.OO$........OO.O..........O.OO$...........O.O.OOOO.O.O...$...........O.O......O.O...$..........OO.O.OOOO.O.OO..$..........O..OOO..OOO..O..$............O..OOOO..O....$...........OO.O....O.OO...$...........O..O....O..O...$............O..O..O..O....$.............OO....OO.....$"
>..........OOOO............
....OO...OOOOOO...........
OOOO.OO..OOOO.OO..........
OOOOOO.......OO...........
.OOOO.....................
..........................
................OO........
..............O....O......
..........................
.............O.O..O.O.....
...........OOOO.OO.OOOO...
........O.O....O..O....O.O
........OO.OO.O....O.OO.OO
...........O.O......O.O...
........OO.O.O......O.O.OO
........OO.O..........O.OO
...........O.O.OOOO.O.O...
...........O.O......O.O...
..........OO.O.OOOO.O.OO..
..........O..OOO..OOO..O..
............O..OOOO..O....
...........OO.O....O.OO...
...........O..O....O..O...
............O..O..O..O....
.............OO....OO.....
</a></pre></td></tr></table></center>
<p><a name=filterstream>:</a><b>filter stream</b> A <a href="lex_s.htm#stream">stream</a> of <a href="lex_s.htm#spaceship">spaceships</a> in which there are periodic
gaps in the stream. This can thin out another crossing stream by
deleting the <a href="lex_s.htm#spaceship">spaceships</a> in the second stream except where the gaps
occur. The filter stream is not affected by the deletions so that
the same stream can thin out multiple other streams. The
<a href="lex_c.htm#caterpillar">Caterpillar</a> uses filter streams of <a href="lex_m.htm#mwss">MWSSs</a> in which there is a gap
every 6 spaceships. Here is part of a filter stream that thins a
glider stream by 2/3:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................................O.............................$.................................O............................$...............................OOO............................$..............................................................$..............................................................$..............................................................$..............................................................$.......................................O......................$........................................O.....................$......................................OOO.....................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................O...............$...............................................O..............$.............................................OOO..............$..............................................................$..............................................................$..O.............O...........................O.............O...$O...O.........O...O.......................O...O.........O...O.$.....O.............O...........................O.............O$O....O........O....O......................O....O........O....O$.OOOOO.........OOOOO.......................OOOOO.........OOOOO$"
>................................O.............................
.................................O............................
...............................OOO............................
..............................................................
..............................................................
..............................................................
..............................................................
.......................................O......................
........................................O.....................
......................................OOO.....................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................O...............
...............................................O..............
.............................................OOO..............
..............................................................
..............................................................
..O.............O...........................O.............O...
O...O.........O...O.......................O...O.........O...O.
.....O.............O...........................O.............O
O....O........O....O......................O....O........O....O
.OOOOO.........OOOOO.......................OOOOO.........OOOOO
</a></pre></td></tr></table></center>
<p><a name=finger>:</a><b>finger</b> A protruding cell in an <a href="lex_o.htm#oscillator">oscillator</a> or <a href="lex_d.htm#dyingspark">dying spark</a>, with
the ability to modify a nearby active reaction. Like a <a href="lex_t.htm#thumb">thumb</a>, a
finger cell appears at the edge of a reaction envelope and is the
only live cell in its row or column. The finger spark remains alive
for two ticks before dying, whereas a thumb cell dies after one tick.
Because the key cell is kept alive for an extra tick, an alternate
technical term is "held (orthogonal) bit spark". A "held diagonal
bit spark" is not possible in B3/S23 for obvious reasons.
<p><a name=fire>:</a><b>fire</b> An encoded signal used in combination with <a href="lex_p.htm#push">push</a> and <a href="lex_p.htm#pull">pull</a>
<a href="lex_e.htm#elbowoperation">elbow operations</a> in a simple <a href="lex_c.htm#constructionarm">construction arm</a>. When a FIRE
signal is sent, the construction-arm elbow produces an output glider,
usually at 90 degrees from the construction arm. This terminology is
generally used when there is only a single recipe for such a glider
output, or only one recipe for each glider colour (e.g., FIRE WHITE,
FIRE BLACK).
<p><a name=fireship>:</a><b>fireship</b> (<i>c</i>/10 orthogonally, p10) A variant of the <a href="lex_c.htm#copperhead">copperhead</a> with
a trailing component that emits several large <a href="lex_s.htm#spark">sparks</a>, discovered by
Simon Ekstr&ouml;m on 20 March 2016. The interaction between the
copperhead and the additional component is minimal enough that the
extension technically fits the definition of a <a href="lex_t.htm#tagalong">tagalong</a>. However,
the extension slightly modifies two of the <a href="lex_p.htm#phase">phases</a> of the spaceship,
starting two ticks after the phase shown below, so it's also valid to
classify the fireship as a distinct spaceship.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO....$...OOOO...$..........$..OOOOOO..$...OOOO...$..........$..OO..OO..$OO.O..O.OO$...O..O...$..........$..........$....OO....$....OO....$..........$.O.O..O.O.$O..O..O..O$O........O$O........O$OO......OO$..OOOOOO..$"
>....OO....
...OOOO...
..........
..OOOOOO..
...OOOO...
..........
..OO..OO..
OO.O..O.OO
...O..O...
..........
..........
....OO....
....OO....
..........
.O.O..O.O.
O..O..O..O
O........O
O........O
OO......OO
..OOOOOO..
</a></pre></td></tr></table></center>
<p><a name=firespitting>:</a><b>fire-spitting</b> (p3) Found by Nicolay Beluchenko, September 2003.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O......$.OOO......$O.........$.O.OOO....$.O.....O..$..O..O....$..O.O..O.O$........OO$"
>...O......
.OOO......
O.........
.O.OOO....
.O.....O..
..O..O....
..O.O..O.O
........OO
</a></pre></td></tr></table></center>
<p><a name=firstnaturalglider>:</a><b>first natural glider</b> The glider produced at T=21 during the
<a href="lex_e.htm#evolution">evolution</a> of a <a href="lex_h.htm#herschel">Herschel</a>. This is the most common signal output
from a <a href="lex_h.htm#herschelconduit">Herschel conduit</a>.
<p><a name=fish>:</a><b>fish</b> A generic term for <a href="lex_l.htm#lwss">LWSS</a>, <a href="lex_m.htm#mwss">MWSS</a> and <a href="lex_h.htm#hwss">HWSS</a>, or, more
generally, for any <a href="lex_s.htm#spaceship">spaceship</a>. In recent years <a href="lex_w.htm#wss">*WSS</a> is much more
commonly used to refer to the small orthogonal <i>c</i>/2 spaceships.
<p><a name=fishhook>:</a><b>fishhook</b> = <a href="lex_e.htm#eater1">eater1</a>
<p><a name=fleet>:</a><b>fleet</b> (p1) A common formation of two <a href="lex_s.htm#shiptie">ship-ties</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO....$....O.O...$.....OO...$.......OO.$OO.....O.O$O.O.....OO$.OO.......$...OO.....$...O.O....$....OO....$"
>....OO....
....O.O...
.....OO...
.......OO.
OO.....O.O
O.O.....OO
.OO.......
...OO.....
...O.O....
....OO....
</a></pre></td></tr></table></center>
<p><a name=flipflop>:</a><b>flip-flop</b> Any p2 <a href="lex_o.htm#oscillator">oscillator</a>. However, the term is also used in two
more specific (and non-equivalent) senses: (a) any p2 oscillator
whose two <a href="lex_p.htm#phase">phases</a> are mirror images of one another, and (b) any p2
oscillator in which all <a href="lex_r.htm#rotor">rotor</a> cells die from <a href="lex_u.htm#underpopulation">underpopulation</a>. In
the latter sense it contrasts with <a href="lex_o.htm#onoff">on-off</a>. The term has also been
used even more specifically for the 12-cell flip-flop shown under
<a href="lex_p.htm#phoenix">phoenix</a>.
<p><a name=flipflops>:</a><b>flip-flops</b> Another name for the flip-flop shown under <a href="lex_p.htm#phoenix">phoenix</a>.
<p><a name=flipper>:</a><b>flipper</b> Any <a href="lex_o.htm#oscillator">oscillator</a> or <a href="lex_s.htm#spaceship">spaceship</a> that forms its mirror image
halfway through its period.
<p><a name=flotilla>:</a><b>flotilla</b> A <a href="lex_s.htm#spaceship">spaceship</a> composed of a number of smaller interacting
spaceships. Often one or more of these is not a true spaceship and
could not survive without the support of the others. The following
example shows an <a href="lex_o.htm#owss">OWSS</a> escorted by two <a href="lex_h.htm#hwss">HWSS</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OOOO.......$...OOOOOO......$..OO.OOOO......$...OO..........$...............$...........OO..$.O............O$O..............$O.............O$OOOOOOOOOOOOOO.$...............$...............$....OOOO.......$...OOOOOO......$..OO.OOOO......$...OO..........$"
>....OOOO.......
...OOOOOO......
..OO.OOOO......
...OO..........
...............
...........OO..
.O............O
O..............
O.............O
OOOOOOOOOOOOOO.
...............
...............
....OOOO.......
...OOOOOO......
..OO.OOOO......
...OO..........
</a></pre></td></tr></table></center>
<p><a name=fly>:</a><b>fly</b> A certain <i>c</i>/3 <a href="lex_t.htm#tagalong">tagalong</a> found by David Bell, April 1992. Shown
here attached to the back of a small spaceship (also by Bell).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O...............................$.O.O..............................$.O.O......................O.O...O.$.O.......................OO.O.O..O$...........OOO........O.........O.$OO.........OO..O.OO...O..OOOO.....$.O.O.........OOOO..O.O..OO....OO..$.OO........O..O...OOO.....OOO.....$..O.......O....O..OO..OO..O..O....$...O..O...O....O..OOO.O.O....OO...$.......O.OO....O..OOOO.....O......$....OO...OO....O..OOOO.....O......$....O.O...O....O..OOO.O.O....OO...$...OO.....O....O..OO..OO..O..O....$....O.O....O..O...OOO.....OOO.....$.....O.......OOOO..O.O..OO....OO..$...........OO..O.OO...O..OOOO.....$...........OOO........O.........O.$.........................OO.O.O..O$..........................O.O...O.$"
>..O...............................
.O.O..............................
.O.O......................O.O...O.
.O.......................OO.O.O..O
...........OOO........O.........O.
OO.........OO..O.OO...O..OOOO.....
.O.O.........OOOO..O.O..OO....OO..
.OO........O..O...OOO.....OOO.....
..O.......O....O..OO..OO..O..O....
...O..O...O....O..OOO.O.O....OO...
.......O.OO....O..OOOO.....O......
....OO...OO....O..OOOO.....O......
....O.O...O....O..OOO.O.O....OO...
...OO.....O....O..OO..OO..O..O....
....O.O....O..O...OOO.....OOO.....
.....O.......OOOO..O.O..OO....OO..
...........OO..O.OO...O..OOOO.....
...........OOO........O.........O.
.........................OO.O.O..O
..........................O.O...O.
</a></pre></td></tr></table></center>
<p><a name=flybydeletion>:</a><b>fly-by deletion</b> A reaction performed by a passing <a href="lex_c.htm#convoy">convoy</a> of
<a href="lex_s.htm#spaceship">spaceships</a> which deletes a common stationary object without harming
the convoy. Fly-by deletion is often used in the construction of
<a href="lex_p.htm#puffer">puffers</a> and <a href="lex_s.htm#spaceship">spaceships</a> to clean up unwanted debris.
<p>For <i>c</i>/2 convoys this is not usually difficult since the <a href="lex_l.htm#lwss">LWSS</a>,
<a href="lex_m.htm#mwss">MWSS</a>, and <a href="lex_h.htm#hwss">HWSS</a> <a href="lex_s.htm#spaceship">spaceships</a> have such useful <a href="lex_s.htm#spark">sparks</a>. However,
some objects are more difficult to delete. For example, deleting a
<a href="lex_t.htm#tub">tub</a> appears to require an unusual p4 spaceship.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................O.........$......................O.O........$.......................O.........$.................................$.................................$.................................$................OOO..............$OOO.............O..O.............$O..O....OOO.....O...........OOO..$O.......O..O....O...O.......O..O.$O...O..O...O....O...O.......O....$O......O.O...O..O...........O...O$.O..OO........O.O...........O...O$.OOOOO........O.............O....$....OO......O...OOO..........O.O.$.OO..............................$"
>.......................O.........
......................O.O........
.......................O.........
.................................
.................................
.................................
................OOO..............
OOO.............O..O.............
O..O....OOO.....O...........OOO..
O.......O..O....O...O.......O..O.
O...O..O...O....O...O.......O....
O......O.O...O..O...........O...O
.O..OO........O.O...........O...O
.OOOOO........O.............O....
....OO......O...OOO..........O.O.
.OO..............................
</a></pre></td></tr></table></center>
<p>The deletion of a <a href="lex_p.htm#pond">pond</a> appears to require a convoy which is 89
cells in width containing a very unusual p4 spaceship which has 273
cells. There are small objects which have no known fly-by deletion
reactions. However, as in the case of <a href="lex_r.htm#reanimation">reanimation</a>, hitting them
with the output of <a href="lex_r.htm#rake">rakes</a> is an effective brute force method.
<p><a name=flyingmachine>:</a><b>flying machine</b> = <a href="lex_s.htm#schickengine">Schick engine</a>
<p><a name=fng>:</a><b>FNG</b> = <a href="#firstnaturalglider">first natural glider</a>.
<p><a name=foreandback>:</a><b>fore and back</b> (p2) Compare <a href="lex_s.htm#snakepit">snake pit</a>. Found by Achim Flammenkamp,
July 1994.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.OO..$OO.O.O.$......O$OOO.OOO$O......$.O.O.OO$..OO.OO$"
>OO.OO..
OO.O.O.
......O
OOO.OOO
O......
.O.O.OO
..OO.OO
</a></pre></td></tr></table></center>
<p><a name=forwardglider>:</a><b>forward glider</b> A <a href="lex_g.htm#glider">glider</a> which moves at least partly in the same
direction as the <a href="lex_p.htm#puffer">puffer</a>(s) or <a href="lex_s.htm#spaceship">spaceship</a>(s) under consideration.
<p><a name=fountain>:</a><b>fountain</b> (p4) Found by Dean Hickerson in November 1994, and named by
Bill Gosper. See also <a href="#filter">filter</a> and <a href="lex_s.htm#superfountain">superfountain</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O.........$...................$...OO.O.....O.OO...$...O.....O.....O...$....OO.OO.OO.OO....$...................$......OO...OO......$OO...............OO$O..O...O.O.O...O..O$.OOO.OOOOOOOOO.OOO.$....O....O....O....$...OO.........OO...$...O...........O...$.....O.......O.....$....OO.......OO....$"
>.........O.........
...................
...OO.O.....O.OO...
...O.....O.....O...
....OO.OO.OO.OO....
...................
......OO...OO......
OO...............OO
O..O...O.O.O...O..O
.OOO.OOOOOOOOO.OOO.
....O....O....O....
...OO.........OO...
...O...........O...
.....O.......O.....
....OO.......OO....
</a></pre></td></tr></table></center>
<p><a name=fourskewedblocks>:</a><b>four skewed blocks</b> (p1) The following <a href="lex_c.htm#constellation">constellation</a>, sometimes
considered to be one of the <a href="#familiarfours">familiar fours</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO.....$...OO.....$..........$..........$..........$........OO$OO......OO$OO........$..........$..........$..........$.....OO...$.....OO...$"
>...OO.....
...OO.....
..........
..........
..........
........OO
OO......OO
OO........
..........
..........
..........
.....OO...
.....OO...
</a></pre></td></tr></table></center>
This is most commonly created by a symmetric <a href="lex_1.htm#a-2glidercollision">2-glider collision</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO.....$O.O.....$..O..O..$.....O.O$.....OO.$"
>.OO.....
O.O.....
..O..O..
.....O.O
.....OO.
</a></pre></td></tr></table></center>
<p><a name=fourteener>:</a><b>fourteener</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO.$OO..O.O$O.....O$.OOOOO.$...O...$"
>....OO.
OO..O.O
O.....O
.OOOOO.
...O...
</a></pre></td></tr></table></center>
<p><a name=fox>:</a><b>fox</b> (p2) This is the smallest asymmetric p2 oscillator. Found by
Dave Buckingham, July 1977.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O..$....O..$..O..O.$OO.....$....O.O$..O.O.O$......O$"
>....O..
....O..
..O..O.
OO.....
....O.O
..O.O.O
......O
</a></pre></td></tr></table></center>
<p><a name=freezedried>:</a><b>freeze-dried</b> A term used for a <a href="lex_g.htm#gliderconstructible">glider constructible</a> <a href="lex_s.htm#seed">seed</a> that can
activated in some way to produce a complex object. For example, a
"freeze-dried salvo" is a constellation of constructible objects
which, when <a href="lex_t.htm#trigger">triggered</a> by a single glider, produces a unidirectional
glider <a href="lex_s.htm#salvo">salvo</a>, and nothing else. Freeze-dried salvos can be useful
in <a href="lex_s.htm#slowsalvo">slow salvo</a> constructions, especially when an active circuit has
to destroy or reconstruct itself in a limited amount of time.
Gradual modification by a <a href="lex_c.htm#constructionarm">construction arm</a> may be too slow, or the
circuit doing the construction may itself be the object that must be
modified.
<p>The concept may be applied to other types of objects. For example,
one possible way to build a gun for a <a href="lex_w.htm#waterbear">waterbear</a> would be to program
a construction arm to build a freeze-dried waterbear seed, and then
trigger it when the construction is complete.
<p><a name=frenchkiss>:</a><b>French kiss</b> (p3) Found by Robert Wainwright, July 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.........$OOO.......$...O......$..O..OO...$..O....O..$...OO..O..$......O...$.......OOO$.........O$"
>O.........
OOO.......
...O......
..O..OO...
..O....O..
...OO..O..
......O...
.......OOO
.........O
</a></pre></td></tr></table></center>
For many years this was one of the best-known small oscillators with
no known <a href="lex_g.htm#glidersynthesis">glider synthesis</a>. In October 2013 Martin Grant completed
a 23-glider construction.
<p><a name=frogii>:</a><b>frog II</b> (p3) Found by Dave Buckingham, October 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO...OO..$..O.O.O.O..$....O.O....$...O.O.O...$...OO.OO...$.OO.....OO.$O..O.O.O..O$.O.O...O.O.$OO.O...O.OO$....OOO....$...........$...O.OO....$...OO.O....$"
>..OO...OO..
..O.O.O.O..
....O.O....
...O.O.O...
...OO.OO...
.OO.....OO.
O..O.O.O..O
.O.O...O.O.
OO.O...O.OO
....OOO....
...........
...O.OO....
...OO.O....
</a></pre></td></tr></table></center>
<p><a name=frothingpuffer>:</a><b>frothing puffer</b> A frothing puffer (or a frothing spaceship) is a
<a href="lex_p.htm#puffer">puffer</a> (or <a href="lex_s.htm#spaceship">spaceship</a>) whose back end appears to be unstable and
breaking apart, but which nonetheless survives. The <a href="lex_e.htm#exhaust">exhaust</a>
festers and clings to the back of the puffer/spaceship before
breaking off. The first known frothing puffers were <i>c</i>/2, and most
were found by slightly modifying the back ends of p2 spaceships. A
number of these have periods which are not a multiple of 4 (as with
some <a href="lex_l.htm#linepuffer">line puffers</a>). Paul Tooke has also found <i>c</i>/3 frothing
puffers.
<p>The following p78 <i>c</i>/2 frothing puffer was found by Paul Tooke in
April 2001.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O.................O.......$......OOO...............OOO......$.....OO....OOO.....OOO....OO.....$...OO.O..OOO..O...O..OOO..O.OO...$....O.O..O.O...O.O...O.O..O.O....$.OO.O.O.O.O....O.O....O.O.O.O.OO.$.OO...O.O....O.....O....O.O...OO.$.OOO.O...O....O.O.O....O...O.OOO.$OO.........OO.O.O.O.OO.........OO$............O.......O............$.........OO.O.......O.OO.........$..........O...........O..........$.......OO.O...........O.OO.......$.......OO...............OO.......$.......O.O.O.OOO.OOO.O.O.O.......$......OO...O...O.O...O...OO......$......O..O...O.O.O.O...O..O......$.........OO....O.O....OO.........$.....OO....O...O.O...O....OO.....$.........O.OO.O...O.OO.O.........$..........O.O.O.O.O.O.O..........$............O..O.O..O............$...........O.O.....O.O...........$"
>.......O.................O.......
......OOO...............OOO......
.....OO....OOO.....OOO....OO.....
...OO.O..OOO..O...O..OOO..O.OO...
....O.O..O.O...O.O...O.O..O.O....
.OO.O.O.O.O....O.O....O.O.O.O.OO.
.OO...O.O....O.....O....O.O...OO.
.OOO.O...O....O.O.O....O...O.OOO.
OO.........OO.O.O.O.OO.........OO
............O.......O............
.........OO.O.......O.OO.........
..........O...........O..........
.......OO.O...........O.OO.......
.......OO...............OO.......
.......O.O.O.OOO.OOO.O.O.O.......
......OO...O...O.O...O...OO......
......O..O...O.O.O.O...O..O......
.........OO....O.O....OO.........
.....OO....O...O.O...O....OO.....
.........O.OO.O...O.OO.O.........
..........O.O.O.O.O.O.O..........
............O..O.O..O............
...........O.O.....O.O...........
</a></pre></td></tr></table></center>
<p><a name=frothingspaceship>:</a><b>frothing spaceship</b> See <a href="#frothingpuffer">frothing puffer</a>.
<p><a name=frozen>:</a><b>frozen</b> = <a href="#freezedried">freeze-dried</a>.
<p><a name=fulldiagonal>:</a><b>full diagonal</b> Diagonal distance measurement, abbreviated "fd", often
appropriate when a <a href="lex_c.htm#constructionarm">construction arm</a> <a href="lex_e.htm#elbow">elbow</a> or similar
diagonally-adjustable mechanism is present.
<p><a name=fumarole>:</a><b>fumarole</b> (p5) Found by Dean Hickerson in September 1989. In terms of
its 7x8 bounding box this is the smallest p5 oscillator.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO...$.O....O.$.O....O.$.O....O.$..O..O..$O.O..O.O$OO....OO$"
>...OO...
.O....O.
.O....O.
.O....O.
..O..O..
O.O..O.O
OO....OO
</a></pre></td></tr></table></center>
<p><a name=fuse>:</a><b>fuse</b> A <a href="lex_w.htm#wick">wick</a> <a href="lex_b.htm#burn">burning</a> at one end. For examples, see <a href="lex_b.htm#baker">baker</a>,
<a href="lex_b.htm#beaconmaker">beacon maker</a>, <a href="lex_b.htm#blinkership">blinker ship</a>, <a href="lex_b.htm#boatmaker">boat maker</a>, <a href="lex_c.htm#cow">cow</a>, <a href="lex_h.htm#harvester">harvester</a>,
<a href="lex_l.htm#lightspeedwire">lightspeed wire</a>, <a href="lex_p.htm#piship">pi ship</a>, <a href="lex_r.htm#reversefuse">reverse fuse</a>, <a href="lex_s.htm#superstring">superstring</a> and
<a href="lex_w.htm#washerwoman">washerwoman</a>. Useful fuses are usually <a href="lex_c.htm#clean">clean</a>, but see also
<a href="lex_r.htm#reburnablefuse">reburnable fuse</a>.
<p>A fuse can <a href="lex_b.htm#burn">burn</a> arbitrarily slowly, as demonstrated by the
example <a href="lex_b.htm#blockic">Blockic</a> fuse below. A <a href="lex_s.htm#signal">signal</a>, alternating between
<a href="lex_g.htm#glider">glider</a> and <a href="lex_m.htm#mwss">MWSS</a> form, travels up and down between two rows of
blocks in a series of <a href="lex_o.htm#onetime">one-time</a> <a href="lex_t.htm#turner">turner</a> reactions. The spacing
shown here causes the fuse to burn 24 cells to the right every 240
generations, for a speed of <i>c</i>/10. Moving the bottom half further
from the top half by any even number of cells will slow down the
burning even further.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........OO......................OO......................$.........OO......................OO......................$.........................................................$.........................................................$.....OO.......OO.............OO.......OO.............OO..$.OO..OO.......OO.........OO..OO.......OO.........OO..OO..$.OO................OO....OO................OO....OO......$...................OO......................OO............$.........................................................$.........................................................$.........................................................$.........................................................$............OO....OO................OO....OO.............$............OO....OO................OO....OO.............$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$.........................................................$OO....OO................OO....OO................OO....OO.$OO....OO................OO....OO................OO....OO.$.........................................................$.........................................................$.........................................................$.........................................................$.OO....OO......................OO......................OO$O.O....OO....OO................OO....OO................OO$..O..........OO..OO.......OO.........OO..OO.......OO.....$.................OO.......OO.............OO.......OO.....$.........................................................$.........................................................$.....................OO......................OO..........$.....................OO......................OO..........$"
>.........OO......................OO......................
.........OO......................OO......................
.........................................................
.........................................................
.....OO.......OO.............OO.......OO.............OO..
.OO..OO.......OO.........OO..OO.......OO.........OO..OO..
.OO................OO....OO................OO....OO......
...................OO......................OO............
.........................................................
.........................................................
.........................................................
.........................................................
............OO....OO................OO....OO.............
............OO....OO................OO....OO.............
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
.........................................................
OO....OO................OO....OO................OO....OO.
OO....OO................OO....OO................OO....OO.
.........................................................
.........................................................
.........................................................
.........................................................
.OO....OO......................OO......................OO
O.O....OO....OO................OO....OO................OO
..O..........OO..OO.......OO.........OO..OO.......OO.....
.................OO.......OO.............OO.......OO.....
.........................................................
.........................................................
.....................OO......................OO..........
.....................OO......................OO..........
</a></pre></td></tr></table></center>
<p><a name=fx119>:</a><b>Fx119</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in September 1996.
After 119 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (20, 14)
relative to the input. Its recovery time is 231 ticks; this can be
reduced somewhat by suppressing the output Herschel's glider, or by
adding extra <a href="lex_c.htm#catalyst">catalysts</a> to make the reaction settle more quickly. A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O......................$O.O....................$OOO....................$..O....................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.......................$.........OO...........O$....OO...OO.........OOO$....OO..............O..$....................O..$.......................$...OO..................$....O....OO............$.OOO.....OO............$.O.....................$"
>O......................
O.O....................
OOO....................
..O....................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.......................
.........OO...........O
....OO...OO.........OOO
....OO..............O..
....................O..
.......................
...OO..................
....O....OO............
.OOO.....OO............
.O.....................
</a></pre></td></tr></table></center>
<p><a name=fx119inserter>:</a><b>Fx119 inserter</b> A <a href="lex_h.htm#herscheltoglider">Herschel-to-glider</a> <a href="lex_c.htm#converter">converter</a> and <a href="lex_e.htm#edgeshooter">edge shooter</a>
based on an <a href="#fx119">Fx119</a> Herschel conduit:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O....................$.........O.O..................$.........OOO..................$...........O..................$..............................$..............................$..............................$..............................$..OO......OO..................$...O.......O..................$OOO.....OOO...................$O.......O.....................$..............................$..............................$..............................$..................OO..........$.............OO...OO..........$.............OO...............$..............................$..............................$............OO............OO..$.............O....OO......O...$..........OOO.....OO.......OOO$..........O..................O$"
>.........O....................
.........O.O..................
.........OOO..................
...........O..................
..............................
..............................
..............................
..............................
..OO......OO..................
...O.......O..................
OOO.....OOO...................
O.......O.....................
..............................
..............................
..............................
..................OO..........
.............OO...OO..........
.............OO...............
..............................
..............................
............OO............OO..
.............O....OO......O...
..........OOO.....OO.......OOO
..........O..................O
</a></pre></td></tr></table></center>
<p>This edge shooter has an unusually high 27<a href="lex_h.htm#hd">hd</a> clearance, one of
the highest known for a single small component. The only known
higher-clearance edge shooters are injectors making use of multiple
interacting spaceships. This makes the Fx119 inserter ideal for the
construction of wide <a href="lex_c.htm#convoy">convoys</a> whose total width can fit within its
clearance distance.
<p>The component creates a large cloud of <a href="lex_s.htm#smoke">smoke</a> behind its emitted
glider which lasts for over 90 generations. In spite of this, many
tightly packed convoys can be made by injecting later gliders behind
others in the convoy, helped along by the insertion reaction which is
able to catch up to the existing gliders. The Fx119 inserter can
place a glider on the same lane as a passing glider and as close as
15 ticks behind, which is only one step away from the minimum
possible following distance.
<p><a name=fx153>:</a><b>Fx153</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in February 1997.
It is made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HF94B + <a href="lex_b.htm#bfx59h">BFx59H</a>. After
153 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (48, -4) relative to
the input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 69 ticks. It can be made
<a href="lex_s.htm#spartan">Spartan</a> by replacing the <a href="lex_s.htm#snake">snake</a> with an <a href="lex_e.htm#eater1">eater1</a> in one of two
orientations. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the
output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........................OO..........................$OO........................O..........................$.O.............OO......OOO...........................$.O.O...........OO......O.............................$..OO.................................................$.....................................................$.....................................................$.....................................................$....................................................O$..................................................OOO$.................................OO...............O..$..O..............................OO...............O..$..O.O................................................$..OOO................................................$....O................................................$.....................................................$.....................................................$..............................OO.....................$..............................O......................$...........OO...OO.............O.....................$............O...O.............OO.....................$.........OOO.....OOO.................................$.........O.........O.................................$"
>.........................OO..........................
OO........................O..........................
.O.............OO......OOO...........................
.O.O...........OO......O.............................
..OO.................................................
.....................................................
.....................................................
.....................................................
....................................................O
..................................................OOO
.................................OO...............O..
..O..............................OO...............O..
..O.O................................................
..OOO................................................
....O................................................
.....................................................
.....................................................
..............................OO.....................
..............................O......................
...........OO...OO.............O.....................
............O...O.............OO.....................
.........OOO.....OOO.................................
.........O.........O.................................
</a></pre></td></tr></table></center>
<p><a name=fx158>:</a><b>Fx158</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in July 1996.
After 158 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (27, -5)
relative to the input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 176 ticks. It is the
only known small conduit that does not produce its output Herschel
via the usual <a href="lex_h.htm#herschelgreatgrandparent">Herschel great-grandparent</a>, so it cannot be followed
by a <a href="lex_d.htm#dependentconduit">dependent conduit</a>. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below
marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O....OO..............$........O.O..O.O.......OO.....$.......O..OOOO.........O......$.......O.O....O......O.O......$.....OOO.OO..OO......OO.......$....O.........................$.O..OOOO.OO...................$.OOO...O.OO...................$....O.........................$...OO.........................$..............................$..............................$..............................$..............................$..............................$..............................$.............................O$...........................OOO$...........................O..$...........................O..$O.............................$O.O...........................$OOO...........................$..O...........................$..............................$...............OO.............$.........OO....O.O............$..........O......O............$.......OOO.......OO...........$.......O......................$"
>.........O....OO..............
........O.O..O.O.......OO.....
.......O..OOOO.........O......
.......O.O....O......O.O......
.....OOO.OO..OO......OO.......
....O.........................
.O..OOOO.OO...................
.OOO...O.OO...................
....O.........................
...OO.........................
..............................
..............................
..............................
..............................
..............................
..............................
.............................O
...........................OOO
...........................O..
...........................O..
O.............................
O.O...........................
OOO...........................
..O...........................
..............................
...............OO.............
.........OO....O.O............
..........O......O............
.......OOO.......OO...........
.......O......................
</a></pre></td></tr></table></center>
<p><a name=fx176>:</a><b>Fx176</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in October 1997. It
is made up of three <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HF95P + PF35W + WFx46H.
After 176 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (45, 0)
relative to the input. The <a href="lex_r.htm#recoverytime">recovery time</a> of the standard form
shown here is 92 ticks, but see the <a href="lex_p.htm#pf35w">PF35W</a> entry for a variant
discovered in November 2017 that lowers the repeat time to 73 ticks.
A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............................OO..................$..............................OO..................$..................................................$.................OO...............................$..................O...............................$..................O.O.............................$...................OO.............................$..................................................$..................................................$..............OO..................................$......O.......OO..................................$......OOO.........................................$.........O........................................$........OO........................................$..................................................$OO................................................$.O................................................$.O.O.....................................OO.......$..OO......................................O.......$..........................................O.O.....$...........................................O.O....$............................................O...OO$................................................OO$..................................................$..................................................$..O...............................................$..O.O...............................OO...........O$..OOO...............................OO.........OOO$....O..........................................O..$...............................................O..$..............OO........OO........................$..............OO..OO.....O........................$..................O.O.OOO.........................$....................O.O...........................$....................OO....OO......................$.........................O.O....OO................$.........................O......OO................$........................OO........................$"
>..............................OO..................
..............................OO..................
..................................................
.................OO...............................
..................O...............................
..................O.O.............................
...................OO.............................
..................................................
..................................................
..............OO..................................
......O.......OO..................................
......OOO.........................................
.........O........................................
........OO........................................
..................................................
OO................................................
.O................................................
.O.O.....................................OO.......
..OO......................................O.......
..........................................O.O.....
...........................................O.O....
............................................O...OO
................................................OO
..................................................
..................................................
..O...............................................
..O.O...............................OO...........O
..OOO...............................OO.........OOO
....O..........................................O..
...............................................O..
..............OO........OO........................
..............OO..OO.....O........................
..................O.O.OOO.........................
....................O.O...........................
....................OO....OO......................
.........................O.O....OO................
.........................O......OO................
........................OO........................
</a></pre></td></tr></table></center>
<p><a name=fx77>:</a><b>Fx77</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in August 1996.
After 77 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> at (25, -8)
relative to the input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 61 ticks; this can be
reduced slightly by suppressing the output Herschel's glider, as in
the <a href="lex_l.htm#l112">L112</a> case. A <a href="lex_p.htm#pipsquirter">pipsquirter</a> can replace the blinker-suppressing
eater to produce an extra glider output. It is one of the simplest
known <a href="lex_s.htm#spartan">Spartan</a> conduits, and one of the few <a href="lex_e.htm#elementaryconduit">elementary conduits</a> in
the original set of sixteen.
<p>In January 2016, Tanner Jacobi discovered a <a href="lex_s.htm#spartan">Spartan</a> method of
extracting an extra glider output (top variant below). A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> marks the output location for each variant.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O............................$.OOO..........................$....O.........................$...OO...........OO...........O$................OO.........OOO$...........................O..$...........................O..$..............................$..............................$..............................$..O...........................$..O.O.........................$..OOO.........................$....O.........................$..............................$..............................$..............................$..............................$..............................$............OO......OO........$...........O..O.....OO........$...........O..O...............$............OO................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$O.............................$OOO...........................$...O..........................$..OO...........OO...........O.$...............OO.........OOO.$..........................O...$..........................O...$..............................$..............................$..............................$.O............................$.O.O..........................$.OOO..........................$...O..........................$..............................$..............................$..............................$..............................$..............................$................OO............$................O.O...........$..................O...........$..................OO..........$"
>.O............................
.OOO..........................
....O.........................
...OO...........OO...........O
................OO.........OOO
...........................O..
...........................O..
..............................
..............................
..............................
..O...........................
..O.O.........................
..OOO.........................
....O.........................
..............................
..............................
..............................
..............................
..............................
............OO......OO........
...........O..O.....OO........
...........O..O...............
............OO................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
O.............................
OOO...........................
...O..........................
..OO...........OO...........O.
...............OO.........OOO.
..........................O...
..........................O...
..............................
..............................
..............................
.O............................
.O.O..........................
.OOO..........................
...O..........................
..............................
..............................
..............................
..............................
..............................
................OO............
................O.O...........
..................O...........
..................OO..........
</a></pre></td></tr></table></center>
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
</body>