1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (H)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">
<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
<p><a name=halfbakedknightship>:</a><b>half-baked knightship</b> ((6,3)<i>c</i>/2621440, p2621440) A <a href="lex_s.htm#selfsupporting">self-supporting</a>
<a href="lex_m.htm#macrospaceship">macro-spaceship</a> with adjustable period but fixed direction, based
on the <a href="#halfbakeryreaction">half-bakery reaction</a>. This was the first spaceship based on
this reaction, constructed in December 2014 by Adam P. Goucher. It
moves 6 cells horizontally and 3 cells vertically every 2621440+8<i>N</i>
ticks, depending on the relative spacing of the two halves. It is
one of the slowest known <a href="lex_k.htm#knightship">knightships</a>, and the first one that was
not a <a href="lex_g.htm#geminoid">Geminoid</a>. Chris Cain optimized the design a few days later to
create the <a href="lex_p.htm#parallelhbk">Parallel HBK</a>.
<p>The spaceship produces gliders from near-diagonal lines of
half-bakeries, which collide with each other at 180 degrees. These
collisions produce <a href="lex_m.htm#monochromaticsalvo">monochromatic salvos</a> that gradually build and
trigger <a href="lex_s.htm#seed">seeds</a>, which in turn eventually construct small
<a href="lex_s.htm#synchronized">synchronized</a> <a href="lex_s.htm#salvo">salvos</a> of gliders. These re-activate the lines of
half-bakeries, thus closing the cycle and moving the entire spaceship
obliquely by (6,3).
<p><a name=halfbakery>:</a><b>half bakery</b> = <a href="lex_b.htm#biloaf">bi-loaf</a>.
<p><a name=halfbakeryreaction>:</a><b>half-bakery reaction</b> The key reaction used in the
<a href="#halfbakedknightship">half-baked knightship</a> and <a href="lex_p.htm#parallelhbk">Parallel HBK</a>, where a half-bakery is
moved by (6,3) when a glider collides with it, and the glider
continues on a new lane. Ivan Fomichev noticed in May 2014 that
pairs of these reactions at the correct relative spacing can create
90-degree output gliders:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.............................O.$............................O..$............................OOO$...............................$...............................$...............................$...............................$...............................$...............................$...............................$....................OO.........$...................O..O........$...................O.O.........$.................OO.O..........$........O.......O..O...........$......OO........O.O............$.......OO........O.............$...............................$....OO.........................$...O..O........................$...O.O.........................$.OO.O..........................$O..O...........................$O.O............................$.O.............................$"
>.............................O.
............................O..
............................OOO
...............................
...............................
...............................
...............................
...............................
...............................
...............................
....................OO.........
...................O..O........
...................O.O.........
.................OO.O..........
........O.......O..O...........
......OO........O.O............
.......OO........O.............
...............................
....OO.........................
...O..O........................
...O.O.........................
.OO.O..........................
O..O...........................
O.O............................
.O.............................
</a></pre></td></tr></table></center>
<p><a name=halfdiagonal>:</a><b>half diagonal</b> A natural measurement of distance between parallel
glider lanes, or between <a href="lex_e.htm#elbow">elbow</a> locations in a <a href="lex_u.htm#universal">universal</a>
<a href="lex_c.htm#constructionarm">construction arm</a> <a href="lex_e.htm#elbowoperation">elbow operation</a> library. If two gliders are in
the same phase and exactly lined up vertically or horizontally, <i>N</i>
cells away from each other, then the two glider <a href="lex_l.htm#lane">lanes</a> are
considered to be <i>N</i> half diagonals (hd) apart. Gliders that are an
integer number of <a href="lex_f.htm#fulldiagonal">full diagonals</a> apart must be the same colour,
whereas integer <a href="#halfdiagonal">half diagonals</a> allow for both glider colours. See
<a href="lex_c.htm#colourofaglider">colour of a glider</a>, <a href="lex_l.htm#linearpropagator">linear propagator</a>.
<p><a name=halffleet>:</a><b>half fleet</b> = <a href="lex_s.htm#shiptie">ship-tie</a>
<p><a name=halfmax>:</a><b>Halfmax</b> A pattern that acts as a spacefiller in half of the Life
plane, found by Jason Summers in May 2005. It expands in three
directions at <i>c</i>/2, producing a triangular region that grows to fill
half the plane.
<p><a name=hammer>:</a><b>hammer</b> To hammer a <a href="lex_l.htm#lwss">LWSS</a>, <a href="lex_m.htm#mwss">MWSS</a> or <a href="#hwss">HWSS</a> is to smash things into
the rear end of it in order to transform it into a different type of
<a href="lex_s.htm#spaceship">spaceship</a>. A hammer is the object used to do the hammering. In the
following example by Dieter Leithner an LWSS is hammered by two more
LWSS to make it into an MWSS.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..O................$....O...OO..........$O...O..OOO.....OOOO.$.OOOO..OO.O....O...O$........OOO....O....$.........O......O..O$"
>O..O................
....O...OO..........
O...O..OOO.....OOOO.
.OOOO..OO.O....O...O
........OOO....O....
.........O......O..O
</a></pre></td></tr></table></center>
<p><a name=hammerhead>:</a><b>hammerhead</b> A certain front end for <a href="lex_c.htm#c2spaceship">c/2 spaceships</a>. The central
part of the hammerhead pattern is supported between two <a href="lex_m.htm#mwss">MWSS</a>. The
picture below shows a small example of a <a href="lex_s.htm#spaceship">spaceship</a> with a
hammerhead front end (the front 9 columns).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................O..$.OO...........O...O$OO.OOO.......O.....$.OOOOO.......O....O$..OOOOO.....O.OOOO.$......OOO.O.OO.....$......OOO....O.....$......OOO.OOO......$..........OO.......$..........OO.......$......OOO.OOO......$......OOO....O.....$......OOO.O.OO.....$..OOOOO.....O.OOOO.$.OOOOO.......O....O$OO.OOO.......O.....$.OO...........O...O$................O..$"
>................O..
.OO...........O...O
OO.OOO.......O.....
.OOOOO.......O....O
..OOOOO.....O.OOOO.
......OOO.O.OO.....
......OOO....O.....
......OOO.OOO......
..........OO.......
..........OO.......
......OOO.OOO......
......OOO....O.....
......OOO.O.OO.....
..OOOOO.....O.OOOO.
.OOOOO.......O....O
OO.OOO.......O.....
.OO...........O...O
................O..
</a></pre></td></tr></table></center>
<p><a name=hand>:</a><b>hand</b> Any object used as a <a href="lex_s.htm#slowsalvo">slow salvo</a> <a href="lex_t.htm#target">target</a> by a
<a href="lex_c.htm#constructionarm">construction arm</a>.
<p><a name=handshake>:</a><b>handshake</b> An old MIT name for <a href="lex_l.htm#lumpsofmuck">lumps of muck</a>, from the following
form (2 generations on from the <a href="lex_s.htm#stairstephexomino">stairstep hexomino</a>):
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO.$.O.OO$OO.O.$.OO..$"
>..OO.
.O.OO
OO.O.
.OO..
</a></pre></td></tr></table></center>
<p><a name=harbor>:</a><b>harbor</b> (p5) Found by Dave Buckingham in September 1978. The name is
by Dean Hickerson.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO...OO.....$.....O.O.O.O.....$......O...O......$.................$.....OO...OO.....$OO..O.O...O.O..OO$O.O.OO.....OO.O.O$.O.............O.$.................$.O.............O.$O.O.OO.....OO.O.O$OO..O.O...O.O..OO$.....OO...OO.....$.................$......O...O......$.....O.O.O.O.....$.....OO...OO.....$"
>.....OO...OO.....
.....O.O.O.O.....
......O...O......
.................
.....OO...OO.....
OO..O.O...O.O..OO
O.O.OO.....OO.O.O
.O.............O.
.................
.O.............O.
O.O.OO.....OO.O.O
OO..O.O...O.O..OO
.....OO...OO.....
.................
......O...O......
.....O.O.O.O.....
.....OO...OO.....
</a></pre></td></tr></table></center>
<p><a name=harvester>:</a><b>harvester</b> (<i>c</i> p4 fuse) Found by David Poyner, this was the first
published example of a <a href="lex_f.htm#fuse">fuse</a>. The name refers to the fact that it
produces debris in the form of <a href="lex_b.htm#block">blocks</a> which contain the same number
of cells as the fuse has burnt up.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................OO$...............O.O$..............O...$.............O....$............O.....$...........O......$..........O.......$.........O........$........O.........$.......O..........$......O...........$.....O............$OOOOO.............$OOOO..............$O.OO..............$"
>................OO
...............O.O
..............O...
.............O....
............O.....
...........O......
..........O.......
.........O........
........O.........
.......O..........
......O...........
.....O............
OOOOO.............
OOOO..............
O.OO..............
</a></pre></td></tr></table></center>
<p><a name=hashlife>:</a><b>hashlife</b> A Life algorithm by Bill Gosper that is designed to take
advantage of the considerable amount of repetitive behaviour in many
large patterns of interest. It provides a means of evolving
repetitive patterns millions (or even billions or trillions) of
generations further than normal Life algorithms can manage in a
reasonable amount of time.
<p>The hashlife algorithm is described by Gosper in his paper listed
in the bibliography at the end of this lexicon. Roughly speaking,
the idea is to store subpatterns in a hash table so that the results
of their <a href="lex_e.htm#evolution">evolution</a> do not need to be recomputed if they arise again
at some other place or time in the evolution of the full pattern.
This does, however, mean that complex patterns can require
substantial amounts of memory.
<p>Tomas Rokicki and Andrew Trevorrow implemented Hashlife into
<a href="lex_g.htm#golly">Golly</a> in 2005. See also <a href="lex_m.htm#macrocell">macrocell</a>.
<p><a name=hassle>:</a><b>hassle</b> See <a href="#hassler">hassler</a>.
<p><a name=hassler>:</a><b>hassler</b> An <a href="lex_o.htm#oscillator">oscillator</a> that works by hassling (repeatedly moving or
changing) some object. For some examples, see <a href="lex_j.htm#jolson">Jolson</a>,
<a href="lex_b.htm#bakersdozen">baker's dozen</a>, <a href="lex_t.htm#toadflipper">toad-flipper</a>, <a href="lex_t.htm#toadsucker">toad-sucker</a> and <a href="lex_t.htm#trafficcircle">traffic circle</a>.
Also see <a href="lex_p.htm#p24gun">p24 gun</a> for a good use of a <a href="lex_t.htm#trafficlight">traffic light</a> <a href="#hassler">hassler</a>.
<p><a name=hat>:</a><b>hat</b> (p1) Found in 1971. See also <a href="lex_t.htm#twinhat">twinhat</a> and <a href="lex_s.htm#sesquihat">sesquihat</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O..$.O.O.$.O.O.$OO.OO$"
>..O..
.O.O.
.O.O.
OO.OO
</a></pre></td></tr></table></center>
<p><a name=hbk>:</a><b>HBK</b> = <a href="#halfbakedknightship">half-baked knightship</a>
<p><a name=hd>:</a><b>hd</b> Abbreviation for <a href="#halfdiagonal">half diagonal</a>. This metric is used primarily
for relative measurements of glider lanes, often in relation to
<a href="lex_s.htm#selfconstructing">self-constructing</a> circuitry; compare <a href="lex_g.htm#gn">Gn</a>.
<p><a name=heat>:</a><b>heat</b> For an <a href="lex_o.htm#oscillator">oscillator</a> or <a href="lex_s.htm#spaceship">spaceship</a>, the average number of cells
which change state in each generation. For example, the heat of a
<a href="lex_g.htm#glider">glider</a> is 4, because 2 cells are born and 2 die every generation.
<p>For a period <i>n</i> oscillator with an <i>r</i>-cell <a href="lex_r.htm#rotor">rotor</a> the heat is at
least 2<i>r</i>/<i>n</i> and no more than <i>r</i>(1-(<i>n</i> mod 2)/<i>n</i>). For <i>n</i>=2 and <i>n</i>=3 these
bounds are equal.
<p><a name=heavyweightemulator>:</a><b>heavyweight emulator</b> = <a href="#hwemulator">HW emulator</a>
<p><a name=heavyweightspaceship>:</a><b>heavyweight spaceship</b> = <a href="#hwss">HWSS</a>
<p><a name=heavyweightvolcano>:</a><b>heavyweight volcano</b> = <a href="#hwvolcano">HW volcano</a>
<p><a name=hebdarole>:</a><b>hebdarole</b> (p7) Found by Noam Elkies, November 1997. Compare
<a href="lex_f.htm#fumarole">fumarole</a>. The smaller version shown below was found soon after by
Alan Hensel using a component found by Dave Buckingham in June 1977.
The top ten rows can be stabilized by their mirror image (giving an
<a href="lex_i.htm#inductor">inductor</a>) and this was the original form found by Elkies.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO...........$....OO...O....O...OO....$.O..O..O.O....O.O..O..O.$O.O.O.OO.O....O.OO.O.O.O$.O..O..O.O.OO.O.O..O..O.$....OO....O..O....OO....$...........OO...........$.......O..O..O..O.......$......O.OO....OO.O......$.......O........O.......$........................$...OO..............OO...$...O..OOOO....OOOO..O...$....O.O.O.O..O.O.O.O....$...OO.O...OOOO...O.OO...$.......OO......OO.......$.........OO..OO.........$.........O..O.O.........$..........OO............$"
>...........OO...........
....OO...O....O...OO....
.O..O..O.O....O.O..O..O.
O.O.O.OO.O....O.OO.O.O.O
.O..O..O.O.OO.O.O..O..O.
....OO....O..O....OO....
...........OO...........
.......O..O..O..O.......
......O.OO....OO.O......
.......O........O.......
........................
...OO..............OO...
...O..OOOO....OOOO..O...
....O.O.O.O..O.O.O.O....
...OO.O...OOOO...O.OO...
.......OO......OO.......
.........OO..OO.........
.........O..O.O.........
..........OO............
</a></pre></td></tr></table></center>
<p><a name=hectic>:</a><b>hectic</b> (p30) Found by Robert Wainwright in September 1984.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................OO...............$......................OO...............$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.........O..........OO...OO............$.......O.O............OOO..............$......O.O............O...O.............$OO...O..O.............O.O..............$OO....O.O..............O...............$.......O.O......O.O....................$.........O......OO.....................$.................O...O.................$.....................OO......O.........$....................O.O......O.O.......$...............O..............O.O....OO$..............O.O.............O..O...OO$.............O...O............O.O......$..............OOO............O.O.......$............OO...OO..........O.........$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$...............OO......................$...............OO......................$"
>......................OO...............
......................OO...............
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.........O..........OO...OO............
.......O.O............OOO..............
......O.O............O...O.............
OO...O..O.............O.O..............
OO....O.O..............O...............
.......O.O......O.O....................
.........O......OO.....................
.................O...O.................
.....................OO......O.........
....................O.O......O.O.......
...............O..............O.O....OO
..............O.O.............O..O...OO
.............O...O............O.O......
..............OOO............O.O.......
............OO...OO..........O.........
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
...............OO......................
...............OO......................
</a></pre></td></tr></table></center>
<p><a name=heisenburpdevice>:</a><b>Heisenburp device</b> A pattern which can detect the passage of a
<a href="lex_g.htm#glider">glider</a> without affecting the glider's path or timing. The first
such device was constructed by David Bell in December 1992. The
term, coined by Bill Gosper, refers to the fact that Heisenberg's
Uncertainty Principle fails to apply in the Life universe. See also
<a href="lex_s.htm#stablepseudoheisenburp">stable pseudo-Heisenburp</a> and <a href="lex_n.htm#naturalheisenburp">natural Heisenburp</a>.
<p>The following is an example of the kind of reaction used at the
heart of a Heisenburp device. The glider at bottom right alters the
reaction of the other two gliders without itself being affected in
any way.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.....O....$.OO...O.O..$OO....OO...$...........$...........$...........$.........OO$........O.O$..........O$"
>O.....O....
.OO...O.O..
OO....OO...
...........
...........
...........
.........OO
........O.O
..........O
</a></pre></td></tr></table></center>
<p><a name=heisenburpeffect>:</a><b>Heisenburp effect</b> See <a href="#heisenburpdevice">Heisenburp device</a>.
<p><a name=helix>:</a><b>helix</b> A convoy of <a href="lex_s.htm#standardspaceship">standard spaceships</a> used in a <a href="lex_c.htm#caterpillar">Caterpillar</a> to
move some piece of debris at the speed of the Caterpillar. The
following diagram illustrates the idea. The leading edge of this
example helix, represented by the glider at the upper right in the
pattern below, moves at a speed of 65<i>c</i>/213, or slightly faster than
<i>c</i>/4.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............................O.............$.................O............OOO............$................OOO....OOO....O.OO...........$.........OOO....O.OO...O..O....OOO..OOO......$.........O..O....OOO...O.......OO...O........$.........O.......OO....O...O.........O.......$.........O...O.........O...O.................$OOO......O...O.........O.....................$O..O.....O..............O.O..................$O.........O.O................................$O............................................$.O.O.........................................$.............................................$.............................................$..........O..................................$.........OOO.................................$.........O.OO................................$..........OOO................................$..........OO.................................$.............................................$.............................................$...............OOO...........................$...............O..O....O.....OOO.............$...............O......OOO....O..O....O.......$...............O.....OO.O....O......OOO......$....OOO.........O.O..OOO.....O.....OO.O......$....O..O.............OOO......O.O..OOO.......$....O................OOO...........OOO.......$....O.................OO...........OOO.......$.....O.O............................OO.......$...........................................O.$..........................................OOO$.........................................OO.O$.........................................OOO.$..........................................OO.$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.........................................O...$..............................OOO.......OOO..$................OOO.....O....O..O......OO.O..$..........O....O..O....OOO......O......OOO...$.........OOO......O....O.OO.....O......OOO...$.........O.OO.....O.....OOO..O.O........OO...$..........OOO..O.O......OOO..................$.O........OOO...........OOO..................$OOO.......OOO...........OO...................$O.OO......OO.................................$.OOO......................................O..$.OO......................................OOO.$........................................OO.O.$........................................OOO..$.........................................OO..$.........OOO.................................$........O..O.................................$...........O.................................$...........O.................................$........O.O..................................$"
>...............................O.............
.................O............OOO............
................OOO....OOO....O.OO...........
.........OOO....O.OO...O..O....OOO..OOO......
.........O..O....OOO...O.......OO...O........
.........O.......OO....O...O.........O.......
.........O...O.........O...O.................
OOO......O...O.........O.....................
O..O.....O..............O.O..................
O.........O.O................................
O............................................
.O.O.........................................
.............................................
.............................................
..........O..................................
.........OOO.................................
.........O.OO................................
..........OOO................................
..........OO.................................
.............................................
.............................................
...............OOO...........................
...............O..O....O.....OOO.............
...............O......OOO....O..O....O.......
...............O.....OO.O....O......OOO......
....OOO.........O.O..OOO.....O.....OO.O......
....O..O.............OOO......O.O..OOO.......
....O................OOO...........OOO.......
....O.................OO...........OOO.......
.....O.O............................OO.......
...........................................O.
..........................................OOO
.........................................OO.O
.........................................OOO.
..........................................OO.
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.........................................O...
..............................OOO.......OOO..
................OOO.....O....O..O......OO.O..
..........O....O..O....OOO......O......OOO...
.........OOO......O....O.OO.....O......OOO...
.........O.OO.....O.....OOO..O.O........OO...
..........OOO..O.O......OOO..................
.O........OOO...........OOO..................
OOO.......OOO...........OO...................
O.OO......OO.................................
.OOO......................................O..
.OO......................................OOO.
........................................OO.O.
........................................OOO..
.........................................OO..
.........OOO.................................
........O..O.................................
...........O.................................
...........O.................................
........O.O..................................
</a></pre></td></tr></table></center>
<p>Adjustable-speed helices can produce a very wide range of spaceship
speeds; see <a href="lex_c.htm#caterloopillar">Caterloopillar</a>.
<p><a name=heptaplet>:</a><b>heptaplet</b> Any 7-cell <a href="lex_p.htm#polyplet">polyplet</a>.
<p><a name=heptapole>:</a><b>heptapole</b> (p2) The <a href="lex_b.htm#barberpole">barberpole</a> of length 7.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO........$O.O.......$..........$..O.O.....$..........$....O.O...$..........$......O.O.$.........O$........OO$"
>OO........
O.O.......
..........
..O.O.....
..........
....O.O...
..........
......O.O.
.........O
........OO
</a></pre></td></tr></table></center>
<p><a name=heptomino>:</a><b>heptomino</b> Any 7-cell <a href="lex_p.htm#polyomino">polyomino</a>. There are 108 such objects. Those
with names in common use are the <a href="lex_b.htm#bheptomino">B-heptomino</a>, the <a href="#herschel">Herschel</a> and
the <a href="lex_p.htm#piheptomino">pi-heptomino</a>.
<p><a name=herschel>:</a><b>Herschel</b> (stabilizes at time 128) The following pattern which occurs
at generation 20 of the <a href="lex_b.htm#bheptomino">B-heptomino</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..$O.O$OOO$..O$"
>O..
O.O
OOO
..O
</a></pre></td></tr></table></center>
<p>The name is commonly ascribed to the Herschel heptomino's
similarity to a planetary symbol. William Herschel discovered Uranus
in 1781. However, in point of fact a Herschel bears no particular
resemblance to either of the symbols used for Uranus, but does
closely resemble the symbol for Saturn. So the appropriate name might
actually be "Huygens", but "Herschel" is now universally used by
tradition.
<p>Herschels are one of the most versatile types of <a href="lex_s.htm#signal">signal</a> in stable
circuitry. <a href="lex_r.htm#rpentomino">R-pentominoes</a> and <a href="lex_b.htm#bheptomino">B-heptominoes</a> naturally evolve into
Herschels, and <a href="lex_c.htm#converter">converters</a> have also been found that change
<a href="lex_p.htm#piheptomino">pi-heptominoes</a> and several other signal types into Herschels, and
vice versa. See <a href="lex_e.htm#elementaryconduit">elementary conduit</a>.
<p><a name=herschelcircuit>:</a><b>Herschel circuit</b> A series of <a href="#herschelconduit">Herschel conduits</a> or other components,
connected by placing them so that the output <a href="#herschel">Herschels</a> from early
conduits become the input Herschels for later conduits. Often the
initial component is a <a href="lex_c.htm#converter">converter</a> accepting some other signal type
as input - usually a glider, in which case a <a href="lex_s.htm#syringe">syringe</a> is most
commonly used. The <a href="lex_s.htm#silverreflector">Silver reflector</a> is a well-known early
<a href="lex_s.htm#spartan">Spartan</a> Herschel circuit from before the syringe was discovered,
where the initial converter is a <a href="lex_c.htm#callahangtoh">Callahan G-to-H</a>.
<p>Sometimes a direct connection between two conduits is not possible
due to unwanted gliders that destroy required <a href="lex_c.htm#catalyst">catalysts</a>, or wanted
gliders that are not able to escape. In this case, small "spacer"
conduits such as <a href="lex_f.htm#f116">F116</a>, <a href="lex_f.htm#f117">F117</a>, <a href="lex_f.htm#fx77">Fx77</a>, <a href="lex_r.htm#r64">R64</a>, <a href="lex_l.htm#l112">L112</a>, or <a href="lex_l.htm#l156">L156</a> can
be inserted between the other conduits to solve the problem.
<p>Some converter or <a href="lex_f.htm#factory">factory</a> conduits do not produce a Herschel as
output, instead generating other useful results such as gliders,
<a href="lex_b.htm#boat">boats</a> or <a href="lex_m.htm#mwss">MWSSes</a>. See <a href="#herscheltoglider">Herschel-to-glider</a>, <a href="lex_d.htm#demultiplexer">demultiplexer</a>, and
<a href="#htomwss">H-to-MWSS</a> respectively for examples of these. For those conduits
which do produce an unwanted Herschel, an <a href="lex_e.htm#eater">eater</a> such as <a href="lex_s.htm#sw2">SW-2</a> can
be added to delete it.
<p>If the first and last conduits of a chain connect to each other in
a loop then there is no need for a syringe to generate the first
Herschel, or an eater to consume the last one. The circuit becomes a
self-supporting <a href="#herschelloop">Herschel loop</a>. A loop is also formed by a
<a href="lex_s.htm#syringe">syringe</a> connected to a Herschel-to-glider converter, with the
glider reflected back to the syringe's input with glider reflectors
of the appropriate colour, usually <a href="lex_s.htm#snark">Snarks</a>. In either case, if the
loop has a surplus <a href="lex_g.htm#glider">glider</a> output, it becomes a <a href="lex_g.htm#gun">gun</a>; if no output
is available it is an <a href="lex_e.htm#emu">emu</a>.
<p><a name=herschelclimber>:</a><b>Herschel climber</b> Any <a href="lex_r.htm#reburnablefuse">reburnable fuse</a> reaction involving
<a href="#herschel">Herschels</a>. May refer specifically to the
<a href="lex_1.htm#a-235c79herschelclimber">(23,5)c/79 Herschel climber</a> used in the <a href="lex_w.htm#waterbear">waterbear</a>, or one of
several similar reactions with various velocities. See also
<a href="#herschelpairclimber">Herschel-pair climber</a>.
<p><a name=herschelcomponent>:</a><b>Herschel component</b> = <a href="#herschelconduit">Herschel conduit</a>
<p><a name=herschelconduit>:</a><b>Herschel conduit</b> A <a href="lex_c.htm#conduit">conduit</a> that moves a <a href="#herschel">Herschel</a> from one place
to another. See also <a href="#herschelloop">Herschel loop</a>.
<p>Well over a hundred simple stable Herschel conduits are currently
known. As of June 2018 the number is approximately 150, depending on
the precise definition of "simple" - e.g., fitting inside a 100x100
bounding box, and producing output in no more than 300 <a href="lex_t.htm#tick">ticks</a>. In
general a Herschel conduit can be called "simple" if its active
reaction does not return to a Herschel stage except at its output.
Compare <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, <a href="lex_c.htm#compositeconduit">composite conduit</a>. A description of
common usage in complex circuitry, using <a href="lex_s.htm#syringe">syringes</a> and <a href="lex_s.htm#snark">Snarks</a> to
make compact connections, can be found in <a href="#herschelcircuit">Herschel circuit</a>.
<p>The original <a href="lex_u.htm#universal">universal</a> set consisted of sixteen stable Herschel
conduits, discovered between 1995 and 1998 by Dave Buckingham (DJB)
and Paul Callahan (PBC). These are shown in the following table. In
this table, the number in "name/steps" is the number of <a href="lex_t.htm#tick">ticks</a>
needed to produce an output Herschel from the input Herschel. "m"
tells how the Herschel is moved (R = turned right, L = turned left, B
= turned back, F = unturned, f = flipped), and "dx" and "dy" give the
displacement of the centre cell of the Herschel (assumed to start in
the orientation shown above).
<pre>
------------------------------------------
name/steps m dx dy discovery
------------------------------------------
<a href="lex_r.htm#r64">R64</a> R 11 9 DJB, Sep 1995
<a href="lex_f.htm#fx77">Fx77</a> Fflip 25 -8 DJB, Aug 1996
<a href="lex_l.htm#l112">L112</a> L 12 -33 DJB, Jul 1996
<a href="lex_f.htm#f116">F116</a> F 32 1 PBC, Feb 1997
<a href="lex_f.htm#f117">F117</a> F 40 -6 DJB, Jul 1996
<a href="lex_b.htm#bx125">Bx125</a> Bflip -9 -17 PBC, Nov 1998
<a href="lex_f.htm#fx119">Fx119</a> Fflip 20 14 DJB, Sep 1996
<a href="lex_f.htm#fx153">Fx153</a> Fflip 48 -4 PBC, Feb 1997
<a href="lex_l.htm#l156">L156</a> L 17 -41 DJB, Aug 1996
<a href="lex_f.htm#fx158">Fx158</a> Fflip 27 -5 DJB, Jul 1996
<a href="lex_f.htm#f166">F166</a> F 49 3 PBC, May 1997
<a href="lex_f.htm#fx176">Fx176</a> Fflip 45 0 PBC, Oct 1997
<a href="lex_r.htm#r190">R190</a> R 24 16 DJB, Jul 1996
<a href="lex_l.htm#lx200">Lx200</a> Lflip 17 -40 PBC, Jun 1997
<a href="lex_r.htm#rx202">Rx202</a> Rflip 7 32 DJB, May 1997
<a href="lex_b.htm#bx222">Bx222</a> Bflip -6 -16 PBC, Oct 1998
------------------------------------------
</pre>
<p>See also <a href="#herscheltransceiver">Herschel transceiver</a>.
<p><a name=herscheldescendant>:</a><b>Herschel descendant</b> A common active pattern occurring at generation
22 of a <a href="#herschel">Herschel</a>'s <a href="lex_e.htm#evolution">evolution</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..$O.OO$...O$.O.O$.OO.$"
>OO..
O.OO
...O
.O.O
.OO.
</a></pre></td></tr></table></center>
There are other evolutionary paths leading to the same pattern,
including the modification of a <a href="lex_b.htm#bheptomino">B-heptomino</a> implied by generation
21 of a Herschel.
<p><a name=herschelgreatgrandparent>:</a><b>Herschel great-grandparent</b> A specific three-<a href="lex_t.htm#tick">tick</a> predecessor of a
<a href="#herschel">Herschel</a>, commonly seen in <a href="#herschelconduit">Herschel conduit</a> collections that
contain <a href="lex_d.htm#dependentconduit">dependent conduits</a>. In some situations it is helpful to
display the input reaction in this form instead of the standard
Herschel form.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO....$OOO.OO.$.OO.OOO$OOO.OO.$OO.....$"
>.OO....
OOO.OO.
.OO.OOO
OOO.OO.
OO.....
</a></pre></td></tr></table></center>
<p>Dependent conduit inputs are catalysed by a <a href="lex_t.htm#transparent">transparent</a> block
before the Herschel's standard form can appear, and before the
Herschel's <a href="lex_f.htm#firstnaturalglider">first natural glider</a> is produced. This means that these
conduits will fail if an actual Herschel is placed in the "correct"
input location for a dependent conduit. Refer to <a href="lex_f.htm#f166">F166</a> or <a href="lex_l.htm#lx200">Lx200</a>
to see the correct relative placement of the standard transparent
block catalyst.
<p>Almost all known Herschel conduits produce a Herschel
great-grandparent near the end of their evolutionary sequence. In
the original <a href="lex_u.htm#universal">universal</a> set of Herschel conduits, <a href="lex_f.htm#fx158">Fx158</a> is the
only exception.
<p><a name=herschelloop>:</a><b>Herschel loop</b> A cyclic <a href="#herscheltrack">Herschel track</a>. Although no loop of length
less than 120 generations has been constructed it is possible to make
<a href="lex_o.htm#oscillator">oscillators</a> of smaller periods by putting more than one Herschel in
a higher-period track. In this way oscillators, and in most cases
<a href="lex_g.htm#gun">guns</a>, of all periods from 54 onwards can now be constructed
(although the p55 case is a bit strange, shooting itself with gliders
in order to stabilize itself). A mechanism for a period-52 loop was
found in April 2018, but it includes a stage where the signal is
carried by a triplet of <a href="lex_g.htm#glider">gliders</a> so it may not be considered to be a
pure Herschel loop. The missing period, 53, is a difficult case
simply because 53 is prime and so no small sparkers or reflectors are
available.
<p>See <a href="lex_s.htm#simkinglidergun">Simkin glider gun</a> and <a href="lex_p.htm#p256gun">p256 gun</a> for the smallest known
Herschel loops. See also <a href="lex_e.htm#emu">emu</a> and <a href="lex_o.htm#omniperiodic">omniperiodic</a>.
<p><a name=herschelpairclimber>:</a><b>Herschel-pair climber</b> Any <a href="lex_r.htm#reburnablefuse">reburnable fuse</a> reaction involving pairs
of <a href="#herschel">Herschels</a>. May refer specifically to the
<a href="lex_1.htm#a-31c240herschelpairclimber">31c/240 Herschel-pair climber</a> used in the <a href="lex_c.htm#centipede">Centipede</a>, or one of
several similar reactions with various velocities. See also
<a href="#herschelclimber">Herschel climber</a>.
<p><a name=herschelreceiver>:</a><b>Herschel receiver</b> Any <a href="lex_c.htm#circuit">circuit</a> that converts a <a href="lex_t.htm#tandemglider">tandem glider</a> into
a <a href="#herschel">Herschel</a> <a href="lex_s.htm#signal">signal</a>. The following diagram shows a pattern found
by Paul Callahan in 1996, as part of the first stable glider
<a href="lex_r.htm#reflector">reflector</a>. Used as a receiver, it converts two parallel input
gliders (with path separations of 2, 5, or 6) to an <a href="lex_r.htm#rpentomino">R-pentomino</a>.
The signal is then converted to a Herschel by one of several known
mechanisms, the first of which was found by Dave Buckingham way back
in 1972. The second is <a href="lex_e.htm#elementaryconduit">elementary conduit</a> <a href="lex_r.htm#rf48h">RF48H</a>, found by
Stephen Silver in October 1997. The receiver version shown below
uses Buckingham's R-to-Herschel converter, which is made up of
elementary conduit <a href="lex_r.htm#rf28b">RF28B</a> followed by <a href="lex_b.htm#bfx59h">BFx59H</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............................................O.O$......................................OO.......OO.$......................................OO........O.$...OO.............................................$...O..............................................$....O.............................................$...OO.............................................$............OO....................................$...........O.O....................................$............O..............................O......$......................................OO...O.O....$.....................................O..O..OO.....$OO....................................OO..........$OO.............................OO.................$...............................OO.................$..................................................$..................................................$..................................................$..................................................$..................................................$..................................................$............................................OO....$............................................OO....$........................................OO........$........................................O.O.......$..........................................O.......$..........................................OO......$.............................OO...................$.............................OO...................$..................................................$..................................................$...........................OO.....................$...........................OO.....................$"
>...............................................O.O
......................................OO.......OO.
......................................OO........O.
...OO.............................................
...O..............................................
....O.............................................
...OO.............................................
............OO....................................
...........O.O....................................
............O..............................O......
......................................OO...O.O....
.....................................O..O..OO.....
OO....................................OO..........
OO.............................OO.................
...............................OO.................
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
............................................OO....
............................................OO....
........................................OO........
........................................O.O.......
..........................................O.......
..........................................OO......
.............................OO...................
.............................OO...................
..................................................
..................................................
...........................OO.....................
...........................OO.....................
</a></pre></td></tr></table></center>
<p><a name=herschelstopper>:</a><b>Herschel stopper</b> A method of cleanly suppressing a <a href="#herschel">Herschel</a> signal
with an <a href="lex_a.htm#asynchronous">asynchronous</a> <a href="lex_b.htm#boatbit">boat-bit</a>, discovered by Dean Hickerson.
Here a <a href="lex_g.htm#ghostherschel">ghost Herschel</a> marks the location of the output signal, in
cases where the boat-bit is not present. Other boat-bit locations
that allow for clean suppression of a Herschel are also known.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................................OO$.........................O..........O.$.........................OOO.........O$............................O.......OO$...........................OO.........$......................................$........O.............................$........OOO...........................$...........O..........................$..........OO...........OO...........O.$.......................OO.........OOO.$..................................O...$..................................O...$......................................$..........................O...........$..........................OO..........$.........O...............O.O..........$.........O.O..........................$.........OOO..........................$...........O.......................OO.$....................................O.$.................................OOO..$.................................O....$......................................$..OO..................................$...O..................................$OOO....................OO.............$O......................O..............$........................OOO...........$..........................O...........$"
>....................................OO
.........................O..........O.
.........................OOO.........O
............................O.......OO
...........................OO.........
......................................
........O.............................
........OOO...........................
...........O..........................
..........OO...........OO...........O.
.......................OO.........OOO.
..................................O...
..................................O...
......................................
..........................O...........
..........................OO..........
.........O...............O.O..........
.........O.O..........................
.........OOO..........................
...........O.......................OO.
....................................O.
.................................OOO..
.................................O....
......................................
..OO..................................
...O..................................
OOO....................OO.............
O......................O..............
........................OOO...........
..........................O...........
</a></pre></td></tr></table></center>
<p>This term is also sometimes used to refer to any mechanism that
cleanly suppresses a Herschel. These usually allow the Herschel's
<a href="lex_f.htm#firstnaturalglider">first natural glider</a> to escape, so they are more commonly
classified as <a href="lex_c.htm#converter">converters</a>. See <a href="lex_s.htm#sw2">SW-2</a>.
<p><a name=herscheltoglider>:</a><b>Herschel-to-glider</b> The largest category of <a href="lex_e.htm#elementaryconduit">elementary conduit</a>.
Gliders are very common and self-supporting, so it's much easier to
find these than any other type of output <a href="lex_s.htm#signal">signal</a>. A large
collection of these H-to-G <a href="lex_c.htm#converter">converters</a> has been compiled, with many
different output <a href="lex_l.htm#lane">lanes</a> and timings. These can be used to
synchronize multiple signals to produce <a href="lex_g.htm#gun">gun</a> patterns or complex
logic circuitry. See <a href="lex_n.htm#nw31t120">NW31T120</a> for an example.
<p><a name=herscheltrack>:</a><b>Herschel track</b> A <a href="lex_t.htm#track">track</a> for <a href="#herschel">Herschels</a>. An equivalent term is
<a href="#herschelcircuit">Herschel circuit</a>. See also <a href="lex_b.htm#btrack">B track</a>.
<p><a name=herscheltransceiver>:</a><b>Herschel transceiver</b> An adjustable <a href="#herschelconduit">Herschel conduit</a> made up of a
<a href="#herscheltransmitter">Herschel transmitter</a> and a <a href="#herschelreceiver">Herschel receiver</a>. The intermediate
stage consists of a <a href="lex_t.htm#tandemglider">tandem glider</a> - two <a href="lex_g.htm#glider">gliders</a> on parallel
<a href="lex_l.htm#lane">lanes</a> - so that the transmitter and receiver can be separated by
any required distance. The conduit may be <a href="lex_s.htm#stable">stable</a>, or may contain
low-period <a href="lex_o.htm#oscillator">oscillators</a>.
<p><a name=herscheltransmitter>:</a><b>Herschel transmitter</b> Any <a href="#herschel">Herschel</a>-to-two-<a href="lex_g.htm#glider">glider</a> <a href="lex_c.htm#converter">converter</a> that
produces a <a href="lex_t.htm#tandemglider">tandem glider</a> that can be used as input to a
<a href="#herschelreceiver">Herschel receiver</a>. If the gliders are far enough apart, and if one
of the gliders is used only for cleanup, then the transmitter is
<a href="lex_a.htm#ambidextrous">ambidextrous</a>: with a small modification to the receiver, a
suitably oriented mirror image of the receiver will also work.
<p>The following diagram shows a <a href="lex_s.htm#stable">stable</a> Herschel transmitter found
by Paul Callahan in May 1997:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......OO...........$.....O.O...........$...OOO.............$..O...O......O.....$..OO.OO......OOO...$.............O.O...$...............O...$...................$...................$OO.O...............$O.OO...............$...................$...................$...................$...............OO..$...............O...$................OOO$..................O$"
>......OO...........
.....O.O...........
...OOO.............
..O...O......O.....
..OO.OO......OOO...
.............O.O...
...............O...
...................
...................
OO.O...............
O.OO...............
...................
...................
...................
...............OO..
...............O...
................OOO
..................O
</a></pre></td></tr></table></center>
Examples of small reversible p6 and p7 transmitters are also known,
and more recently several alternate <a href="#herscheltransceiver">Herschel transceivers</a> have been
found with different lane spacing, e.g., 0, 2, 4, 6, and 13.
<p><a name=hertzoscillator>:</a><b>Hertz oscillator</b> (p8) Compare <a href="lex_n.htm#negentropy">negentropy</a>, and also <a href="lex_c.htm#cauldron">cauldron</a>.
Found by Conway's group in 1970.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO.O....$...O.OO....$...........$....OOO....$...O.O.O.OO$...O...O.OO$OO.O...O...$OO.O...O...$....OOO....$...........$....OO.O...$....O.OO...$"
>...OO.O....
...O.OO....
...........
....OOO....
...O.O.O.OO
...O...O.OO
OO.O...O...
OO.O...O...
....OOO....
...........
....OO.O...
....O.OO...
</a></pre></td></tr></table></center>
<p><a name=hexadecimal>:</a><b>hexadecimal</b> = <a href="lex_b.htm#beehiveanddock">beehive and dock</a>
<p><a name=hexaplet>:</a><b>hexaplet</b> Any 6-cell <a href="lex_p.htm#polyplet">polyplet</a>.
<p><a name=hexapole>:</a><b>hexapole</b> (p2) The <a href="lex_b.htm#barberpole">barberpole</a> of length 6.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.......$O.O......$.........$..O.O....$.........$....O.O..$.........$......O.O$.......OO$"
>OO.......
O.O......
.........
..O.O....
.........
....O.O..
.........
......O.O
.......OO
</a></pre></td></tr></table></center>
<p><a name=hexomino>:</a><b>hexomino</b> Any 6-cell <a href="lex_p.htm#polyomino">polyomino</a>. There are 35 such objects. For some
examples see <a href="lex_c.htm#century">century</a>, <a href="lex_s.htm#stairstephexomino">stairstep hexomino</a>, <a href="lex_t.htm#table">table</a>, <a href="lex_t.htm#toad">toad</a> and
<a href="lex_z.htm#zhexomino">Z-hexomino</a>.
<p><a name=hf>:</a><b>HF</b> = <a href="#honeyfarm">honey farm</a>
<p><a name=hfx58b>:</a><b>HFx58B</b> A common <a href="#herschel">Herschel</a> to <a href="lex_b.htm#bheptomino">B-heptomino</a> converter, used as the
first stage of <a href="lex_f.htm#f117">F117</a> and many other Herschel conduits. There are
two variants, both shown in the pattern below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........O..............................O..........$..........OOO..........................OOO..........$.............O........................O.............$OO..........OO........................OO..........OO$.O................................................O.$.O.O............................................O.O.$..OO............................................OO..$.....................O........O.....................$.....................OO......OO.....................$......................OO....OO......................$......................O......O......................$.....................O........O.....................$....................................................$..O..............................................O..$..O.O..........................................O.O..$..OOO..........................................OOO..$....O...........OO.................OO..........O....$................O..................OO...............$.................OOO...................OO...........$...................O...................O............$........................................OOO.........$..........................................O.........$"
>..........O..............................O..........
..........OOO..........................OOO..........
.............O........................O.............
OO..........OO........................OO..........OO
.O................................................O.
.O.O............................................O.O.
..OO............................................OO..
.....................O........O.....................
.....................OO......OO.....................
......................OO....OO......................
......................O......O......................
.....................O........O.....................
....................................................
..O..............................................O..
..O.O..........................................O.O..
..OOO..........................................OOO..
....O...........OO.................OO..........O....
................O..................OO...............
.................OOO...................OO...........
...................O...................O............
........................................OOO.........
..........................................O.........
</a></pre></td></tr></table></center>
<p><a name=hheptomino>:</a><b>H-heptomino</b> Name given by Conway to the following <a href="#heptomino">heptomino</a>. After
one generation this is the same as the <a href="lex_i.htm#iheptomino">I-heptomino</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..$.O..$.OOO$..O.$"
>OO..
.O..
.OOO
..O.
</a></pre></td></tr></table></center>
<p><a name=highbandwidthtelegraph>:</a><b>high-bandwidth telegraph</b> (p960, p30 circuitry) A variant of the
<a href="lex_t.htm#telegraph">telegraph</a> constructed by Louis-François Handfield in February 2017,
using periodic components to achieve a transmission rate of one bit
per 192 ticks. The same ten signals are sent as in the original
<a href="lex_t.htm#telegraph">telegraph</a> and the <a href="lex_p.htm#p1telegraph">p1 telegraph</a>, but information is encoded more
efficiently in the timing of those signals. Specifically, the new
transmitter sends five bits every 960 ticks by adjusting the relative
timings inside each of the five mirror-image paired subunits of the
composite signal in the beehive-chain <a href="lex_l.htm#lightspeedwire">lightspeed wire</a> <a href="lex_f.htm#fuse">fuse</a>.
<p><a name=highclearance>:</a><b>high-clearance</b> See <a href="lex_c.htm#clearance">clearance</a>.
<p><a name=highwayrobber>:</a><b>highway robber</b> Any mechanism that can retrieve a signal from a
spaceship <a href="lex_l.htm#lane">lane</a> while allowing spaceships on nearby lanes to pass by
unaffected. In practice the spaceship is generally a glider. The
signal is removed from the lane, an output signal is generated
elsewhere, and the highway robber returns to its original state. A
competent highway robber does not affect gliders even on the lane
adjacent to the affected glider stream, except during its recovery
period.
<p>A perfect highway robber doesn't affect later gliders even in the
lane to which it is attached, even during its recovery period. Below
is a near-perfect highway robber "bait" that requires three
<a href="lex_s.htm#synchronized">synchronized</a> signals to rebuild (the <a href="#herschel">Herschel</a>, <a href="lex_b.htm#bheptomino">B-heptomino</a>, and
<a href="lex_g.htm#glider">glider</a>.) The glider at the top right passes by unharmed, but
another glider following on the same <a href="lex_l.htm#lane">lane</a> 200 ticks later will be
cleanly reflected to a new path, and another glider following that
one will also pass by unharmed. The only imperfection is a few ticks
at the very end of the reconstruction, as the beehive is being
rebuilt:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................O...........O.........$......................OOO.......O.O.........$.........OO...OO.........O.......OO.........$.........OO...OO........OO..................$............................................$............................................$..OO........................................$...O........................................$...O.O......................................$....OO......................................$............................................$............................................$............................................$............................................$............................................$............................................$.......OO...................................$........O...................................$.....OOO....................................$.....O......................................$............................................$............................................$............................................$............................................$............................................$............................................$....................OO......................$....................OO......................$............OO..............................$.............O..............................$O.........OOO...............................$OOO.......O.................................$...O........................................$..OO........................................$............................................$............................................$............................................$............................................$...........O...........OO...............OO..$.........OOO..........O.O...............OO..$.........O.O............O...................$.........O.....................OO.O.......O.$...............................O.OO......OOO$........................................OO.O$............................................$.............................OO.............$.............................OO.............$.......................OO...................$.......................OO...................$............................................$............................................$.........................OO.................$..................OO.....OO.................$..................OO........................$"
>......................O...........O.........
......................OOO.......O.O.........
.........OO...OO.........O.......OO.........
.........OO...OO........OO..................
............................................
............................................
..OO........................................
...O........................................
...O.O......................................
....OO......................................
............................................
............................................
............................................
............................................
............................................
............................................
.......OO...................................
........O...................................
.....OOO....................................
.....O......................................
............................................
............................................
............................................
............................................
............................................
............................................
....................OO......................
....................OO......................
............OO..............................
.............O..............................
O.........OOO...............................
OOO.......O.................................
...O........................................
..OO........................................
............................................
............................................
............................................
............................................
...........O...........OO...............OO..
.........OOO..........O.O...............OO..
.........O.O............O...................
.........O.....................OO.O.......O.
...............................O.OO......OOO
........................................OO.O
............................................
.............................OO.............
.............................OO.............
.......................OO...................
.......................OO...................
............................................
............................................
.........................OO.................
..................OO.....OO.................
..................OO........................
</a></pre></td></tr></table></center>
<p><a name=hive>:</a><b>hive</b> = <a href="lex_b.htm#beehive">beehive</a>
<p><a name=hivenudger>:</a><b>hivenudger</b> (<i>c</i>/2 orthogonally, p4) A <a href="lex_s.htm#spaceship">spaceship</a> found by Hartmut
Holzwart in July 1992. (The name is due to Bill Gosper.) It
consists of a <a href="lex_p.htm#prebeehive">pre-beehive</a> escorted by four <a href="lex_l.htm#lwss">LWSS</a>. In fact any
LWSS can be replaced by a <a href="lex_m.htm#mwss">MWSS</a> or an <a href="#hwss">HWSS</a>, so that there are 45
different single-hive hivenudgers.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOOO.....O..O$O...O...O....$O.......O...O$.O..O...OOOO.$.............$.....OO......$.....OO......$.....OO......$.............$.O..O...OOOO.$O.......O...O$O...O...O....$OOOO.....O..O$"
>OOOO.....O..O
O...O...O....
O.......O...O
.O..O...OOOO.
.............
.....OO......
.....OO......
.....OO......
.............
.O..O...OOOO.
O.......O...O
O...O...O....
OOOO.....O..O
</a></pre></td></tr></table></center>
Wider versions can be made by stabilizing the front of the extended
"pre-beehive", as in the <a href="lex_l.htm#linepuffer">line puffer</a> shown below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O.O..................$........O..O..................$.......OO.....................$......O...O...................$.....OOO.O....................$..OO..........................$.O...OOOOO.......OOOO.....O..O$O...O............O...O...O....$O.....OO.........O.......O...O$OOO...OOOO........O..O...OOOO.$.O.......O....................$.OO...................OO......$.O.O..................OO......$.OO..OO.O........O.O..OO......$..O.OOO.O...O.OOOO.O..OO......$.........OO.O.OO..O...OO...OOO$....OOOOOO.OO...OOOO..OO...OOO$.....O....OOO......O..OO...OOO$......OO.....OO..OO...OO......$.......O..O.....OOOO..OO......$........O.O.OO.....O..OO......$......................OO......$..............................$..................O..O...OOOO.$.................O.......O...O$.................O...O...O....$.................OOOO.....O..O$"
>.........O.O..................
........O..O..................
.......OO.....................
......O...O...................
.....OOO.O....................
..OO..........................
.O...OOOOO.......OOOO.....O..O
O...O............O...O...O....
O.....OO.........O.......O...O
OOO...OOOO........O..O...OOOO.
.O.......O....................
.OO...................OO......
.O.O..................OO......
.OO..OO.O........O.O..OO......
..O.OOO.O...O.OOOO.O..OO......
.........OO.O.OO..O...OO...OOO
....OOOOOO.OO...OOOO..OO...OOO
.....O....OOO......O..OO...OOO
......OO.....OO..OO...OO......
.......O..O.....OOOO..OO......
........O.O.OO.....O..OO......
......................OO......
..............................
..................O..O...OOOO.
.................O.......O...O
.................O...O...O....
.................OOOO.....O..O
</a></pre></td></tr></table></center>
<p><a name=honeybit>:</a><b>honey bit</b> A block and pond <a href="lex_c.htm#constellation">constellation</a> used in the
<a href="lex_o.htm#otcametapixel">OTCA metapixel</a> by Brice Due in 2006, to store and retrieve a bit of
data - specifically, the presence or absence of a neighbor
<a href="lex_m.htm#metacell">metacell</a>. The "0" state of the honey bit memory unit is a simple
<a href="lex_b.htm#beehive">beehive</a>, which is also the source of the name.
<p>An input glider collides with the beehive to convert it into the
honey bit constellation, which can be thought of as a value of "1"
stored in the memory unit. A passing LWSS can then test for the
presence of the pond. If a collision occurs, the LWSS and the honey
bit constellation are mutually annihilated, leaving just the original
beehive. Below is the honeybit constellation with the two reactions
occurring in the opposite order - test, then reset.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O...............$..O..............$OOO..............$.................$............OOOO.$............O...O$............O....$.............O..O$.................$..........OO.....$.........O..O....$.........O..O....$..........OO.....$.................$.................$.........OO......$.........OO......$"
>.O...............
..O..............
OOO..............
.................
............OOOO.
............O...O
............O....
.............O..O
.................
..........OO.....
.........O..O....
.........O..O....
..........OO.....
.................
.................
.........OO......
.........OO......
</a></pre></td></tr></table></center>
If the pond is not present, the LWSS passes by the beehive without
affecting it. Thus a test input has an output for the "0" case, but
not for the "1" case. For an alternative memory-unit mechanism with
both "0" and "1" outputs, see <a href="lex_d.htm#demultiplexer">demultiplexer</a>.
<p>The honey bit is also an interesting <a href="lex_e.htm#eater">eater</a> for the <a href="#hwss">HWSS</a> as
shown below. An HWSS colliding with the pond happens to create the
exact same reset glider used in the above memory unit.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO...........$O....O......OO.$......O....O..O$O.....O....O..O$.OOOOOO.....OO.$...............$...............$...........OO..$...........OO..$"
>..OO...........
O....O......OO.
......O....O..O
O.....O....O..O
.OOOOOO.....OO.
...............
...............
...........OO..
...........OO..
</a></pre></td></tr></table></center>
<p><a name=honeycomb>:</a><b>honeycomb</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO..$.O..O.$O.OO.O$.O..O.$..OO..$"
>..OO..
.O..O.
O.OO.O
.O..O.
..OO..
</a></pre></td></tr></table></center>
<p><a name=honeyfarm>:</a><b>honey farm</b> (p1) A common formation of four beehives.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......O......$.....O.O.....$.....O.O.....$......O......$.............$.OO.......OO.$O..O.....O..O$.OO.......OO.$.............$......O......$.....O.O.....$.....O.O.....$......O......$"
>......O......
.....O.O.....
.....O.O.....
......O......
.............
.OO.......OO.
O..O.....O..O
.OO.......OO.
.............
......O......
.....O.O.....
.....O.O.....
......O......
</a></pre></td></tr></table></center>
<p><a name=hook>:</a><b>hook</b> Another term for a <a href="lex_b.htm#bookend">bookend</a>. It is also used for other
hook-shaped things, such as occur in the <a href="lex_e.htm#eater1">eater1</a> and the
<a href="#hookwithtail">hook with tail</a>, for example.
<p><a name=hookwithtail>:</a><b>hook with tail</b> (p1) For a long time this was the smallest
<a href="lex_s.htm#stilllife">still life</a> without a well-established name. It is now a vital
component of the smallest known <a href="#hwss">HWSS</a> <a href="lex_g.htm#gun">gun</a>, where it acts as a
<a href="lex_r.htm#rock">rock</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.O..$OO.O.$...O.$...OO$"
>O.O..
OO.O.
...O.
...OO
</a></pre></td></tr></table></center>
<p><a name=houndstoothagar>:</a><b>houndstooth agar</b> The p2 <a href="lex_a.htm#agar">agar</a> that results from tiling the plane
with the following pattern.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO$.O..$..O.$OOO.$"
>.OOO
.O..
..O.
OOO.
</a></pre></td></tr></table></center>
<p><a name=house>:</a><b>house</b> The following <a href="lex_i.htm#inductioncoil">induction coil</a>. It is generation 3 of the
<a href="lex_p.htm#piheptomino">pi-heptomino</a>. See <a href="lex_s.htm#sparkcoil">spark coil</a> and <a href="lex_d.htm#deadsparkcoil">dead spark coil</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO.$O...O$OO.OO$"
>.OOO.
O...O
OO.OO
</a></pre></td></tr></table></center>
<p><a name=htog>:</a><b>H-to-G</b> A <a href="#herscheltoglider">Herschel-to-glider</a> <a href="lex_c.htm#converter">converter</a>.
<p><a name=htomwss>:</a><b>H-to-MWSS</b> A <a href="lex_s.htm#spartan">Spartan</a> <a href="lex_c.htm#converter">converter</a> found by Tanner Jacobi in October
2015, which converts an input <a href="#herschel">Herschel</a> to a middleweight spaceship.
The key discovery was a very small but slightly <a href="lex_d.htm#dirty">dirty</a> H-to-MWSS
conduit, where a Herschel is catalyzed to produce an <a href="lex_m.htm#mwss">MWSS</a> but also
leaves behind a beehive. Prefixing two <a href="lex_r.htm#r64">R64</a> conduits to this
produces a <a href="lex_c.htm#composite">composite</a> converter that successfully deletes the
beehive in advance, using the input Herschel's
<a href="lex_f.htm#firstnaturalglider">first natural glider</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.............................OO................$.............................OO.....OO.........$....................................OO.........$...............................................$...............................................$...............OO.................OO...........$................O.................OO...........$................O.O.....................OO.....$.................OO.....................OO.....$...............................................$...............................................$...............................................$....................O..........................$....................O.O........................$....................OOO........................$......................O........................$...............................................$...............................................$...............................................$...............................................$...............................................$...............................................$...OO...........................OOO............$..O.O...........................O..............$...O...........................OO..............$...............................................$...............................................$...............................................$...............................................$...............................................$...............................................$.............................................OO$.O...........................................OO$O.O................OO.O........................$O.O................OO.OOO......................$.O......................O......................$........................O...............OO.....$........................................OO.....$....O.O.....................................OO.$.......O....................................OO.$...O...O.......................................$.......O.......................................$....O..O..............................OO.......$.....OOO..............................OO.......$"
>.............................OO................
.............................OO.....OO.........
....................................OO.........
...............................................
...............................................
...............OO.................OO...........
................O.................OO...........
................O.O.....................OO.....
.................OO.....................OO.....
...............................................
...............................................
...............................................
....................O..........................
....................O.O........................
....................OOO........................
......................O........................
...............................................
...............................................
...............................................
...............................................
...............................................
...............................................
...OO...........................OOO............
..O.O...........................O..............
...O...........................OO..............
...............................................
...............................................
...............................................
...............................................
...............................................
...............................................
.............................................OO
.O...........................................OO
O.O................OO.O........................
O.O................OO.OOO......................
.O......................O......................
........................O...............OO.....
........................................OO.....
....O.O.....................................OO.
.......O....................................OO.
...O...O.......................................
.......O.......................................
....O..O..............................OO.......
.....OOO..............................OO.......
</a></pre></td></tr></table></center>
There are many other ways to remove the beehive using a spare glider
or additional conduits, but they are generally less compact than
this.
<p><a name=hustler>:</a><b>hustler</b> (p3) Found by Robert Wainwright, June 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO....$.....OO....$...........$...OOOO....$O.O....O...$OO.O...O...$...O...O.OO$...O....O.O$....OOOO...$...........$....OO.....$....OO.....$"
>.....OO....
.....OO....
...........
...OOOO....
O.O....O...
OO.O...O...
...O...O.OO
...O....O.O
....OOOO...
...........
....OO.....
....OO.....
</a></pre></td></tr></table></center>
<p><a name=hustlerii>:</a><b>hustler II</b> (p4)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O...........$....OOO.........$.......O........$......O..OO.....$O.OO.O.OO..O....$OO.O.O.....O....$.....O....O.....$....O.....O.O.OO$....O..OO.O.OO.O$.....OO..O......$........O.......$.........OOO....$...........O....$"
>....O...........
....OOO.........
.......O........
......O..OO.....
O.OO.O.OO..O....
OO.O.O.....O....
.....O....O.....
....O.....O.O.OO
....O..OO.O.OO.O
.....OO..O......
........O.......
.........OOO....
...........O....
</a></pre></td></tr></table></center>
<p><a name=hwemulator>:</a><b>HW emulator</b> (p4) Found by Robert Wainwright in June 1980. See also
<a href="lex_e.htm#emulator">emulator</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......OO.......$..OO.O....O.OO..$..O..........O..$...OO......OO...$OOO..OOOOOO..OOO$O..O........O..O$.OO..........OO.$"
>.......OO.......
..OO.O....O.OO..
..O..........O..
...OO......OO...
OOO..OOOOOO..OOO
O..O........O..O
.OO..........OO.
</a></pre></td></tr></table></center>
<p><a name=hwss>:</a><b>HWSS</b> (<i>c</i>/2 orthogonally, p4) A heavyweight spaceship, the fourth most
common <a href="lex_s.htm#spaceship">spaceship</a>. Found by Conway in 1970 by modifying a <a href="lex_l.htm#lwss">LWSS</a>.
See also <a href="lex_m.htm#mwss">MWSS</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO..$.O....O$O......$O.....O$OOOOOO.$"
>...OO..
.O....O
O......
O.....O
OOOOOO.
</a></pre></td></tr></table></center>
<p>The HWSS possesses both a <a href="lex_t.htm#tailspark">tail spark</a> and a <a href="lex_d.htm#domino">domino</a> <a href="lex_b.htm#bellyspark">belly spark</a>
which can easily perturb other objects as it passes by. The
spaceship can also perturb some objects in additional ways. For
examples, see <a href="lex_p.htm#puffer">puffer</a> and <a href="lex_g.htm#gliderturner">glider turner</a>.
<p>Dave Buckingham found that the HWSS can be synthesized using three
gliders as shown below:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O.O$........OO.$.........O.$...........$OOO........$..O........$.O...OOO...$.......O...$......O....$"
>........O.O
........OO.
.........O.
...........
OOO........
..O........
.O...OOO...
.......O...
......O....
</a></pre></td></tr></table></center>
<p><a name=hwssemulator>:</a><b>HWSS emulator</b> = <a href="#hwemulator">HW emulator</a>
<p><a name=hwvolcano>:</a><b>HW volcano</b> (p5) A p5 <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#sparker">sparker</a>, found by Dean Hickerson in
February 1995.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O..........................$........O.O.........................$......OOO.O.........................$.....O....OO.O......................$.....O.OO...OO......OO..............$....OO.O.OO.........O.O.............$.........O.OOOOO......O..O.OO.......$..O.OO.OO.O.....O....OO.O.OO.O......$.....OO.....OOOO........O....O......$O...O.O..O...O.O....OO.O.OOOO.OO....$O...O.O..OO.O.OO.OO....O.O....O.O...$.....OO...OOO.OO.O.OOO.O..OOO...O...$..O.OO.OO.OO.............O.O..O.O.OO$...........O......O.O.O.O..OO.O.O.O.$....OO.O.O.OO......OO.O.O.O...O.O.O.$.....O.OO.O..O.......O.OO..OOOO.OO..$.....O....O.O........O...OO.........$....OO....OO........OO...O..O.......$...........................OO.......$"
>.........O..........................
........O.O.........................
......OOO.O.........................
.....O....OO.O......................
.....O.OO...OO......OO..............
....OO.O.OO.........O.O.............
.........O.OOOOO......O..O.OO.......
..O.OO.OO.O.....O....OO.O.OO.O......
.....OO.....OOOO........O....O......
O...O.O..O...O.O....OO.O.OOOO.OO....
O...O.O..OO.O.OO.OO....O.O....O.O...
.....OO...OOO.OO.O.OOO.O..OOO...O...
..O.OO.OO.OO.............O.O..O.O.OO
...........O......O.O.O.O..OO.O.O.O.
....OO.O.O.OO......OO.O.O.O...O.O.O.
.....O.OO.O..O.......O.OO..OOOO.OO..
.....O....O.O........O...OO.........
....OO....OO........OO...O..O.......
...........................OO.......
</a></pre></td></tr></table></center>
At least four progressively smaller forms of this sparker have been
found, including a 25-cell-wide version found by David Eppstein in
2003, and a vertically narrower 28-cell-wide version by Karel Suhajda
in 2004. Scot Ellison's 17-cell-wide version is shown in the
<a href="lex_z.htm#zweiback">zweiback</a> entry.
<p><a name=hybridgreyship>:</a><b>hybrid grey ship</b> A <a href="lex_g.htm#greyship">grey ship</a> containing more than one type of
region of density 1/2, usually a combination of a
<a href="lex_w.htm#withthegraingreyship">with-the-grain grey ship</a> and an <a href="lex_a.htm#againstthegraingreyship">against-the-grain grey ship</a>.
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
</body>
|