File: lex_k.htm

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (214 lines) | stat: -rwxr-xr-x 12,067 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (K)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">

<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
<p><a name=karelsp15>:</a><b>Karel's p15</b> (p15) An <a href="lex_o.htm#oscillator">oscillator</a> discovered by Karel Suhajda on
December 11, 2002. It consists of a period 15 rotor supported by the
domino spark of a pentadecathlon. It provides accessible sparks that
can be used to perturb reactions or thin signal <a href="lex_s.htm#stream">streams</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O....O..$..OOOOOO..$..O....O..$..........$..........$..........$..OOOOOO..$.O......O.$O........O$.O......O.$..OOOOOO..$"
>..O....O..
..OOOOOO..
..O....O..
..........
..........
..........
..OOOOOO..
.O......O.
O........O
.O......O.
..OOOOOO..
</a></pre></td></tr></table></center>
<p><a name=keeper>:</a><b>keeper</b> A type of <a href="lex_f.htm#factory">factory</a> <a href="lex_c.htm#circuit">circuit</a> that always results in the
presence of an object in the output location, whether or not the
object was previously present. In many cases it is easy to construct
examples by connecting multiple circuits to shoot down an object with
a <a href="lex_g.htm#glider">glider</a>, then rebuild the object again later. The smallest keeper
circuits accomplish the same thing more directly with a lucky
preliminary <a href="lex_s.htm#spark">spark</a> from the active reaction, which removes the
existing object (if any) just before the construction occurs. Below
is a useful block keeper with a <a href="lex_h.htm#herschel">Herschel</a> input.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................O..............................$................OOO.....OO.....................$...................O....OO.....................$..................OO...........................$...............................................$...............................................$...............................................$...............................................$...............................................$................................OO.............$...............................O.O.............$................................O..............$...............................................$...............................................$.......OO......................................$........O......................................$........O.O....................................$.........OO....................................$...............................................$...............................................$...............................................$...............................................$...............................................$...............................................$.........O...................................OO$.........O.O.................................OO$.........OOO...................................$...........O...................................$...............................................$...............................................$..........................OO...................$..........................OO...................$..OO...........................................$...O...........................................$OOO.........OO.................................$O...........OO.................................$"
>................O..............................
................OOO.....OO.....................
...................O....OO.....................
..................OO...........................
...............................................
...............................................
...............................................
...............................................
...............................................
................................OO.............
...............................O.O.............
................................O..............
...............................................
...............................................
.......OO......................................
........O......................................
........O.O....................................
.........OO....................................
...............................................
...............................................
...............................................
...............................................
...............................................
...............................................
.........O...................................OO
.........O.O.................................OO
.........OOO...................................
...........O...................................
...............................................
...............................................
..........................OO...................
..........................OO...................
..OO...........................................
...O...........................................
OOO.........OO.................................
O...........OO.................................
</a></pre></td></tr></table></center>
<p><a name=keys>:</a><b>keys</b> See <a href="lex_s.htm#shortkeys">short keys</a>, <a href="lex_b.htm#bentkeys">bent keys</a> and <a href="lex_o.htm#oddkeys">odd keys</a>.
<p><a name=kickback>:</a><b>kickback</b> = <a href="#kickbackreaction">kickback reaction</a> or <a href="lex_1.htm#a-180degreekickback">180-degree kickback</a>.
<p><a name=kickbackreaction>:</a><b>kickback reaction</b> The following collision of two <a href="lex_g.htm#glider">gliders</a> whose
product is a single glider travelling in the opposite direction to
one of the original gliders. This is important in the proof of the
existence of a <a href="lex_u.htm#universalconstructor">universal constructor</a>, and in Bill Gosper's
<a href="lex_t.htm#totalaperiodic">total aperiodic</a>, as well as a number of other constructions.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O..$......OO$.OO..OO.$O.O.....$..O.....$"
>.....O..
......OO
.OO..OO.
O.O.....
..O.....
</a></pre></td></tr></table></center>
See also <a href="lex_1.htm#a-180degreekickback">180-degree kickback</a>.
<p><a name=kidney>:</a><b>kidney</b> A Gosperism for <a href="lex_c.htm#century">century</a>. See also <a href="lex_d.htm#diuresis">diuresis</a>.
<p><a name=killertoads>:</a><b>killer toads</b> A pair of <a href="lex_t.htm#toad">toads</a> acting together so that they can eat
things. Here, for example, are some killer toads eating an <a href="lex_h.htm#hwss">HWSS</a>.
Similarly they can eat a <a href="lex_m.htm#mwss">MWSS</a> (but not a <a href="lex_l.htm#lwss">LWSS</a>). For another
example see <a href="lex_t.htm#twirlingttetsonsii">twirling T-tetsons II</a>. See also <a href="lex_c.htm#candlefrobra">candlefrobra</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO.......OOO$O....O....OOO.$......O.......$O.....O.......$.OOOOOO.......$..........OOO.$...........OOO$"
>..OO.......OOO
O....O....OOO.
......O.......
O.....O.......
.OOOOOO.......
..........OOO.
...........OOO
</a></pre></td></tr></table></center>
<p><a name=kleinbottle>:</a><b>Klein bottle</b> As an alternative to a <a href="lex_t.htm#torus">torus</a>, it's possible to make a
finite Life universe in the form of a Klein bottle. The simplest way
to do this is to use an <i>m</i> x <i>n</i> rectangle with the top edge joined to
the bottom edge (as for a torus) and the left edge twisted and joined
to the right.
<p><a name=knightship>:</a><b>knightship</b> Any <a href="lex_s.htm#spaceship">spaceship</a> of type (2<i>m</i>,<i>m</i>)/<i>n</i> - that is, a spaceship of
any speed that moves obliquely in a (2,1) direction. The first
Conway's Life knightship was a variant of Andrew Wade's <a href="lex_g.htm#gemini">Gemini</a>
spaceship, constructed in May 2010. The next was an even slower
knightship based on the <a href="lex_h.htm#halfbakeryreaction">half-bakery reaction</a>.
<p>A knightship must be asymmetric and its period must be at least 6.
This is barely within the range of current <a href="lex_s.htm#searchprogram">search programs</a>, as
proven by the discovery on March 6, 2018 of an <a href="lex_e.htm#elementary">elementary</a>
knightship, <a href="lex_s.htm#sirrobin">Sir Robin</a>, by Adam P. Goucher and Tomas Rokicki.
<p>By analogy with the corresponding fairy chess pieces, spaceships of
types (3<i>m</i>,<i>m</i>)/<i>n</i>, (3<i>m</i>,2<i>m</i>)/<i>n</i> and (4<i>m</i>,<i>m</i>)/<i>n</i> would presumably be called
camelships, zebraships and giraffeships, respectively. Such
spaceships do exist (see <a href="lex_u.htm#universalconstructor">universal constructor</a>) but small
elementary versions are even more difficult to search for. Any of
these ship types could be constructed by trivially modifying a Gemini
spaceship, or less trivially by reprogramming one of the more recent
small <a href="lex_g.htm#geminoid">Geminoid</a> <a href="lex_c.htm#constructionarm">construction arms</a>, but as of July 2018 a camelship
Gemini is the only example that has been explicitly built.
<p>Alternatively, the term "knightship" is regularly used to refer to
any <a href="lex_o.htm#oblique">oblique</a> spaceship, such as the original <a href="lex_g.htm#gemini">Gemini</a> or the
<a href="lex_w.htm#waterbear">waterbear</a>.
<p><a name=koksgalaxy>:</a><b>Kok's galaxy</b> (p8) An <a href="lex_o.htm#oscillator">oscillator</a> found by Jan Kok in 1971, currently
serving as the icon for <a href="lex_g.htm#golly">Golly</a>. See <a href="lex_c.htm#converter">converter</a> for a use of this
<a href="lex_s.htm#sparker">sparker</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOOOOO.OO$OOOOOO.OO$.......OO$OO.....OO$OO.....OO$OO.....OO$OO.......$OO.OOOOOO$OO.OOOOOO$"
>OOOOOO.OO
OOOOOO.OO
.......OO
OO.....OO
OO.....OO
OO.....OO
OO.......
OO.OOOOOO
OO.OOOOOO
</a></pre></td></tr></table></center>
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
</body>