1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (L)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">
<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
<p><a name=l112>:</a><b>L112</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in July 1996. It
is made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HLx53B + <a href="lex_b.htm#bfx59h">BFx59H</a>. After
112 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> turned 90 degrees
counterclockwise at (12, -33) relative to the input. Its
<a href="lex_r.htm#recoverytime">recovery time</a> is 61 ticks; this can be reduced slightly by removing
the output glider, either with a specialized eater (as in the
original <a href="lex_t.htm#true">true</a> p59 gun), or with a <a href="lex_s.htm#sparker">sparker</a> as in most of the
<a href="lex_q.htm#quetzal">Quetzal</a> guns. It can be made <a href="lex_s.htm#spartan">Spartan</a> by replacing the
<a href="lex_a.htm#aircraftcarrier">aircraft carrier</a> with an <a href="lex_e.htm#eater1">eater1</a>. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the
pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............OO.......$...............O........$.............OOO........$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$.............OO.........$.............OO.........$....OO..................$....O..O................$OO....OO................$.O....................OO$.O.O..................O.$..OO................O.O.$....................OO..$........................$........................$........................$........................$........................$..O.....................$..O.O...................$..OOO...................$....O...................$........................$..............OO........$..............OO..OO....$..................O.O...$....................O...$....................OO..$"
>...............OO.......
...............O........
.............OOO........
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
.............OO.........
.............OO.........
....OO..................
....O..O................
OO....OO................
.O....................OO
.O.O..................O.
..OO................O.O.
....................OO..
........................
........................
........................
........................
........................
..O.....................
..O.O...................
..OOO...................
....O...................
........................
..............OO........
..............OO..OO....
..................O.O...
....................O...
....................OO..
</a></pre></td></tr></table></center>
<p><a name=l156>:</a><b>L156</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in August 1996.
It is made up of three <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HLx69R + <a href="lex_r.htm#rf28b">RF28B</a> +
<a href="lex_b.htm#bfx59h">BFx59H</a>. After 156 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> turned 90
degrees counterclockwise at (17, -41) relative to the input. Its
<a href="lex_r.htm#recoverytime">recovery time</a> is 62 ticks. It can be made <a href="lex_s.htm#spartan">Spartan</a> by replacing
the <a href="lex_s.htm#snake">snake</a> with an <a href="lex_e.htm#eater1">eater1</a> in one of two orientations. Additional
gliders can be produced by removing the southeasternmost eater, or by
replacing the RF28B elementary conduit by an alternate version. A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...................OO........$...................O.........$.................OOO.........$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.................OO..........$.................OO..........$.............................$........OO.O.................$........O.OO.................$..........................OO.$..........................O..$........................O.O..$........................OO...$.............................$.........O...................$.........OOO.................$O...........O................$OOO........OO..............O.$...O......................O.O$..OO.......................O.$.............................$.............................$.............................$.............................$.............................$.............................$.O....................OO.....$.O.O..................O.O....$.OOO....................O....$...O...........OO.......OO...$...............O.............$................OOO..........$..................O..........$"
>...................OO........
...................O.........
.................OOO.........
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.................OO..........
.................OO..........
.............................
........OO.O.................
........O.OO.................
..........................OO.
..........................O..
........................O.O..
........................OO...
.............................
.........O...................
.........OOO.................
O...........O................
OOO........OO..............O.
...O......................O.O
..OO.......................O.
.............................
.............................
.............................
.............................
.............................
.............................
.O....................OO.....
.O.O..................O.O....
.OOO....................O....
...O...........OO.......OO...
...............O.............
................OOO..........
..................O..........
</a></pre></td></tr></table></center>
<p><a name=lake>:</a><b>lake</b> (p1) Any still life consisting of a simple closed curve made
from diagonally connected <a href="lex_d.htm#domino">dominoes</a>. The smallest example is the
<a href="lex_p.htm#pond">pond</a>, and the next smallest is this (to which the term is sometimes
restricted):
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO....$...O..O...$...O..O...$.OO....OO.$O........O$O........O$.OO....OO.$...O..O...$...O..O...$....OO....$"
>....OO....
...O..O...
...O..O...
.OO....OO.
O........O
O........O
.OO....OO.
...O..O...
...O..O...
....OO....
</a></pre></td></tr></table></center>
<p><a name=lane>:</a><b>lane</b> A path traveled by a glider, or less commonly a spaceship such
as a loafer. The lane is centered on the line of symmetry (if any)
of the spaceship in question. If a lane is clear, then the spaceship
can travel along it without colliding or interfering with any other
objects.
<p>Diagonal lanes are often numbered consecutively, in half-diagonals
(<a href="lex_h.htm#hd">hd</a>). Occasionally diagonal lane measurements are given in
quarter-diagonals (<a href="lex_q.htm#qd">qd</a>), in part because diagonally symmetric
spaceships have a line of symmetry 1qd away from the lines available
for gliders. It's also convenient that moving a glider forward by
100qd (for example) has the same effect as evolving the same glider
for 100 ticks.
<p><a name=laputa>:</a><b>Laputa</b> (p2) Found by Rich Schroeppel, September 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO.OO....$...OO.O...OO$........O..O$.OOOOOO.OOO.$O..O.O......$OO...O.OO...$....OO.OO...$"
>...OO.OO....
...OO.O...OO
........O..O
.OOOOOO.OOO.
O..O.O......
OO...O.OO...
....OO.OO...
</a></pre></td></tr></table></center>
<p><a name=largeprimeoscillator>:</a><b>large prime oscillator</b> Any oscillator with a relatively small
<a href="lex_b.htm#boundingbox">bounding box</a> whose period is a very large prime. (If the
bounding-box restriction is removed, then eight gliders travelling in
a four-<a href="lex_s.htm#snark">Snark</a> loop would provide a trivial example for any chosen
prime.) The first such oscillator was built by Gabriel Nivasch in
2003. The current record holder is an oscillator constructed by Adam
P. Goucher with a period that is a Mersenne prime with 13,395 digits
(2<sup>44497</sup>-1).
<p>The next higher Mersenne-prime oscillator, period 2<sup>86243</sup>-1, could
be constructed with <a href="lex_q.htm#quadrisnark">quadri-Snarks</a> and <a href="lex_s.htm#semisnark">semi-Snarks</a>. It would
actually be significantly smaller than the current record holder. As
of June 2018 the construction of this pattern has not yet been
completed.
<p><a name=larges>:</a><b>large S</b> = <a href="lex_b.htm#bigs">big S</a>
<p><a name=lidka>:</a><b>Lidka</b> (stabilizes at time 29053) A <a href="lex_m.htm#methuselah">methuselah</a> found by Andrzej
Okrasinski in July 2005.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OOO..$..........O....$..........O...O$...........O..O$............OOO$...............$.O.............$O.O............$.O.............$"
>..........OOO..
..........O....
..........O...O
...........O..O
............OOO
...............
.O.............
O.O............
.O.............
</a></pre></td></tr></table></center>
The following variant, pointed out by David Bell, has two fewer cells
and lasts two generations longer.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OOO..$...............$...........OO.O$............O.O$..............O$...............$.O.............$O.O............$.O.............$"
>..........OOO..
...............
...........OO.O
............O.O
..............O
...............
.O.............
O.O............
.O.............
</a></pre></td></tr></table></center>
<p><a name=life>:</a><b>Life</b> A 2-dimensional 2-state <a href="lex_c.htm#cellularautomaton">cellular automaton</a> discovered by John
Conway in 1970. The states are referred to as ON and OFF (or live
and dead). The transition rule is as follows: a cell that is ON will
remain ON in the next generation if and only if exactly 2 or 3 of the
8 adjacent cells are also ON, and a cell that is OFF will turn ON if
and only if exactly 3 of the 8 adjacent cells are ON. (This is more
succinctly stated as: "If 2 of your 8 nearest neighbours are ON,
don't change. If 3 are ON, turn ON. Otherwise, turn OFF.")
<p><a name=life32>:</a><b>Life32</b> A freeware Life program by Johan Bontes for Microsoft Windows
95/98/ME/NT/2000/XP: <a href="https://github.com/JBontes/Life32/">https://github.com/JBontes/Life32/</a>.
<p><a name=lifehistory>:</a><b>LifeHistory</b> A multistate CA rule supported by <a href="lex_g.htm#golly">Golly</a>, equivalent to
two-state B3/S23 Life but with several additional states intended for
annotation purposes. A "history" state records whether an off cell
has ever turned on in the past, and other states allow on and off
cells to be permanently or temporarily marked, without affecting the
<a href="lex_e.htm#evolution">evolution</a> of the pattern.
<p><a name=lifelab>:</a><b>LifeLab</b> A shareware Life program by Andrew Trevorrow for the
Macintosh (MacOS 8.6 or later): <a href="http://www.trevorrow.com/lifelab/">http://www.trevorrow.com/lifelab/</a>.
<p><a name=lifeline>:</a><b>LifeLine</b> A newsletter edited by Robert Wainwright from 1971 to 1973.
During this period it was the main forum for discussions about Life.
The newsletter was nominally quarterly, but the actual dates of its
eleven issues were as follows:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><font size=-1>
Mar, Jun, Sep, Dec 1971
Sep, Oct, Nov, Dec 1972
Mar, Jun, Sep 1973
</font></pre></td></tr></table></center>
<p><a name=lifenthusiast>:</a><b>Lifenthusiast</b> A Life enthusiast. Term coined by Robert Wainwright.
<p><a name=lifesrc>:</a><b>lifesrc</b> David Bell's Life <a href="lex_s.htm#searchprogram">search program</a> for finding new
<a href="lex_s.htm#spaceship">spaceships</a> and <a href="lex_o.htm#oscillator">oscillators</a>. This is a C implementation of an
algorithm developed by Dean Hickerson in 6502 assembler.
<p>Although lifesrc itself is a command-line program, Jason Summers
has made a GUI version called <a href="lex_w.htm#winlifesearch">WinLifeSearch</a> for Microsoft Windows.
A Java version, <a href="lex_j.htm#javalifesearch">JavaLifeSearch</a>, was written in November 2012 by
Karel Suhajda.
<p>The lifesrc algorithm is only useful for very small periods, as the
amount of computing power required rises rapidly with increasing
period. For most purposes, period 7 is the practical limit with
current hardware.
<p>Lifesrc is available from <a href="http://tip.net.au/~dbell/">http://tip.net.au/~dbell/</a> (source code
only). Compare <a href="lex_g.htm#gfind">gfind</a>.
<p><a name=lifeviewer>:</a><b>LifeViewer</b> A scriptable Javascript Life pattern viewer written by
Chris Rowett, used primarily on the conwaylife.com discussion forums.
<p><a name=lightbulb>:</a><b>light bulb</b> (p2) Found in 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO.O..$.O.OO..$.......$..OOO..$.O...O.$.O...O.$..O.O..$O.O.O.O$OO...OO$"
>.OO.O..
.O.OO..
.......
..OOO..
.O...O.
.O...O.
..O.O..
O.O.O.O
OO...OO
</a></pre></td></tr></table></center>
The same <a href="lex_r.htm#rotor">rotor</a> can be embedded in a slightly smaller <a href="lex_s.htm#stator">stator</a> like
this:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O.....$.OOO.....$O........$OOOOOO...$......O..$..O...O..$..OO.O...$......OOO$........O$"
>...O.....
.OOO.....
O........
OOOOOO...
......O..
..O...O..
..OO.O...
......OOO
........O
</a></pre></td></tr></table></center>
<p><a name=lightspeedbubble>:</a><b>lightspeed bubble</b> A type of <a href="lex_n.htm#negativespaceship">negative spaceship</a> travelling through
the <a href="lex_z.htm#zebrastripes">zebra stripes</a> agar. The center of the bubble is simple empty
space, and the length and/or width of the bubble can usually be
extended to any desired size.
<p>Below is a small stabilized section of agar containing a sample
lightspeed bubble, found by Gabriel Nivasch in August 1999. The
bubble travels to the left at the <a href="lex_s.htm#speedoflight">speed of light</a>, so it will
eventually reach the edge of any finite patch and destroy itself and
its supporting agar.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.............................................................O$.OOOOOOOOOOOOO..OOO..OOO..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O..............OO...OO...OO........O..........................$.OOOOOOOOOOOOO...OO...OO...O.OO.O....OOOOOOOOOOOOOOOOOOOOOOOO.$.............................OO.....O........................O$.OOOOOOOOOOOOO.................OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...............................O.............................$.OOOOOOOOOOOOO...................OOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.................................O....O......................O$.OOOOOOOOOOOOO...................OO....OOOOOOOOOOOOOOOOOOOOOO.$O................................O.....O....O.................$.OOOOOOOOOOOOO...................OO....OO....OOOOOOOOOOOOOOOO.$.................................O.....O.....O....O..........O$.OOOOOOOOOOOOO...................OO....OO....OO....OOOOOOOOOO.$O................................O.....O.....O.....O....O.....$.OOOOOOOOOOOOO...................OO....OO....OO....OO....OOOO.$.................................O.....O.....O.....O.....O...O$.OOOOOOOOOOOOO...................OO....OO....OO....OO....OOOO.$O................................O.....O.....O.....O....O.....$.OOOOOOOOOOOOO...................OO....OO....OO....OOOOOOOOOO.$.................................O.....O.....O....O..........O$.OOOOOOOOOOOOO...................OO....OO....OOOOOOOOOOOOOOOO.$O................................O.....O....O.................$.OOOOOOOOOOOOO...................OO....OOOOOOOOOOOOOOOOOOOOOO.$.................................O....O......................O$.OOOOOOOOOOOOO...................OOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...............................O.............................$.OOOOOOOOOOOOO.................OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.............................OO.....O........................O$.OOOOOOOOOOOOO...OO...OO...O.OO.O....OOOOOOOOOOOOOOOOOOOOOOOO.$O..............OO...OO...OO........O..........................$.OOOOOOOOOOOOO..OOO..OOO..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.............................................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...$"
>.O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.............................................................O
.OOOOOOOOOOOOO..OOO..OOO..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O..............OO...OO...OO........O..........................
.OOOOOOOOOOOOO...OO...OO...O.OO.O....OOOOOOOOOOOOOOOOOOOOOOOO.
.............................OO.....O........................O
.OOOOOOOOOOOOO.................OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...............................O.............................
.OOOOOOOOOOOOO...................OOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.................................O....O......................O
.OOOOOOOOOOOOO...................OO....OOOOOOOOOOOOOOOOOOOOOO.
O................................O.....O....O.................
.OOOOOOOOOOOOO...................OO....OO....OOOOOOOOOOOOOOOO.
.................................O.....O.....O....O..........O
.OOOOOOOOOOOOO...................OO....OO....OO....OOOOOOOOOO.
O................................O.....O.....O.....O....O.....
.OOOOOOOOOOOOO...................OO....OO....OO....OO....OOOO.
.................................O.....O.....O.....O.....O...O
.OOOOOOOOOOOOO...................OO....OO....OO....OO....OOOO.
O................................O.....O.....O.....O....O.....
.OOOOOOOOOOOOO...................OO....OO....OO....OOOOOOOOOO.
.................................O.....O.....O....O..........O
.OOOOOOOOOOOOO...................OO....OO....OOOOOOOOOOOOOOOO.
O................................O.....O....O.................
.OOOOOOOOOOOOO...................OO....OOOOOOOOOOOOOOOOOOOOOO.
.................................O....O......................O
.OOOOOOOOOOOOO...................OOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...............................O.............................
.OOOOOOOOOOOOO.................OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.............................OO.....O........................O
.OOOOOOOOOOOOO...OO...OO...O.OO.O....OOOOOOOOOOOOOOOOOOOOOOOO.
O..............OO...OO...OO........O..........................
.OOOOOOOOOOOOO..OOO..OOO..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.............................................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...
</a></pre></td></tr></table></center>
<p>An open problem related to lightspeed bubbles was whether large
extensible empty areas could be created whose length was not
proportional to the width (as it must be in the above case, due to
the tapering back edge). This was solved in February 2017 by Arie
Paap; a simple period-2 solution is shown below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...........................................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.............................................................$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O.....................................................O.....O$.OOOOOOOOOOOOOOOOOOOO..OOO..OOO..OOO..OOOOOOOO..OOOO...OOOOO.$......................OO...OO...OO...OO........OO.....O......$.OOOOOOOOOOOOOOOOOOOO...OO...OO...OO...OOOOOOO...O.OO..OOOOO.$O.........................................O........OO.......O$.OOOOOOOOOOOOOOOOOOOO......................OO.O......OOOOOOO.$...........................................O............O....$.OOOOOOOOOOOOOOOOOOOO......................O.............OOO.$O..........................................OO.....OO....O...O$.OOOOOOOOOOOOOOOOOOOO......................OO...OO...O.OOOOO.$...........................................O..O.OO...O.......$.OOOOOOOOOOOOOOOOOOOO......................O......OO...OOOOO.$O..........................................OO..........O....O$.OOOOOOOOOOOOOOOOOOOO......................OO..........OOOOO.$...........................................O......OO.O.......$.OOOOOOOOOOOOOOOOOOOO......................O..O.OO...O.OOOOO.$O..........................................OO...OO......O...O$.OOOOOOOOOOOOOOOOOOOO......................OO.....OO.....OOO.$...........................................O............O....$.OOOOOOOOOOOOOOOOOOOO......................O...........OOOOO.$O..........................................OO.....OO.OO.....O$.OOOOOOOOOOOOOOOOOOOO......................OO...OO...OO..OOO.$...........................................O..O.OO.....OO....$.OOOOOOOOOOOOOOOOOOOO......................O......OO....OOOO.$O..........................................OO...............O$.OOOOOOOOOOOOOOOOOOOO......................OO...........OOOO.$...........................................O......OO...OO....$.OOOOOOOOOOOOOOOOOOOO......................O..O.OO...OO..OOO.$O..........................................OO...OO...OO.....O$.OOOOOOOOOOOOOOOOOOOO......................OO.....OO...OOOOO.$...........................................O............O....$.OOOOOOOOOOOOOOOOOOOOOO.....O.....O.....O..O.O...........OOO.$O.........................OO....OO....OO...O...O.O.......O..O$.OOOOOOOOOOOOOOOOOOOOOOOO.OO.OO.OO.OO.OO.OOOOOOOOO.......OOO.$........................................................O....$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO...OOOOOOO.$O..................................................OO.......O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..OOOOOOOO.$.............................................................$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...........................................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$...O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...$"
>...O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...........................................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.............................................................
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O.....................................................O.....O
.OOOOOOOOOOOOOOOOOOOO..OOO..OOO..OOO..OOOOOOOO..OOOO...OOOOO.
......................OO...OO...OO...OO........OO.....O......
.OOOOOOOOOOOOOOOOOOOO...OO...OO...OO...OOOOOOO...O.OO..OOOOO.
O.........................................O........OO.......O
.OOOOOOOOOOOOOOOOOOOO......................OO.O......OOOOOOO.
...........................................O............O....
.OOOOOOOOOOOOOOOOOOOO......................O.............OOO.
O..........................................OO.....OO....O...O
.OOOOOOOOOOOOOOOOOOOO......................OO...OO...O.OOOOO.
...........................................O..O.OO...O.......
.OOOOOOOOOOOOOOOOOOOO......................O......OO...OOOOO.
O..........................................OO..........O....O
.OOOOOOOOOOOOOOOOOOOO......................OO..........OOOOO.
...........................................O......OO.O.......
.OOOOOOOOOOOOOOOOOOOO......................O..O.OO...O.OOOOO.
O..........................................OO...OO......O...O
.OOOOOOOOOOOOOOOOOOOO......................OO.....OO.....OOO.
...........................................O............O....
.OOOOOOOOOOOOOOOOOOOO......................O...........OOOOO.
O..........................................OO.....OO.OO.....O
.OOOOOOOOOOOOOOOOOOOO......................OO...OO...OO..OOO.
...........................................O..O.OO.....OO....
.OOOOOOOOOOOOOOOOOOOO......................O......OO....OOOO.
O..........................................OO...............O
.OOOOOOOOOOOOOOOOOOOO......................OO...........OOOO.
...........................................O......OO...OO....
.OOOOOOOOOOOOOOOOOOOO......................O..O.OO...OO..OOO.
O..........................................OO...OO...OO.....O
.OOOOOOOOOOOOOOOOOOOO......................OO.....OO...OOOOO.
...........................................O............O....
.OOOOOOOOOOOOOOOOOOOOOO.....O.....O.....O..O.O...........OOO.
O.........................OO....OO....OO...O...O.O.......O..O
.OOOOOOOOOOOOOOOOOOOOOOOO.OO.OO.OO.OO.OO.OOOOOOOOO.......OOO.
........................................................O....
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO...OOOOOOO.
O..................................................OO.......O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..OOOOOOOO.
.............................................................
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...........................................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
...O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...
</a></pre></td></tr></table></center>
<p><a name=lightspeedribbon>:</a><b>lightspeed ribbon</b> = <a href="lex_s.htm#superstring">superstring</a>
<p><a name=lightspeedtelegraph>:</a><b>lightspeed telegraph</b> = <a href="lex_t.htm#telegraph">telegraph</a>.
<p><a name=lightspeedwire>:</a><b>lightspeed wire</b> Any <a href="lex_w.htm#wick">wick</a> that can <a href="lex_b.htm#burn">burn</a> non-destructively at the
speed of light. Lightspeed wires are a type of <a href="lex_r.htm#reburnablefuse">reburnable fuse</a>.
These are potentially useful for various things, but so far the
necessary mechanisms are very large and unwieldy. In October 2002,
Jason Summers discovered a lightspeed reaction travelling through an
orthogonal chain of beehives. Summers completed a period-1440
lightspeed <a href="lex_t.htm#telegraph">telegraph</a> based on this reaction in 2003.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O...........................................................$.O...O.........................................................$.O....O....OO.OO...............................................$O......O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO.$O......O..O......O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O$OO.....O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO.$......O....OO.OO...............................................$....O..........................................................$"
>...O...........................................................
.O...O.........................................................
.O....O....OO.OO...............................................
O......O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO.
O......O..O......O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O
OO.....O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO.
......O....OO.OO...............................................
....O..........................................................
</a></pre></td></tr></table></center>
<p>A <a href="lex_s.htm#stable">stable</a> lightspeed <a href="lex_t.htm#transceiver">transceiver</a> mechanism using this same
signal reaction, the <a href="lex_p.htm#p1telegraph">p1 telegraph</a>, was constructed by Adam P.
Goucher in 2010; the bounding boxes of both the <a href="lex_t.htm#transmitter">transmitter</a> and
<a href="lex_r.htm#receiver">receiver</a> are over 5000 cells on a side. A more compact periodic
<a href="lex_h.htm#highbandwidthtelegraph">high-bandwidth telegraph</a> with a much improved transmission rate was
completed by Louis-François Handfield in 2017.
<p>The following diagram shows an older example of a lightspeed wire,
with a small defect that travels along it at the speed of light. As
of June 2018, no method has been found of creating such a defect in
the upstream end of this particular stable wire, or of
non-destructively detecting the arrival of the defect and repairing
the wire at the downstream end.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....$....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....$..........................................................$..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..$.O......O...............................................O.$O.OOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.O$.O.....O................................................O.$..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..$..........................................................$....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....$....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....$"
>....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....
....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....
..........................................................
..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..
.O......O...............................................O.
O.OOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.O
.O.....O................................................O.
..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..
..........................................................
....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....
....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....
</a></pre></td></tr></table></center>
<p><a name=lightweightemulator>:</a><b>lightweight emulator</b> = <a href="#lwemulator">LW emulator</a>
<p><a name=lightweightspaceship>:</a><b>lightweight spaceship</b> = <a href="#lwss">LWSS</a>
<p><a name=lightweightvolcano>:</a><b>lightweight volcano</b> = <a href="lex_t.htm#toaster">toaster</a>
<p><a name=lineargrowth>:</a><b>linear growth</b> A growth rate proportional to T, where T is the number
of ticks that a pattern has been run. Compare <a href="lex_s.htm#superlineargrowth">superlinear growth</a>,
<a href="lex_q.htm#quadraticgrowth">quadratic growth</a>.
<p><a name=linearpropagator>:</a><b>linear propagator</b> A self-replicating pattern in which each copy of a
pattern produces one child that is an exact copy of itself. The
child pattern then blocks the parent from any further replication.
An example was constructed by Dave Greene on 23 November 2013, with a
construction arm using two glider lanes separated by <a href="lex_1.htm#a-9hd">9hd</a>. By some
definitions, due to its limited one-dimensional growth pattern, the
linear propagator is not a true replicator. Compare
<a href="lex_q.htm#quadraticreplicator">quadratic replicator</a>.
<p><a name=linecrosser>:</a><b>line crosser</b> A pattern which is able to send a signal across an
infinite diagonal line of live cells without destroying the line.
David Bell built one in August 2006. It uses many one-shot period
44160 <a href="lex_g.htm#glidergun">glider guns</a> on both sides of the line having the proper
synchronization to create the reactions shown in
<a href="#linecuttingreaction">line-cutting reaction</a> and <a href="#linemendingreaction">line-mending reaction</a>.
<p>An input glider can arrive at any multiple of 44160 generations to
first cut the line, then send a glider through the gap, and finally
mend the line while leaving an output glider on the other side.
<p>A line crosser whose complete mechanism is on one side of the line
is theoretically possible, using <a href="lex_s.htm#singlechannel">single-channel</a> construction
methods for example.
<p><a name=linecuttingreaction>:</a><b>line-cutting reaction</b> A reaction that can cut an infinite diagonal
line of cells, leaving a gap with both ends sealed. Such a reaction
is demonstrated below. In actual use the reaction should be spread
out so that the incoming <a href="#lwss">LWSSes</a> don't conflict. See
<a href="#linemendingreaction">line-mending reaction</a> for a way to mend the gap.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........................OO.................................$............OO...........O..................................$..........OO.OO...........O.................................$..........OOOO.............O................................$...........OO...............O...............................$................OO...........O..............................$...............O.O............O.............................$.................O.............O............................$................................O...........................$.................................O..........................$..................................O.........................$...................................O........................$.......................O............O.......................$......................OOO............O......................$......................O.OO............O.....................$O..O...................OOO.............O....................$....O..................OO...............O...................$O...O....................................O..................$.OOOO.....................................O.................$...........................................O................$............................................O...............$.............................................O..............$...................................OO.........O.............$....................................OO.........O............$...................................O............O...........$.................................................O..........$..................................................O.........$.....................................OOO...........O........$....................................O..O............O.......$.......................................O.............O......$.......................................O..............O.....$....................................O.O................O....$........................................................O...$.........................................................O.O$.......OOO................................................OO$.........O............OO......OOO..........OOOO.............$........O............O.O........O.........O...O.............$.......................O.......O..............O.............$..........................................O..O..............$............................................................$............................................................$............................................................$....................................................OO......$.....................................................OO.....$....................................................O.......$............................................................$........................................................OOO.$........................................................O..O$........................................................O...$........................................................O...$.........................................................O.O$.......................OO...................................$......................O.O...................................$........................O...................................$............................................................$..........................................O.................$.........................................OOO................$.........................................O.OO...............$..........................................OOO...............$..........................................OO................$"
>.........................OO.................................
............OO...........O..................................
..........OO.OO...........O.................................
..........OOOO.............O................................
...........OO...............O...............................
................OO...........O..............................
...............O.O............O.............................
.................O.............O............................
................................O...........................
.................................O..........................
..................................O.........................
...................................O........................
.......................O............O.......................
......................OOO............O......................
......................O.OO............O.....................
O..O...................OOO.............O....................
....O..................OO...............O...................
O...O....................................O..................
.OOOO.....................................O.................
...........................................O................
............................................O...............
.............................................O..............
...................................OO.........O.............
....................................OO.........O............
...................................O............O...........
.................................................O..........
..................................................O.........
.....................................OOO...........O........
....................................O..O............O.......
.......................................O.............O......
.......................................O..............O.....
....................................O.O................O....
........................................................O...
.........................................................O.O
.......OOO................................................OO
.........O............OO......OOO..........OOOO.............
........O............O.O........O.........O...O.............
.......................O.......O..............O.............
..........................................O..O..............
............................................................
............................................................
............................................................
....................................................OO......
.....................................................OO.....
....................................................O.......
............................................................
........................................................OOO.
........................................................O..O
........................................................O...
........................................................O...
.........................................................O.O
.......................OO...................................
......................O.O...................................
........................O...................................
............................................................
..........................................O.................
.........................................OOO................
.........................................O.OO...............
..........................................OOO...............
..........................................OO................
</a></pre></td></tr></table></center>
<p><a name=linemendingreaction>:</a><b>line-mending reaction</b> A reaction which can fully mend a sealed gap in
an infinite diagonal line of cells, such as the one produced by a
<a href="#linecuttingreaction">line-cutting reaction</a>. Such a reaction is demonstrated below. See
the line cutting reaction for a way of creating the gliders
travelling parallel to the line.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO.............................................$...........O..............................................$............O.............................................$...O.O.......O............................................$....OO........O...........................................$....O..........O..........................................$................O...................................O.....$.................O................................OO......$..................O................................OO.....$...................O......................................$....................O.....................................$.....................O.....................O.O............$......................O....................OO.............$.......................O....................O.............$........................O.................................$.........................O................................$..........................O...............O...............$...........................O.............O................$............................O............OOO..............$.............................O............................$............................OO............................$..........................................................$..........................................................$..........................................................$...........................................O.O............$...........................................OO.......O..O..$............................................O......O......$...................................OOO.............O...O..$.....................................O.............OOOO...$....................................O.....................$.......................................OO.................$.......................................O.O................$..........................................O...............$...........................................O..............$...............................OO...........O.............$..............................O.O............O............$................................O.............O.......OO..$.............O..........................OO.....O.....OO...$.............OO.........................O.O.....O......O..$............O.O.....OO..................O........O........$...................O.O............................O.......$.O...................O.............................O......$.OO.....O...........................................O.....$O.O.....OO...........................................O....$.......O.O............................................O...$.......................................................O.O$........................................................OO$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$.................................O........................$................................OOO.......................$...............................OO.O.......................$...............................OOO........................$................................OO........................$"
>...........OO.............................................
...........O..............................................
............O.............................................
...O.O.......O............................................
....OO........O...........................................
....O..........O..........................................
................O...................................O.....
.................O................................OO......
..................O................................OO.....
...................O......................................
....................O.....................................
.....................O.....................O.O............
......................O....................OO.............
.......................O....................O.............
........................O.................................
.........................O................................
..........................O...............O...............
...........................O.............O................
............................O............OOO..............
.............................O............................
............................OO............................
..........................................................
..........................................................
..........................................................
...........................................O.O............
...........................................OO.......O..O..
............................................O......O......
...................................OOO.............O...O..
.....................................O.............OOOO...
....................................O.....................
.......................................OO.................
.......................................O.O................
..........................................O...............
...........................................O..............
...............................OO...........O.............
..............................O.O............O............
................................O.............O.......OO..
.............O..........................OO.....O.....OO...
.............OO.........................O.O.....O......O..
............O.O.....OO..................O........O........
...................O.O............................O.......
.O...................O.............................O......
.OO.....O...........................................O.....
O.O.....OO...........................................O....
.......O.O............................................O...
.......................................................O.O
........................................................OO
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
.................................O........................
................................OOO.......................
...............................OO.O.......................
...............................OOO........................
................................OO........................
</a></pre></td></tr></table></center>
<p>This reaction uses spaceships on both sides of the line which need
to be synchronized to each other, for example by passing a glider
through the gap to trigger the creation of the required spaceships
and gliders.
<p>No simple mechanism is known to mend the gap which lies completely
on one side of the line. However, it is technically possible to use
<a href="lex_c.htm#constructionarm">construction arm</a> <a href="lex_t.htm#technology">technology</a> to push objects through the gap to
build and trigger a <a href="lex_s.htm#seed">seed</a> for the required <a href="lex_s.htm#synchronized">synchronized</a> <a href="lex_s.htm#signal">signals</a>
on the other side.
<p><a name=linepuffer>:</a><b>line puffer</b> A <a href="lex_p.htm#puffer">puffer</a> which produces its output by means of an
orthogonal line of cells at right angles to the direction of travel.
The archetypal line puffer was found by Alan Hensel in March 1994,
based on a <a href="lex_s.htm#spaceship">spaceship</a> found earlier that month by Hartmut Holzwart.
The following month Holzwart found a way to make <a href="lex_e.htm#extensible">extensible</a> <i>c</i>/2
line puffers, and Hensel found a much smaller stabilization the
following day. But in October 1995 Tim Coe discovered that for large
widths these were often unstable, although typically lasting millions
of generations. In May 1996, however, Coe found a way to fix the
instability. The resulting puffers appear to be completely stable
and to exhibit an exponential increase in period as a function of
width, although neither of these things has been proved.
<p>Line puffers have enabled the construction of various difficult
periods for <i>c</i>/2 spaceships and puffers, including occasionally
periods which are not multiples of 4 and which would therefore be
impossible to attain with the usual type of construction based on
<a href="lex_s.htm#standardspaceship">standard spaceships</a>. (See <a href="lex_f.htm#frothingpuffer">frothing puffer</a> for another method of
constructing such periods.) In particular, the first <i>c</i>/2 <a href="lex_r.htm#rake">rake</a> with
period not divisible by 4 was achieved in January 2000 when David
Bell constructed a p42 <a href="lex_b.htm#backrake">backrake</a> by means of line puffers.
<p>See also <a href="lex_h.htm#hivenudger">hivenudger</a> and <a href="lex_p.htm#puffsuppressor">puff suppressor</a>.
<p><a name=lineship>:</a><b>line ship</b> A <a href="lex_s.htm#spaceship">spaceship</a> in which the front end is a <a href="#linestretcher">linestretcher</a>,
the line being eaten by the back end.
<p><a name=linestretcher>:</a><b>linestretcher</b> A <a href="lex_w.htm#wickstretcher">wickstretcher</a> that stretches a single diagonal line
of cells. The first example was constructed by Jason Summers in
March 1999; this was <i>c</i>/12 and used <a href="lex_s.htm#switchengine">switch engine</a> based puffers
found earlier by Dean Hickerson. The first <i>c</i>/4 example was found by
Hartmut Holzwart in November 2004.
<p><a name=loadingdock>:</a><b>loading dock</b> (p3) Found by Dave Buckingham, September 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O....$..OOO....$.O...OO..$O.OO...O.$.O...OO.O$..OO...O.$....OOO..$....O....$"
>....O....
..OOO....
.O...OO..
O.OO...O.
.O...OO.O
..OO...O.
....OOO..
....O....
</a></pre></td></tr></table></center>
<p><a name=loaf>:</a><b>loaf</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO.$O..O$.O.O$..O.$"
>.OO.
O..O
.O.O
..O.
</a></pre></td></tr></table></center>
<p><a name=loafer>:</a><b>loafer</b> (<i>c</i>/7 orthogonally, p7) A small <a href="lex_c.htm#c7spaceship">c/7 spaceship</a> discovered by
Josh Ball on 17 February 2013:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO..O.OO$O..O..OO.$.O.O.....$..O......$........O$......OOO$.....O...$......O..$.......OO$"
>.OO..O.OO
O..O..OO.
.O.O.....
..O......
........O
......OOO
.....O...
......O..
.......OO
</a></pre></td></tr></table></center>
<p>It has a known 8-glider construction recipe, probably not minimal,
discovered on the following day:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................................O$...............................OO.$................................OO$.........O........................$.O........O.......................$..O.....OOO.......................$OOO...............................$..................................$..................................$.....O............................$......O...........................$....OOO...........................$........................O.O.......$.........................OO.......$.........................O........$..................................$...........................O.O....$...........................OO.....$............................O.....$...............................OOO$...............................O..$................................O.$..................................$..................................$..................................$..................................$..................................$..................................$.....OO...........................$......OO..........................$.....O............................$"
>.................................O
...............................OO.
................................OO
.........O........................
.O........O.......................
..O.....OOO.......................
OOO...............................
..................................
..................................
.....O............................
......O...........................
....OOO...........................
........................O.O.......
.........................OO.......
.........................O........
..................................
...........................O.O....
...........................OO.....
............................O.....
...............................OOO
...............................O..
................................O.
..................................
..................................
..................................
..................................
..................................
..................................
.....OO...........................
......OO..........................
.....O............................
</a></pre></td></tr></table></center>
The loafer was therefore the first new glider-constructible spaceship
in almost a decade. (A <a href="lex_g.htm#glidersynthesis">glider synthesis</a> for a 2<i>c</i>/5 ship,
<a href="lex_1.htm#a-60p5h2v0">60P5H2V0</a>, was found in March 2003.)
<p><a name=loaflipflop>:</a><b>loaflipflop</b> (p15) Here four <a href="lex_p.htm#pentadecathlon">pentadecathlons</a> <a href="lex_h.htm#hassle">hassle</a> a <a href="#loaf">loaf</a>.
Found by Robert Wainwright in 1990.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................O.................$...............OOO................$..................................$..................................$...............OOO................$..................................$...............O.O................$...............O.O................$..................................$...............OOO................$..................................$..................................$...............OOO................$................O.................$..................................$.O..O.OO.O..O...............OO....$OO..O....O..OO...OO.......O....O..$.O..O.OO.O..O...O..O.....O......O.$................O.O.....O........O$.................O......O........O$........................O........O$.........................O......O.$..........................O....O..$............................OO....$..................OOO.............$.................O...O............$................O.....O...........$..................................$...............O.......O..........$...............O.......O..........$..................................$................O.....O...........$.................O...O............$..................OOO.............$"
>................O.................
...............OOO................
..................................
..................................
...............OOO................
..................................
...............O.O................
...............O.O................
..................................
...............OOO................
..................................
..................................
...............OOO................
................O.................
..................................
.O..O.OO.O..O...............OO....
OO..O....O..OO...OO.......O....O..
.O..O.OO.O..O...O..O.....O......O.
................O.O.....O........O
.................O......O........O
........................O........O
.........................O......O.
..........................O....O..
............................OO....
..................OOO.............
.................O...O............
................O.....O...........
..................................
...............O.......O..........
...............O.......O..........
..................................
................O.....O...........
.................O...O............
..................OOO.............
</a></pre></td></tr></table></center>
<p><a name=loafonloaf>:</a><b>loaf on loaf</b> = <a href="lex_b.htm#biloaf">bi-loaf</a>
<p><a name=loafpull>:</a><b>loaf pull</b> The following glider/loaf collision, which pulls a loaf
(3,1) toward the glider source:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.....$O.O....$O..O...$.OO....$.......$.......$....OOO$....O..$.....O.$"
>.O.....
O.O....
O..O...
.OO....
.......
.......
....OOO
....O..
.....O.
</a></pre></td></tr></table></center>
<p><a name=loafsiamesebarge>:</a><b>loaf siamese barge</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO.$.O..O$O.O.O$.O.O.$..O..$"
>..OO.
.O..O
O.O.O
.O.O.
..O..
</a></pre></td></tr></table></center>
<p><a name=lobster>:</a><b>lobster</b> (<i>c</i>/7 diagonally, p7) A spaceship discovered by Matthias
Merzenich in August 2011, the first diagonally travelling
<a href="lex_c.htm#c7spaceship">c/7 spaceship</a> to be found. It consists of two <a href="lex_g.htm#glider">gliders</a> pulling a
<a href="lex_t.htm#tagalong">tagalong</a> that then rephases them.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............OOO...........$............O.............$.............O..OO........$................OO........$............OO............$.............OO...........$............O..O..........$..........................$..............O..O........$..............O...O.......$...............OOO.O......$....................O.....$OO..O.O.............O.....$O.O.OO.............O......$O....O..OO.............OO.$......O...O......OO..OO..O$..OO......O......O..O.....$..OO....O.O....OO.........$.........O.....O...O...O..$..........O..O....OO......$...........OO...O.....O.O.$...............O........OO$...............O....O.....$..............O...O.......$..............O.....OO....$...............O.....O....$"
>............OOO...........
............O.............
.............O..OO........
................OO........
............OO............
.............OO...........
............O..O..........
..........................
..............O..O........
..............O...O.......
...............OOO.O......
....................O.....
OO..O.O.............O.....
O.O.OO.............O......
O....O..OO.............OO.
......O...O......OO..OO..O
..OO......O......O..O.....
..OO....O.O....OO.........
.........O.....O...O...O..
..........O..O....OO......
...........OO...O.....O.O.
...............O........OO
...............O....O.....
..............O...O.......
..............O.....OO....
...............O.....O....
</a></pre></td></tr></table></center>
<p><a name=logarithmicgrowth>:</a><b>logarithmic growth</b> A pattern whose <a href="lex_p.htm#population">population</a> or <a href="lex_b.htm#boundingbox">bounding box</a>
grows no faster than logarithmically, asymptotic to <i>n</i>.log(<i>t</i>) for some
constant <i>n</i>. The first such pattern constructed was the
<a href="lex_c.htm#cabertosser">caber tosser</a> whose population is logarithmic, but whose bounding
box still grows linearly. The first pattern whose bounding box and
population both grow logarithmically was constructed by Jason Summers
with Gabriel Nivasch in 2003. For a pattern with a slower growth
rate than this, see <a href="lex_o.htm#osqrtlogt">Osqrtlogt</a>.
<p><a name=lom>:</a><b>LoM</b> = <a href="#lumpsofmuck">lumps of muck</a>
<p><a name=lonedotagar>:</a><b>lone dot agar</b> An <a href="lex_a.htm#agar">agar</a> in which every live cell is isolated in every
generation. There are many different lone dot agars. All of them
are <a href="lex_p.htm#phoenix">phoenixes</a>. In 1995 Dean Hickerson and Alan W. Hensel found
stabilizations for finite patches of ten lone dot agars to create
period 2 oscillators. One of these is shown below:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO..OO..OO..OO..OO..OO..OO..OO....$....O..O.O..O..O.O..O..O.O..O..O.O....$.....O.......O.......O.......O........$........O.......O.......O.......O.....$OO..O.O.....O.O.....O.O.....O.O.....OO$O.O.....O.O.....O.O.....O.O.....O.O..O$....O.......O.......O.......O.......O.$.O.......O.......O.......O.......O....$O..O.O.....O.O.....O.O.....O.O.....O.O$OO.....O.O.....O.O.....O.O.....O.O..OO$.....O.......O.......O.......O........$........O.......O.......O.......O.....$OO..O.O.....O.O.....O.O.....O.O.....OO$O.O.....O.O.....O.O.....O.O.....O.O..O$....O.......O.......O.......O.......O.$.O.......O.......O.......O.......O....$O..O.O.....O.O.....O.O.....O.O.....O.O$OO.....O.O.....O.O.....O.O.....O.O..OO$.....O.......O.......O.......O........$........O.......O.......O.......O.....$OO..O.O.....O.O.....O.O.....O.O.....OO$O.O.....O.O.....O.O.....O.O.....O.O..O$....O.......O.......O.......O.......O.$.O.......O.......O.......O.......O....$O..O.O.....O.O.....O.O.....O.O.....O.O$OO.....O.O.....O.O.....O.O.....O.O..OO$.....O.......O.......O.......O........$........O.......O.......O.......O.....$OO..O.O.....O.O.....O.O.....O.O.....OO$O.O.....O.O.....O.O.....O.O.....O.O..O$....O.......O.......O.......O.......O.$.O.......O.......O.......O.......O....$O..O.O.....O.O.....O.O.....O.O.....O.O$OO.....O.O.....O.O.....O.O.....O.O..OO$.....O.......O.......O.......O........$........O.......O.......O.......O.....$....O.O..O..O.O..O..O.O..O..O.O..O....$....OO..OO..OO..OO..OO..OO..OO..OO....$"
>....OO..OO..OO..OO..OO..OO..OO..OO....
....O..O.O..O..O.O..O..O.O..O..O.O....
.....O.......O.......O.......O........
........O.......O.......O.......O.....
OO..O.O.....O.O.....O.O.....O.O.....OO
O.O.....O.O.....O.O.....O.O.....O.O..O
....O.......O.......O.......O.......O.
.O.......O.......O.......O.......O....
O..O.O.....O.O.....O.O.....O.O.....O.O
OO.....O.O.....O.O.....O.O.....O.O..OO
.....O.......O.......O.......O........
........O.......O.......O.......O.....
OO..O.O.....O.O.....O.O.....O.O.....OO
O.O.....O.O.....O.O.....O.O.....O.O..O
....O.......O.......O.......O.......O.
.O.......O.......O.......O.......O....
O..O.O.....O.O.....O.O.....O.O.....O.O
OO.....O.O.....O.O.....O.O.....O.O..OO
.....O.......O.......O.......O........
........O.......O.......O.......O.....
OO..O.O.....O.O.....O.O.....O.O.....OO
O.O.....O.O.....O.O.....O.O.....O.O..O
....O.......O.......O.......O.......O.
.O.......O.......O.......O.......O....
O..O.O.....O.O.....O.O.....O.O.....O.O
OO.....O.O.....O.O.....O.O.....O.O..OO
.....O.......O.......O.......O........
........O.......O.......O.......O.....
OO..O.O.....O.O.....O.O.....O.O.....OO
O.O.....O.O.....O.O.....O.O.....O.O..O
....O.......O.......O.......O.......O.
.O.......O.......O.......O.......O....
O..O.O.....O.O.....O.O.....O.O.....O.O
OO.....O.O.....O.O.....O.O.....O.O..OO
.....O.......O.......O.......O........
........O.......O.......O.......O.....
....O.O..O..O.O..O..O.O..O..O.O..O....
....OO..OO..OO..OO..OO..OO..OO..OO....
</a></pre></td></tr></table></center>
<p><a name=lonelybee>:</a><b>lonely bee</b> = <a href="lex_w.htm#workerbee">worker bee</a>
<p><a name=long>:</a><b>long</b> A term applied to an object that is of the same basic form as
some standard object, but longer. For examples see <a href="#longbarge">long barge</a>,
<a href="#longboat">long boat</a>, <a href="#longbookend">long bookend</a>, <a href="#longcanoe">long canoe</a>, <a href="#longshillelagh">long shillelagh</a>,
<a href="#longship">long ship</a> and <a href="#longsnake">long snake</a>.
<p><a name=long3>:</a><b>long^3</b> The next degree of longness after <a href="#longlong">long long</a>. Some people
prefer "extra long".
<p><a name=long4>:</a><b>long^4</b> The next degree of longness after <a href="#long3">long^3</a>. Some people
prefer "extra extra long".
<p><a name=longbarge>:</a><b>long barge</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O...$O.O..$.O.O.$..O.O$...O.$"
>.O...
O.O..
.O.O.
..O.O
...O.
</a></pre></td></tr></table></center>
<p><a name=longboat>:</a><b>long boat</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..$O.O.$.O.O$..OO$"
>.O..
O.O.
.O.O
..OO
</a></pre></td></tr></table></center>
A long boat can be used as a 90-degree or 180-degree <a href="lex_o.htm#onetime">one-time</a>
<a href="lex_t.htm#turner">turner</a>.
<p><a name=longbookend>:</a><b>long bookend</b> The following <a href="lex_i.htm#inductioncoil">induction coil</a>, longer than a <a href="lex_b.htm#bookend">bookend</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO$O...O$OOOO.$"
>...OO
O...O
OOOO.
</a></pre></td></tr></table></center>
<p><a name=longcanoe>:</a><b>long canoe</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO$.....O$....O.$...O..$O.O...$OO....$"
>....OO
.....O
....O.
...O..
O.O...
OO....
</a></pre></td></tr></table></center>
<p><a name=longhat>:</a><b>long hat</b> = <a href="#loop">loop</a>
<p><a name=longhook>:</a><b>long hook</b> = <a href="#longbookend">long bookend</a>
<p><a name=longhouse>:</a><b>long house</b> = <a href="lex_d.htm#dock">dock</a>
<p><a name=longintegral>:</a><b>long integral</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO$.O.O$.O..$..O.$O.O.$OO..$"
>..OO
.O.O
.O..
..O.
O.O.
OO..
</a></pre></td></tr></table></center>
<p><a name=longlong>:</a><b>long long</b> The next degree of longness after <a href="#long">long</a>. Some people
prefer "very long".
<p><a name=longlongbarge>:</a><b>long long barge</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O....$O.O...$.O.O..$..O.O.$...O.O$....O.$"
>.O....
O.O...
.O.O..
..O.O.
...O.O
....O.
</a></pre></td></tr></table></center>
<p><a name=longlongboat>:</a><b>long long boat</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O...$O.O..$.O.O.$..O.O$...OO$"
>.O...
O.O..
.O.O.
..O.O
...OO
</a></pre></td></tr></table></center>
<p><a name=longlongcanoe>:</a><b>long long canoe</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO$......O$.....O.$....O..$...O...$O.O....$OO.....$"
>.....OO
......O
.....O.
....O..
...O...
O.O....
OO.....
</a></pre></td></tr></table></center>
<p><a name=longlongship>:</a><b>long long ship</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...$O.O..$.O.O.$..O.O$...OO$"
>OO...
O.O..
.O.O.
..O.O
...OO
</a></pre></td></tr></table></center>
<p><a name=longlongsnake>:</a><b>long long snake</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....$O.O...$...O.O$....OO$"
>OO....
O.O...
...O.O
....OO
</a></pre></td></tr></table></center>
<p><a name=longshillelagh>:</a><b>long shillelagh</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..OO$O..O.O$.OO...$"
>OO..OO
O..O.O
.OO...
</a></pre></td></tr></table></center>
<p><a name=longship>:</a><b>long ship</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..$O.O.$.O.O$..OO$"
>OO..
O.O.
.O.O
..OO
</a></pre></td></tr></table></center>
<p><a name=longsinkingship>:</a><b>long sinking ship</b> = <a href="#longcanoe">long canoe</a>
<p><a name=longsnake>:</a><b>long snake</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...$O.O.O$...OO$"
>OO...
O.O.O
...OO
</a></pre></td></tr></table></center>
<p><a name=loop>:</a><b>loop</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO..$O..O.$.O.O.$OO.OO$"
>.OO..
O..O.
.O.O.
OO.OO
</a></pre></td></tr></table></center>
<p><a name=loopingspaceship>:</a><b>looping spaceship</b> = <a href="lex_r.htm#reflectorlessrotatingoscillator">reflectorless rotating oscillator</a>
<p><a name=losslesselbow>:</a><b>lossless elbow</b> A stationary <a href="lex_e.htm#elbow">elbow</a> in a <a href="lex_c.htm#constructionarm">construction arm</a> <a href="lex_t.htm#toolkit">toolkit</a>
that allows a <a href="lex_r.htm#recipe">recipe</a> to turn a corner with no exponential increase
in construction cost. Compare <a href="lex_s.htm#slowelbow">slow elbow</a>. It is theoretically
possible to construct lossless elbows for early construction arms
such as the one in the <a href="lex_1.htm#a-10hddemonoid">10hd Demonoid</a>, but these would currently
have to be very large.
<p>The lossless elbow that has been used the most in practice is the
<a href="lex_s.htm#snark">Snark</a>, which can be constructed directly on a <a href="lex_s.htm#singlechannel">single-channel</a>
<a href="lex_c.htm#constructionlane">construction lane</a> using a <a href="lex_s.htm#snarkmaker">Snarkmaker</a> <a href="lex_r.htm#recipe">recipe</a>. Controlled
demolition of a Snark is also possible, to remove a temporary elbow
that is no longer needed, and leave a <a href="lex_h.htm#hand">hand</a> target in its place if
necessary for further construction.
<p>A <a href="lex_s.htm#silverreflector">Silver reflector</a> was used as a lossless elbow in the first
<a href="lex_s.htm#spiralgrowth">spiral growth</a> pattern, attached to a separate
<a href="lex_u.htm#universalconstructor">universal constructor</a> component.
<p><a name=lowdensitylife>:</a><b>low-density Life</b> = <a href="lex_s.htm#sparselife">sparse Life</a>
<p><a name=lumpsofmuck>:</a><b>lumps of muck</b> The common evolutionary sequence that ends in the
<a href="lex_b.htm#blockade">blockade</a>. The name is sometimes used of the blockade itself, and
can in general be used of any stage of the evolution of the
<a href="lex_s.htm#stairstephexomino">stairstep hexomino</a>.
<p><a name=lwemulator>:</a><b>LW emulator</b> (p4) The smallest (and least useful) <a href="lex_e.htm#emulator">emulator</a>, found by
Robert Wainwright in June 1980.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO.O..O.OO..$..O........O..$...OO....OO...$OOO..OOOO..OOO$O..O......O..O$.OO........OO.$"
>..OO.O..O.OO..
..O........O..
...OO....OO...
OOO..OOOO..OOO
O..O......O..O
.OO........OO.
</a></pre></td></tr></table></center>
<p><a name=lwss>:</a><b>LWSS</b> (<i>c</i>/2 orthogonally, p4) A lightweight spaceship, the smallest
known orthogonally moving <a href="lex_s.htm#spaceship">spaceship</a>, and the second most common
(after the <a href="lex_g.htm#glider">glider</a>). Found by Conway when one formed from a random
soup in 1970. See also <a href="lex_m.htm#mwss">MWSS</a> and <a href="lex_h.htm#hwss">HWSS</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..O$O....$O...O$OOOO.$"
>.O..O
O....
O...O
OOOO.
</a></pre></td></tr></table></center>
<p>The LWSS possesses a <a href="lex_t.htm#tailspark">tail spark</a> which can easily <a href="lex_p.htm#perturb">perturb</a> other
objects which grow into its path. The spaceship can also perturb
some objects in additional ways. For examples, see <a href="lex_b.htm#blinkership">blinker ship</a>,
<a href="lex_h.htm#hivenudger">hivenudger</a>, and <a href="lex_p.htm#puffertrain">puffer train</a>.
<p>Dave Buckingham found that the LWSS can be synthesized in several
different ways using three gliders, and can be constructed from two
gliders and another small object in several more ways. Here is the
fastest <a href="lex_s.htm#synthesis">synthesis</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.....$O......$OOO....$.....OO$....OO.$......O$.......$..OO...$...OO..$..O....$"
>.O.....
O......
OOO....
.....OO
....OO.
......O
.......
..OO...
...OO..
..O....
</a></pre></td></tr></table></center>
<p><a name=lwssemulator>:</a><b>LWSS emulator</b> = <a href="#lwemulator">LW emulator</a>
<p><a name=lwssgliderbounce>:</a><b>LWSS-glider bounce</b> The following reaction in which a <a href="#lwss">LWSS</a> and a
<a href="lex_g.htm#glider">glider</a> collide to form a glider heading back between the two input
paths:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOOO........$O...O........$....O.....OOO$O..O......O..$...........O.$"
>.OOOO........
O...O........
....O.....OOO
O..O......O..
...........O.
</a></pre></td></tr></table></center>
This is one way to <a href="lex_i.htm#inject">inject</a> a glider into a existing glider stream.
The <a href="lex_i.htm#infinitegliderhotel">infinite glider hotel</a> uses this reaction.
<p><a name=lwsslwssbounce>:</a><b>LWSS-LWSS bounce</b> The following <a href="lex_s.htm#symmetric">symmetric</a> reaction in which two
<a href="#lwss">LWSSs</a> collide head-on to form two <a href="lex_g.htm#glider">gliders</a> heading apart at 90
degrees from each other. Compare <a href="#lwsslwssdeflection">LWSS-LWSS deflection</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..O.......O..O$....O.....O....$O...O.....O...O$.OOOO.....OOOO.$"
>O..O.......O..O
....O.....O....
O...O.....O...O
.OOOO.....OOOO.
</a></pre></td></tr></table></center>
This provides one way to <a href="lex_i.htm#inject">inject</a> a <a href="lex_g.htm#glider">glider</a> into a existing glider
stream. Another use is described in <a href="lex_m.htm#metamorphosis">metamorphosis</a>.
<p><a name=lwsslwssdeflection>:</a><b>LWSS-LWSS deflection</b> The following symmetric reaction in which two
LWSSs collide nearly head-on to form two gliders heading apart at 180
degrees from each other. Compare <a href="#lwsslwssbounce">LWSS-LWSS bounce</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O..O$........O....$........O...O$........OOOO.$.............$.OOOO........$O...O........$....O........$O..O.........$"
>.........O..O
........O....
........O...O
........OOOO.
.............
.OOOO........
O...O........
....O........
O..O.........
</a></pre></td></tr></table></center>
<p><a name=lwsstog>:</a><b>LWSS-to-G</b> See <a href="lex_1.htm#a-135degreemwsstog">135-degree MWSS-to-G</a>.
<p><a name=lwtds>:</a><b>LWTDS</b> Life Worker Time Deficiency Syndrome. Term coined by Dieter
Leithner to describe the problem of having to divide scarce time
between Life and real life.
<p><a name=lwvolcano>:</a><b>LW volcano</b> = <a href="lex_t.htm#toaster">toaster</a>
<p><a name=lx200>:</a><b>Lx200</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in June 1997. It is
made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HL141B + <a href="lex_b.htm#bfx59h">BFx59H</a>. The Lx200
and <a href="lex_f.htm#f166">F166</a> conduits are the two original <a href="lex_d.htm#dependentconduit">dependent conduits</a>
(several more have since been discovered.) After 200 ticks, it
produces an inverted <a href="lex_h.htm#herschel">Herschel</a> turned 90 degrees counterclockwise at
(17, -40) relative to the input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 90 ticks.
It can be made <a href="lex_s.htm#spartan">Spartan</a> by replacing the <a href="lex_s.htm#snake">snakes</a> with <a href="lex_e.htm#eater1">eater1s</a> in
one of two orientations. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below
marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................OO.............$......................O.............$......................OOO...........$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$.......................OO...........$.......................OO...........$....................................$..............................O.OO..$..............................OO.O..$....................................$....................................$..............O.OO..................$..............OO.O..................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$................................OO..$................................O.O.$.OO...............................O.$OOO.OO............................OO$.OO.OOO.OO..........................$OOO.OO..OO..........................$OO..................................$....................................$....................................$....................................$................................OO..$................................OO..$....................................$......OO............................$.......O............................$....OOO.........................OO..$....O...........................OO..$..................OO................$.................O.O................$.................O..................$................OO........OO........$..........................O.........$...........................OOO......$.............................O......$"
>.....................OO.............
......................O.............
......................OOO...........
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
.......................OO...........
.......................OO...........
....................................
..............................O.OO..
..............................OO.O..
....................................
....................................
..............O.OO..................
..............OO.O..................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
................................OO..
................................O.O.
.OO...............................O.
OOO.OO............................OO
.OO.OOO.OO..........................
OOO.OO..OO..........................
OO..................................
....................................
....................................
....................................
................................OO..
................................OO..
....................................
......OO............................
.......O............................
....OOO.........................OO..
....O...........................OO..
..................OO................
.................O.O................
.................O..................
................OO........OO........
..........................O.........
...........................OOO......
.............................O......
</a></pre></td></tr></table></center>
The input shown here is a <a href="lex_h.htm#herschelgreatgrandparent">Herschel great-grandparent</a>, since the
input reaction is catalysed by the <a href="lex_t.htm#transparent">transparent</a> block before the
Herschel's standard form can appear.
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
</body>
|