File: lex_l.htm

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (1207 lines) | stat: -rwxr-xr-x 84,547 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (L)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">

<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
<p><a name=l112>:</a><b>L112</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in July 1996. It
is made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HLx53B + <a href="lex_b.htm#bfx59h">BFx59H</a>. After
112 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> turned 90 degrees
counterclockwise at (12, -33) relative to the input. Its
<a href="lex_r.htm#recoverytime">recovery time</a> is 61 ticks; this can be reduced slightly by removing
the output glider, either with a specialized eater (as in the
original <a href="lex_t.htm#true">true</a> p59 gun), or with a <a href="lex_s.htm#sparker">sparker</a> as in most of the
<a href="lex_q.htm#quetzal">Quetzal</a> guns. It can be made <a href="lex_s.htm#spartan">Spartan</a> by replacing the
<a href="lex_a.htm#aircraftcarrier">aircraft carrier</a> with an <a href="lex_e.htm#eater1">eater1</a>. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the
pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............OO.......$...............O........$.............OOO........$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$........................$.............OO.........$.............OO.........$....OO..................$....O..O................$OO....OO................$.O....................OO$.O.O..................O.$..OO................O.O.$....................OO..$........................$........................$........................$........................$........................$..O.....................$..O.O...................$..OOO...................$....O...................$........................$..............OO........$..............OO..OO....$..................O.O...$....................O...$....................OO..$"
>...............OO.......
...............O........
.............OOO........
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
........................
.............OO.........
.............OO.........
....OO..................
....O..O................
OO....OO................
.O....................OO
.O.O..................O.
..OO................O.O.
....................OO..
........................
........................
........................
........................
........................
..O.....................
..O.O...................
..OOO...................
....O...................
........................
..............OO........
..............OO..OO....
..................O.O...
....................O...
....................OO..
</a></pre></td></tr></table></center>
<p><a name=l156>:</a><b>L156</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in August 1996.
It is made up of three <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HLx69R + <a href="lex_r.htm#rf28b">RF28B</a> +
<a href="lex_b.htm#bfx59h">BFx59H</a>. After 156 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> turned 90
degrees counterclockwise at (17, -41) relative to the input. Its
<a href="lex_r.htm#recoverytime">recovery time</a> is 62 ticks. It can be made <a href="lex_s.htm#spartan">Spartan</a> by replacing
the <a href="lex_s.htm#snake">snake</a> with an <a href="lex_e.htm#eater1">eater1</a> in one of two orientations. Additional
gliders can be produced by removing the southeasternmost eater, or by
replacing the RF28B elementary conduit by an alternate version. A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...................OO........$...................O.........$.................OOO.........$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.............................$.................OO..........$.................OO..........$.............................$........OO.O.................$........O.OO.................$..........................OO.$..........................O..$........................O.O..$........................OO...$.............................$.........O...................$.........OOO.................$O...........O................$OOO........OO..............O.$...O......................O.O$..OO.......................O.$.............................$.............................$.............................$.............................$.............................$.............................$.O....................OO.....$.O.O..................O.O....$.OOO....................O....$...O...........OO.......OO...$...............O.............$................OOO..........$..................O..........$"
>...................OO........
...................O.........
.................OOO.........
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.............................
.................OO..........
.................OO..........
.............................
........OO.O.................
........O.OO.................
..........................OO.
..........................O..
........................O.O..
........................OO...
.............................
.........O...................
.........OOO.................
O...........O................
OOO........OO..............O.
...O......................O.O
..OO.......................O.
.............................
.............................
.............................
.............................
.............................
.............................
.O....................OO.....
.O.O..................O.O....
.OOO....................O....
...O...........OO.......OO...
...............O.............
................OOO..........
..................O..........
</a></pre></td></tr></table></center>
<p><a name=lake>:</a><b>lake</b> (p1) Any still life consisting of a simple closed curve made
from diagonally connected <a href="lex_d.htm#domino">dominoes</a>. The smallest example is the
<a href="lex_p.htm#pond">pond</a>, and the next smallest is this (to which the term is sometimes
restricted):
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO....$...O..O...$...O..O...$.OO....OO.$O........O$O........O$.OO....OO.$...O..O...$...O..O...$....OO....$"
>....OO....
...O..O...
...O..O...
.OO....OO.
O........O
O........O
.OO....OO.
...O..O...
...O..O...
....OO....
</a></pre></td></tr></table></center>
<p><a name=lane>:</a><b>lane</b> A path traveled by a glider, or less commonly a spaceship such
as a loafer. The lane is centered on the line of symmetry (if any)
of the spaceship in question. If a lane is clear, then the spaceship
can travel along it without colliding or interfering with any other
objects.
<p>Diagonal lanes are often numbered consecutively, in half-diagonals
(<a href="lex_h.htm#hd">hd</a>). Occasionally diagonal lane measurements are given in
quarter-diagonals (<a href="lex_q.htm#qd">qd</a>), in part because diagonally symmetric
spaceships have a line of symmetry 1qd away from the lines available
for gliders. It's also convenient that moving a glider forward by
100qd (for example) has the same effect as evolving the same glider
for 100 ticks.
<p><a name=laputa>:</a><b>Laputa</b> (p2) Found by Rich Schroeppel, September 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO.OO....$...OO.O...OO$........O..O$.OOOOOO.OOO.$O..O.O......$OO...O.OO...$....OO.OO...$"
>...OO.OO....
...OO.O...OO
........O..O
.OOOOOO.OOO.
O..O.O......
OO...O.OO...
....OO.OO...
</a></pre></td></tr></table></center>
<p><a name=largeprimeoscillator>:</a><b>large prime oscillator</b> Any oscillator with a relatively small
<a href="lex_b.htm#boundingbox">bounding box</a> whose period is a very large prime. (If the
bounding-box restriction is removed, then eight gliders travelling in
a four-<a href="lex_s.htm#snark">Snark</a> loop would provide a trivial example for any chosen
prime.) The first such oscillator was built by Gabriel Nivasch in
2003. The current record holder is an oscillator constructed by Adam
P. Goucher with a period that is a Mersenne prime with 13,395 digits
(2<sup>44497</sup>-1).
<p>The next higher Mersenne-prime oscillator, period 2<sup>86243</sup>-1, could
be constructed with <a href="lex_q.htm#quadrisnark">quadri-Snarks</a> and <a href="lex_s.htm#semisnark">semi-Snarks</a>. It would
actually be significantly smaller than the current record holder. As
of June 2018 the construction of this pattern has not yet been
completed.
<p><a name=larges>:</a><b>large S</b> = <a href="lex_b.htm#bigs">big S</a>
<p><a name=lidka>:</a><b>Lidka</b> (stabilizes at time 29053) A <a href="lex_m.htm#methuselah">methuselah</a> found by Andrzej
Okrasinski in July 2005.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OOO..$..........O....$..........O...O$...........O..O$............OOO$...............$.O.............$O.O............$.O.............$"
>..........OOO..
..........O....
..........O...O
...........O..O
............OOO
...............
.O.............
O.O............
.O.............
</a></pre></td></tr></table></center>
The following variant, pointed out by David Bell, has two fewer cells
and lasts two generations longer.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OOO..$...............$...........OO.O$............O.O$..............O$...............$.O.............$O.O............$.O.............$"
>..........OOO..
...............
...........OO.O
............O.O
..............O
...............
.O.............
O.O............
.O.............
</a></pre></td></tr></table></center>
<p><a name=life>:</a><b>Life</b> A 2-dimensional 2-state <a href="lex_c.htm#cellularautomaton">cellular automaton</a> discovered by John
Conway in 1970. The states are referred to as ON and OFF (or live
and dead). The transition rule is as follows: a cell that is ON will
remain ON in the next generation if and only if exactly 2 or 3 of the
8 adjacent cells are also ON, and a cell that is OFF will turn ON if
and only if exactly 3 of the 8 adjacent cells are ON. (This is more
succinctly stated as: "If 2 of your 8 nearest neighbours are ON,
don't change. If 3 are ON, turn ON. Otherwise, turn OFF.")
<p><a name=life32>:</a><b>Life32</b> A freeware Life program by Johan Bontes for Microsoft Windows
95/98/ME/NT/2000/XP: <a href="https://github.com/JBontes/Life32/">https://github.com/JBontes/Life32/</a>.
<p><a name=lifehistory>:</a><b>LifeHistory</b> A multistate CA rule supported by <a href="lex_g.htm#golly">Golly</a>, equivalent to
two-state B3/S23 Life but with several additional states intended for
annotation purposes. A "history" state records whether an off cell
has ever turned on in the past, and other states allow on and off
cells to be permanently or temporarily marked, without affecting the
<a href="lex_e.htm#evolution">evolution</a> of the pattern.
<p><a name=lifelab>:</a><b>LifeLab</b> A shareware Life program by Andrew Trevorrow for the
Macintosh (MacOS 8.6 or later): <a href="http://www.trevorrow.com/lifelab/">http://www.trevorrow.com/lifelab/</a>.
<p><a name=lifeline>:</a><b>LifeLine</b> A newsletter edited by Robert Wainwright from 1971 to 1973.
During this period it was the main forum for discussions about Life.
The newsletter was nominally quarterly, but the actual dates of its
eleven issues were as follows:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><font size=-1>
Mar, Jun, Sep, Dec 1971
Sep, Oct, Nov, Dec 1972
Mar, Jun, Sep 1973
</font></pre></td></tr></table></center>
<p><a name=lifenthusiast>:</a><b>Lifenthusiast</b> A Life enthusiast. Term coined by Robert Wainwright.
<p><a name=lifesrc>:</a><b>lifesrc</b> David Bell's Life <a href="lex_s.htm#searchprogram">search program</a> for finding new
<a href="lex_s.htm#spaceship">spaceships</a> and <a href="lex_o.htm#oscillator">oscillators</a>. This is a C implementation of an
algorithm developed by Dean Hickerson in 6502 assembler.
<p>Although lifesrc itself is a command-line program, Jason Summers
has made a GUI version called <a href="lex_w.htm#winlifesearch">WinLifeSearch</a> for Microsoft Windows.
A Java version, <a href="lex_j.htm#javalifesearch">JavaLifeSearch</a>, was written in November 2012 by
Karel Suhajda.
<p>The lifesrc algorithm is only useful for very small periods, as the
amount of computing power required rises rapidly with increasing
period. For most purposes, period 7 is the practical limit with
current hardware.
<p>Lifesrc is available from <a href="http://tip.net.au/~dbell/">http://tip.net.au/~dbell/</a> (source code
only). Compare <a href="lex_g.htm#gfind">gfind</a>.
<p><a name=lifeviewer>:</a><b>LifeViewer</b> A scriptable Javascript Life pattern viewer written by
Chris Rowett, used primarily on the conwaylife.com discussion forums.
<p><a name=lightbulb>:</a><b>light bulb</b> (p2) Found in 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO.O..$.O.OO..$.......$..OOO..$.O...O.$.O...O.$..O.O..$O.O.O.O$OO...OO$"
>.OO.O..
.O.OO..
.......
..OOO..
.O...O.
.O...O.
..O.O..
O.O.O.O
OO...OO
</a></pre></td></tr></table></center>
The same <a href="lex_r.htm#rotor">rotor</a> can be embedded in a slightly smaller <a href="lex_s.htm#stator">stator</a> like
this:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O.....$.OOO.....$O........$OOOOOO...$......O..$..O...O..$..OO.O...$......OOO$........O$"
>...O.....
.OOO.....
O........
OOOOOO...
......O..
..O...O..
..OO.O...
......OOO
........O
</a></pre></td></tr></table></center>
<p><a name=lightspeedbubble>:</a><b>lightspeed bubble</b> A type of <a href="lex_n.htm#negativespaceship">negative spaceship</a> travelling through
the <a href="lex_z.htm#zebrastripes">zebra stripes</a> agar. The center of the bubble is simple empty
space, and the length and/or width of the bubble can usually be
extended to any desired size.
<p>Below is a small stabilized section of agar containing a sample
lightspeed bubble, found by Gabriel Nivasch in August 1999. The
bubble travels to the left at the <a href="lex_s.htm#speedoflight">speed of light</a>, so it will
eventually reach the edge of any finite patch and destroy itself and
its supporting agar.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.............................................................O$.OOOOOOOOOOOOO..OOO..OOO..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O..............OO...OO...OO........O..........................$.OOOOOOOOOOOOO...OO...OO...O.OO.O....OOOOOOOOOOOOOOOOOOOOOOOO.$.............................OO.....O........................O$.OOOOOOOOOOOOO.................OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...............................O.............................$.OOOOOOOOOOOOO...................OOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.................................O....O......................O$.OOOOOOOOOOOOO...................OO....OOOOOOOOOOOOOOOOOOOOOO.$O................................O.....O....O.................$.OOOOOOOOOOOOO...................OO....OO....OOOOOOOOOOOOOOOO.$.................................O.....O.....O....O..........O$.OOOOOOOOOOOOO...................OO....OO....OO....OOOOOOOOOO.$O................................O.....O.....O.....O....O.....$.OOOOOOOOOOOOO...................OO....OO....OO....OO....OOOO.$.................................O.....O.....O.....O.....O...O$.OOOOOOOOOOOOO...................OO....OO....OO....OO....OOOO.$O................................O.....O.....O.....O....O.....$.OOOOOOOOOOOOO...................OO....OO....OO....OOOOOOOOOO.$.................................O.....O.....O....O..........O$.OOOOOOOOOOOOO...................OO....OO....OOOOOOOOOOOOOOOO.$O................................O.....O....O.................$.OOOOOOOOOOOOO...................OO....OOOOOOOOOOOOOOOOOOOOOO.$.................................O....O......................O$.OOOOOOOOOOOOO...................OOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...............................O.............................$.OOOOOOOOOOOOO.................OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.............................OO.....O........................O$.OOOOOOOOOOOOO...OO...OO...O.OO.O....OOOOOOOOOOOOOOOOOOOOOOOO.$O..............OO...OO...OO........O..........................$.OOOOOOOOOOOOO..OOO..OOO..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.............................................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...$"
>.O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.............................................................O
.OOOOOOOOOOOOO..OOO..OOO..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O..............OO...OO...OO........O..........................
.OOOOOOOOOOOOO...OO...OO...O.OO.O....OOOOOOOOOOOOOOOOOOOOOOOO.
.............................OO.....O........................O
.OOOOOOOOOOOOO.................OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...............................O.............................
.OOOOOOOOOOOOO...................OOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.................................O....O......................O
.OOOOOOOOOOOOO...................OO....OOOOOOOOOOOOOOOOOOOOOO.
O................................O.....O....O.................
.OOOOOOOOOOOOO...................OO....OO....OOOOOOOOOOOOOOOO.
.................................O.....O.....O....O..........O
.OOOOOOOOOOOOO...................OO....OO....OO....OOOOOOOOOO.
O................................O.....O.....O.....O....O.....
.OOOOOOOOOOOOO...................OO....OO....OO....OO....OOOO.
.................................O.....O.....O.....O.....O...O
.OOOOOOOOOOOOO...................OO....OO....OO....OO....OOOO.
O................................O.....O.....O.....O....O.....
.OOOOOOOOOOOOO...................OO....OO....OO....OOOOOOOOOO.
.................................O.....O.....O....O..........O
.OOOOOOOOOOOOO...................OO....OO....OOOOOOOOOOOOOOOO.
O................................O.....O....O.................
.OOOOOOOOOOOOO...................OO....OOOOOOOOOOOOOOOOOOOOOO.
.................................O....O......................O
.OOOOOOOOOOOOO...................OOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...............................O.............................
.OOOOOOOOOOOOO.................OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.............................OO.....O........................O
.OOOOOOOOOOOOO...OO...OO...O.OO.O....OOOOOOOOOOOOOOOOOOOOOOOO.
O..............OO...OO...OO........O..........................
.OOOOOOOOOOOOO..OOO..OOO..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.............................................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...
</a></pre></td></tr></table></center>
<p>An open problem related to lightspeed bubbles was whether large
extensible empty areas could be created whose length was not
proportional to the width (as it must be in the above case, due to
the tapering back edge). This was solved in February 2017 by Arie
Paap; a simple period-2 solution is shown below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...........................................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$.............................................................$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O.....................................................O.....O$.OOOOOOOOOOOOOOOOOOOO..OOO..OOO..OOO..OOOOOOOO..OOOO...OOOOO.$......................OO...OO...OO...OO........OO.....O......$.OOOOOOOOOOOOOOOOOOOO...OO...OO...OO...OOOOOOO...O.OO..OOOOO.$O.........................................O........OO.......O$.OOOOOOOOOOOOOOOOOOOO......................OO.O......OOOOOOO.$...........................................O............O....$.OOOOOOOOOOOOOOOOOOOO......................O.............OOO.$O..........................................OO.....OO....O...O$.OOOOOOOOOOOOOOOOOOOO......................OO...OO...O.OOOOO.$...........................................O..O.OO...O.......$.OOOOOOOOOOOOOOOOOOOO......................O......OO...OOOOO.$O..........................................OO..........O....O$.OOOOOOOOOOOOOOOOOOOO......................OO..........OOOOO.$...........................................O......OO.O.......$.OOOOOOOOOOOOOOOOOOOO......................O..O.OO...O.OOOOO.$O..........................................OO...OO......O...O$.OOOOOOOOOOOOOOOOOOOO......................OO.....OO.....OOO.$...........................................O............O....$.OOOOOOOOOOOOOOOOOOOO......................O...........OOOOO.$O..........................................OO.....OO.OO.....O$.OOOOOOOOOOOOOOOOOOOO......................OO...OO...OO..OOO.$...........................................O..O.OO.....OO....$.OOOOOOOOOOOOOOOOOOOO......................O......OO....OOOO.$O..........................................OO...............O$.OOOOOOOOOOOOOOOOOOOO......................OO...........OOOO.$...........................................O......OO...OO....$.OOOOOOOOOOOOOOOOOOOO......................O..O.OO...OO..OOO.$O..........................................OO...OO...OO.....O$.OOOOOOOOOOOOOOOOOOOO......................OO.....OO...OOOOO.$...........................................O............O....$.OOOOOOOOOOOOOOOOOOOOOO.....O.....O.....O..O.O...........OOO.$O.........................OO....OO....OO...O...O.O.......O..O$.OOOOOOOOOOOOOOOOOOOOOOOO.OO.OO.OO.OO.OO.OOOOOOOOO.......OOO.$........................................................O....$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO...OOOOOOO.$O..................................................OO.......O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..OOOOOOOO.$.............................................................$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$O...........................................................O$.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.$...O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...$"
>...O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...........................................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
.............................................................
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O.....................................................O.....O
.OOOOOOOOOOOOOOOOOOOO..OOO..OOO..OOO..OOOOOOOO..OOOO...OOOOO.
......................OO...OO...OO...OO........OO.....O......
.OOOOOOOOOOOOOOOOOOOO...OO...OO...OO...OOOOOOO...O.OO..OOOOO.
O.........................................O........OO.......O
.OOOOOOOOOOOOOOOOOOOO......................OO.O......OOOOOOO.
...........................................O............O....
.OOOOOOOOOOOOOOOOOOOO......................O.............OOO.
O..........................................OO.....OO....O...O
.OOOOOOOOOOOOOOOOOOOO......................OO...OO...O.OOOOO.
...........................................O..O.OO...O.......
.OOOOOOOOOOOOOOOOOOOO......................O......OO...OOOOO.
O..........................................OO..........O....O
.OOOOOOOOOOOOOOOOOOOO......................OO..........OOOOO.
...........................................O......OO.O.......
.OOOOOOOOOOOOOOOOOOOO......................O..O.OO...O.OOOOO.
O..........................................OO...OO......O...O
.OOOOOOOOOOOOOOOOOOOO......................OO.....OO.....OOO.
...........................................O............O....
.OOOOOOOOOOOOOOOOOOOO......................O...........OOOOO.
O..........................................OO.....OO.OO.....O
.OOOOOOOOOOOOOOOOOOOO......................OO...OO...OO..OOO.
...........................................O..O.OO.....OO....
.OOOOOOOOOOOOOOOOOOOO......................O......OO....OOOO.
O..........................................OO...............O
.OOOOOOOOOOOOOOOOOOOO......................OO...........OOOO.
...........................................O......OO...OO....
.OOOOOOOOOOOOOOOOOOOO......................O..O.OO...OO..OOO.
O..........................................OO...OO...OO.....O
.OOOOOOOOOOOOOOOOOOOO......................OO.....OO...OOOOO.
...........................................O............O....
.OOOOOOOOOOOOOOOOOOOOOO.....O.....O.....O..O.O...........OOO.
O.........................OO....OO....OO...O...O.O.......O..O
.OOOOOOOOOOOOOOOOOOOOOOOO.OO.OO.OO.OO.OO.OOOOOOOOO.......OOO.
........................................................O....
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO...OOOOOOO.
O..................................................OO.......O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..OOOOOOOO.
.............................................................
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
O...........................................................O
.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.
...O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O..O...
</a></pre></td></tr></table></center>
<p><a name=lightspeedribbon>:</a><b>lightspeed ribbon</b> = <a href="lex_s.htm#superstring">superstring</a>
<p><a name=lightspeedtelegraph>:</a><b>lightspeed telegraph</b> = <a href="lex_t.htm#telegraph">telegraph</a>.
<p><a name=lightspeedwire>:</a><b>lightspeed wire</b> Any <a href="lex_w.htm#wick">wick</a> that can <a href="lex_b.htm#burn">burn</a> non-destructively at the
speed of light. Lightspeed wires are a type of <a href="lex_r.htm#reburnablefuse">reburnable fuse</a>.
These are potentially useful for various things, but so far the
necessary mechanisms are very large and unwieldy. In October 2002,
Jason Summers discovered a lightspeed reaction travelling through an
orthogonal chain of beehives. Summers completed a period-1440
lightspeed <a href="lex_t.htm#telegraph">telegraph</a> based on this reaction in 2003.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O...........................................................$.O...O.........................................................$.O....O....OO.OO...............................................$O......O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO.$O......O..O......O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O$OO.....O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO.$......O....OO.OO...............................................$....O..........................................................$"
>...O...........................................................
.O...O.........................................................
.O....O....OO.OO...............................................
O......O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO.
O......O..O......O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O.O..O
OO.....O...OOOOOO...OO...OO...OO...OO...OO...OO...OO...OO...OO.
......O....OO.OO...............................................
....O..........................................................
</a></pre></td></tr></table></center>
<p>A <a href="lex_s.htm#stable">stable</a> lightspeed <a href="lex_t.htm#transceiver">transceiver</a> mechanism using this same
signal reaction, the <a href="lex_p.htm#p1telegraph">p1 telegraph</a>, was constructed by Adam P.
Goucher in 2010; the bounding boxes of both the <a href="lex_t.htm#transmitter">transmitter</a> and
<a href="lex_r.htm#receiver">receiver</a> are over 5000 cells on a side. A more compact periodic
<a href="lex_h.htm#highbandwidthtelegraph">high-bandwidth telegraph</a> with a much improved transmission rate was
completed by Louis-Fran&ccedil;ois Handfield in 2017.
<p>The following diagram shows an older example of a lightspeed wire,
with a small defect that travels along it at the speed of light. As
of June 2018, no method has been found of creating such a defect in
the upstream end of this particular stable wire, or of
non-destructively detecting the arrival of the defect and repairing
the wire at the downstream end.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....$....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....$..........................................................$..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..$.O......O...............................................O.$O.OOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.O$.O.....O................................................O.$..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..$..........................................................$....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....$....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....$"
>....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....
....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....
..........................................................
..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..
.O......O...............................................O.
O.OOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.O
.O.....O................................................O.
..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..
..........................................................
....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....
....OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO..OO....
</a></pre></td></tr></table></center>
<p><a name=lightweightemulator>:</a><b>lightweight emulator</b> = <a href="#lwemulator">LW emulator</a>
<p><a name=lightweightspaceship>:</a><b>lightweight spaceship</b> = <a href="#lwss">LWSS</a>
<p><a name=lightweightvolcano>:</a><b>lightweight volcano</b> = <a href="lex_t.htm#toaster">toaster</a>
<p><a name=lineargrowth>:</a><b>linear growth</b> A growth rate proportional to T, where T is the number
of ticks that a pattern has been run. Compare <a href="lex_s.htm#superlineargrowth">superlinear growth</a>,
<a href="lex_q.htm#quadraticgrowth">quadratic growth</a>.
<p><a name=linearpropagator>:</a><b>linear propagator</b> A self-replicating pattern in which each copy of a
pattern produces one child that is an exact copy of itself. The
child pattern then blocks the parent from any further replication.
An example was constructed by Dave Greene on 23 November 2013, with a
construction arm using two glider lanes separated by <a href="lex_1.htm#a-9hd">9hd</a>. By some
definitions, due to its limited one-dimensional growth pattern, the
linear propagator is not a true replicator. Compare
<a href="lex_q.htm#quadraticreplicator">quadratic replicator</a>.
<p><a name=linecrosser>:</a><b>line crosser</b> A pattern which is able to send a signal across an
infinite diagonal line of live cells without destroying the line.
David Bell built one in August 2006. It uses many one-shot period
44160 <a href="lex_g.htm#glidergun">glider guns</a> on both sides of the line having the proper
synchronization to create the reactions shown in
<a href="#linecuttingreaction">line-cutting reaction</a> and <a href="#linemendingreaction">line-mending reaction</a>.
<p>An input glider can arrive at any multiple of 44160 generations to
first cut the line, then send a glider through the gap, and finally
mend the line while leaving an output glider on the other side.
<p>A line crosser whose complete mechanism is on one side of the line
is theoretically possible, using <a href="lex_s.htm#singlechannel">single-channel</a> construction
methods for example.
<p><a name=linecuttingreaction>:</a><b>line-cutting reaction</b> A reaction that can cut an infinite diagonal
line of cells, leaving a gap with both ends sealed. Such a reaction
is demonstrated below. In actual use the reaction should be spread
out so that the incoming <a href="#lwss">LWSSes</a> don't conflict. See
<a href="#linemendingreaction">line-mending reaction</a> for a way to mend the gap.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........................OO.................................$............OO...........O..................................$..........OO.OO...........O.................................$..........OOOO.............O................................$...........OO...............O...............................$................OO...........O..............................$...............O.O............O.............................$.................O.............O............................$................................O...........................$.................................O..........................$..................................O.........................$...................................O........................$.......................O............O.......................$......................OOO............O......................$......................O.OO............O.....................$O..O...................OOO.............O....................$....O..................OO...............O...................$O...O....................................O..................$.OOOO.....................................O.................$...........................................O................$............................................O...............$.............................................O..............$...................................OO.........O.............$....................................OO.........O............$...................................O............O...........$.................................................O..........$..................................................O.........$.....................................OOO...........O........$....................................O..O............O.......$.......................................O.............O......$.......................................O..............O.....$....................................O.O................O....$........................................................O...$.........................................................O.O$.......OOO................................................OO$.........O............OO......OOO..........OOOO.............$........O............O.O........O.........O...O.............$.......................O.......O..............O.............$..........................................O..O..............$............................................................$............................................................$............................................................$....................................................OO......$.....................................................OO.....$....................................................O.......$............................................................$........................................................OOO.$........................................................O..O$........................................................O...$........................................................O...$.........................................................O.O$.......................OO...................................$......................O.O...................................$........................O...................................$............................................................$..........................................O.................$.........................................OOO................$.........................................O.OO...............$..........................................OOO...............$..........................................OO................$"
>.........................OO.................................
............OO...........O..................................
..........OO.OO...........O.................................
..........OOOO.............O................................
...........OO...............O...............................
................OO...........O..............................
...............O.O............O.............................
.................O.............O............................
................................O...........................
.................................O..........................
..................................O.........................
...................................O........................
.......................O............O.......................
......................OOO............O......................
......................O.OO............O.....................
O..O...................OOO.............O....................
....O..................OO...............O...................
O...O....................................O..................
.OOOO.....................................O.................
...........................................O................
............................................O...............
.............................................O..............
...................................OO.........O.............
....................................OO.........O............
...................................O............O...........
.................................................O..........
..................................................O.........
.....................................OOO...........O........
....................................O..O............O.......
.......................................O.............O......
.......................................O..............O.....
....................................O.O................O....
........................................................O...
.........................................................O.O
.......OOO................................................OO
.........O............OO......OOO..........OOOO.............
........O............O.O........O.........O...O.............
.......................O.......O..............O.............
..........................................O..O..............
............................................................
............................................................
............................................................
....................................................OO......
.....................................................OO.....
....................................................O.......
............................................................
........................................................OOO.
........................................................O..O
........................................................O...
........................................................O...
.........................................................O.O
.......................OO...................................
......................O.O...................................
........................O...................................
............................................................
..........................................O.................
.........................................OOO................
.........................................O.OO...............
..........................................OOO...............
..........................................OO................
</a></pre></td></tr></table></center>
<p><a name=linemendingreaction>:</a><b>line-mending reaction</b> A reaction which can fully mend a sealed gap in
an infinite diagonal line of cells, such as the one produced by a
<a href="#linecuttingreaction">line-cutting reaction</a>. Such a reaction is demonstrated below. See
the line cutting reaction for a way of creating the gliders
travelling parallel to the line.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO.............................................$...........O..............................................$............O.............................................$...O.O.......O............................................$....OO........O...........................................$....O..........O..........................................$................O...................................O.....$.................O................................OO......$..................O................................OO.....$...................O......................................$....................O.....................................$.....................O.....................O.O............$......................O....................OO.............$.......................O....................O.............$........................O.................................$.........................O................................$..........................O...............O...............$...........................O.............O................$............................O............OOO..............$.............................O............................$............................OO............................$..........................................................$..........................................................$..........................................................$...........................................O.O............$...........................................OO.......O..O..$............................................O......O......$...................................OOO.............O...O..$.....................................O.............OOOO...$....................................O.....................$.......................................OO.................$.......................................O.O................$..........................................O...............$...........................................O..............$...............................OO...........O.............$..............................O.O............O............$................................O.............O.......OO..$.............O..........................OO.....O.....OO...$.............OO.........................O.O.....O......O..$............O.O.....OO..................O........O........$...................O.O............................O.......$.O...................O.............................O......$.OO.....O...........................................O.....$O.O.....OO...........................................O....$.......O.O............................................O...$.......................................................O.O$........................................................OO$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$.................................O........................$................................OOO.......................$...............................OO.O.......................$...............................OOO........................$................................OO........................$"
>...........OO.............................................
...........O..............................................
............O.............................................
...O.O.......O............................................
....OO........O...........................................
....O..........O..........................................
................O...................................O.....
.................O................................OO......
..................O................................OO.....
...................O......................................
....................O.....................................
.....................O.....................O.O............
......................O....................OO.............
.......................O....................O.............
........................O.................................
.........................O................................
..........................O...............O...............
...........................O.............O................
............................O............OOO..............
.............................O............................
............................OO............................
..........................................................
..........................................................
..........................................................
...........................................O.O............
...........................................OO.......O..O..
............................................O......O......
...................................OOO.............O...O..
.....................................O.............OOOO...
....................................O.....................
.......................................OO.................
.......................................O.O................
..........................................O...............
...........................................O..............
...............................OO...........O.............
..............................O.O............O............
................................O.............O.......OO..
.............O..........................OO.....O.....OO...
.............OO.........................O.O.....O......O..
............O.O.....OO..................O........O........
...................O.O............................O.......
.O...................O.............................O......
.OO.....O...........................................O.....
O.O.....OO...........................................O....
.......O.O............................................O...
.......................................................O.O
........................................................OO
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
.................................O........................
................................OOO.......................
...............................OO.O.......................
...............................OOO........................
................................OO........................
</a></pre></td></tr></table></center>
<p>This reaction uses spaceships on both sides of the line which need
to be synchronized to each other, for example by passing a glider
through the gap to trigger the creation of the required spaceships
and gliders.
<p>No simple mechanism is known to mend the gap which lies completely
on one side of the line. However, it is technically possible to use
<a href="lex_c.htm#constructionarm">construction arm</a> <a href="lex_t.htm#technology">technology</a> to push objects through the gap to
build and trigger a <a href="lex_s.htm#seed">seed</a> for the required <a href="lex_s.htm#synchronized">synchronized</a> <a href="lex_s.htm#signal">signals</a>
on the other side.
<p><a name=linepuffer>:</a><b>line puffer</b> A <a href="lex_p.htm#puffer">puffer</a> which produces its output by means of an
orthogonal line of cells at right angles to the direction of travel.
The archetypal line puffer was found by Alan Hensel in March 1994,
based on a <a href="lex_s.htm#spaceship">spaceship</a> found earlier that month by Hartmut Holzwart.
The following month Holzwart found a way to make <a href="lex_e.htm#extensible">extensible</a> <i>c</i>/2
line puffers, and Hensel found a much smaller stabilization the
following day. But in October 1995 Tim Coe discovered that for large
widths these were often unstable, although typically lasting millions
of generations. In May 1996, however, Coe found a way to fix the
instability. The resulting puffers appear to be completely stable
and to exhibit an exponential increase in period as a function of
width, although neither of these things has been proved.
<p>Line puffers have enabled the construction of various difficult
periods for <i>c</i>/2 spaceships and puffers, including occasionally
periods which are not multiples of 4 and which would therefore be
impossible to attain with the usual type of construction based on
<a href="lex_s.htm#standardspaceship">standard spaceships</a>. (See <a href="lex_f.htm#frothingpuffer">frothing puffer</a> for another method of
constructing such periods.) In particular, the first <i>c</i>/2 <a href="lex_r.htm#rake">rake</a> with
period not divisible by 4 was achieved in January 2000 when David
Bell constructed a p42 <a href="lex_b.htm#backrake">backrake</a> by means of line puffers.
<p>See also <a href="lex_h.htm#hivenudger">hivenudger</a> and <a href="lex_p.htm#puffsuppressor">puff suppressor</a>.
<p><a name=lineship>:</a><b>line ship</b> A <a href="lex_s.htm#spaceship">spaceship</a> in which the front end is a <a href="#linestretcher">linestretcher</a>,
the line being eaten by the back end.
<p><a name=linestretcher>:</a><b>linestretcher</b> A <a href="lex_w.htm#wickstretcher">wickstretcher</a> that stretches a single diagonal line
of cells. The first example was constructed by Jason Summers in
March 1999; this was <i>c</i>/12 and used <a href="lex_s.htm#switchengine">switch engine</a> based puffers
found earlier by Dean Hickerson. The first <i>c</i>/4 example was found by
Hartmut Holzwart in November 2004.
<p><a name=loadingdock>:</a><b>loading dock</b> (p3) Found by Dave Buckingham, September 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O....$..OOO....$.O...OO..$O.OO...O.$.O...OO.O$..OO...O.$....OOO..$....O....$"
>....O....
..OOO....
.O...OO..
O.OO...O.
.O...OO.O
..OO...O.
....OOO..
....O....
</a></pre></td></tr></table></center>
<p><a name=loaf>:</a><b>loaf</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO.$O..O$.O.O$..O.$"
>.OO.
O..O
.O.O
..O.
</a></pre></td></tr></table></center>
<p><a name=loafer>:</a><b>loafer</b> (<i>c</i>/7 orthogonally, p7) A small <a href="lex_c.htm#c7spaceship">c/7 spaceship</a> discovered by
Josh Ball on 17 February 2013:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO..O.OO$O..O..OO.$.O.O.....$..O......$........O$......OOO$.....O...$......O..$.......OO$"
>.OO..O.OO
O..O..OO.
.O.O.....
..O......
........O
......OOO
.....O...
......O..
.......OO
</a></pre></td></tr></table></center>
<p>It has a known 8-glider construction recipe, probably not minimal,
discovered on the following day:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................................O$...............................OO.$................................OO$.........O........................$.O........O.......................$..O.....OOO.......................$OOO...............................$..................................$..................................$.....O............................$......O...........................$....OOO...........................$........................O.O.......$.........................OO.......$.........................O........$..................................$...........................O.O....$...........................OO.....$............................O.....$...............................OOO$...............................O..$................................O.$..................................$..................................$..................................$..................................$..................................$..................................$.....OO...........................$......OO..........................$.....O............................$"
>.................................O
...............................OO.
................................OO
.........O........................
.O........O.......................
..O.....OOO.......................
OOO...............................
..................................
..................................
.....O............................
......O...........................
....OOO...........................
........................O.O.......
.........................OO.......
.........................O........
..................................
...........................O.O....
...........................OO.....
............................O.....
...............................OOO
...............................O..
................................O.
..................................
..................................
..................................
..................................
..................................
..................................
.....OO...........................
......OO..........................
.....O............................
</a></pre></td></tr></table></center>
The loafer was therefore the first new glider-constructible spaceship
in almost a decade. (A <a href="lex_g.htm#glidersynthesis">glider synthesis</a> for a 2<i>c</i>/5 ship,
<a href="lex_1.htm#a-60p5h2v0">60P5H2V0</a>, was found in March 2003.)
<p><a name=loaflipflop>:</a><b>loaflipflop</b> (p15) Here four <a href="lex_p.htm#pentadecathlon">pentadecathlons</a> <a href="lex_h.htm#hassle">hassle</a> a <a href="#loaf">loaf</a>.
Found by Robert Wainwright in 1990.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................O.................$...............OOO................$..................................$..................................$...............OOO................$..................................$...............O.O................$...............O.O................$..................................$...............OOO................$..................................$..................................$...............OOO................$................O.................$..................................$.O..O.OO.O..O...............OO....$OO..O....O..OO...OO.......O....O..$.O..O.OO.O..O...O..O.....O......O.$................O.O.....O........O$.................O......O........O$........................O........O$.........................O......O.$..........................O....O..$............................OO....$..................OOO.............$.................O...O............$................O.....O...........$..................................$...............O.......O..........$...............O.......O..........$..................................$................O.....O...........$.................O...O............$..................OOO.............$"
>................O.................
...............OOO................
..................................
..................................
...............OOO................
..................................
...............O.O................
...............O.O................
..................................
...............OOO................
..................................
..................................
...............OOO................
................O.................
..................................
.O..O.OO.O..O...............OO....
OO..O....O..OO...OO.......O....O..
.O..O.OO.O..O...O..O.....O......O.
................O.O.....O........O
.................O......O........O
........................O........O
.........................O......O.
..........................O....O..
............................OO....
..................OOO.............
.................O...O............
................O.....O...........
..................................
...............O.......O..........
...............O.......O..........
..................................
................O.....O...........
.................O...O............
..................OOO.............
</a></pre></td></tr></table></center>
<p><a name=loafonloaf>:</a><b>loaf on loaf</b> = <a href="lex_b.htm#biloaf">bi-loaf</a>
<p><a name=loafpull>:</a><b>loaf pull</b> The following glider/loaf collision, which pulls a loaf
(3,1) toward the glider source:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.....$O.O....$O..O...$.OO....$.......$.......$....OOO$....O..$.....O.$"
>.O.....
O.O....
O..O...
.OO....
.......
.......
....OOO
....O..
.....O.
</a></pre></td></tr></table></center>
<p><a name=loafsiamesebarge>:</a><b>loaf siamese barge</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO.$.O..O$O.O.O$.O.O.$..O..$"
>..OO.
.O..O
O.O.O
.O.O.
..O..
</a></pre></td></tr></table></center>
<p><a name=lobster>:</a><b>lobster</b> (<i>c</i>/7 diagonally, p7) A spaceship discovered by Matthias
Merzenich in August 2011, the first diagonally travelling
<a href="lex_c.htm#c7spaceship">c/7 spaceship</a> to be found. It consists of two <a href="lex_g.htm#glider">gliders</a> pulling a
<a href="lex_t.htm#tagalong">tagalong</a> that then rephases them.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............OOO...........$............O.............$.............O..OO........$................OO........$............OO............$.............OO...........$............O..O..........$..........................$..............O..O........$..............O...O.......$...............OOO.O......$....................O.....$OO..O.O.............O.....$O.O.OO.............O......$O....O..OO.............OO.$......O...O......OO..OO..O$..OO......O......O..O.....$..OO....O.O....OO.........$.........O.....O...O...O..$..........O..O....OO......$...........OO...O.....O.O.$...............O........OO$...............O....O.....$..............O...O.......$..............O.....OO....$...............O.....O....$"
>............OOO...........
............O.............
.............O..OO........
................OO........
............OO............
.............OO...........
............O..O..........
..........................
..............O..O........
..............O...O.......
...............OOO.O......
....................O.....
OO..O.O.............O.....
O.O.OO.............O......
O....O..OO.............OO.
......O...O......OO..OO..O
..OO......O......O..O.....
..OO....O.O....OO.........
.........O.....O...O...O..
..........O..O....OO......
...........OO...O.....O.O.
...............O........OO
...............O....O.....
..............O...O.......
..............O.....OO....
...............O.....O....
</a></pre></td></tr></table></center>
<p><a name=logarithmicgrowth>:</a><b>logarithmic growth</b> A pattern whose <a href="lex_p.htm#population">population</a> or <a href="lex_b.htm#boundingbox">bounding box</a>
grows no faster than logarithmically, asymptotic to <i>n</i>.log(<i>t</i>) for some
constant <i>n</i>. The first such pattern constructed was the
<a href="lex_c.htm#cabertosser">caber tosser</a> whose population is logarithmic, but whose bounding
box still grows linearly. The first pattern whose bounding box and
population both grow logarithmically was constructed by Jason Summers
with Gabriel Nivasch in 2003. For a pattern with a slower growth
rate than this, see <a href="lex_o.htm#osqrtlogt">Osqrtlogt</a>.
<p><a name=lom>:</a><b>LoM</b> = <a href="#lumpsofmuck">lumps of muck</a>
<p><a name=lonedotagar>:</a><b>lone dot agar</b> An <a href="lex_a.htm#agar">agar</a> in which every live cell is isolated in every
generation. There are many different lone dot agars. All of them
are <a href="lex_p.htm#phoenix">phoenixes</a>. In 1995 Dean Hickerson and Alan W. Hensel found
stabilizations for finite patches of ten lone dot agars to create
period 2 oscillators. One of these is shown below:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO..OO..OO..OO..OO..OO..OO..OO....$....O..O.O..O..O.O..O..O.O..O..O.O....$.....O.......O.......O.......O........$........O.......O.......O.......O.....$OO..O.O.....O.O.....O.O.....O.O.....OO$O.O.....O.O.....O.O.....O.O.....O.O..O$....O.......O.......O.......O.......O.$.O.......O.......O.......O.......O....$O..O.O.....O.O.....O.O.....O.O.....O.O$OO.....O.O.....O.O.....O.O.....O.O..OO$.....O.......O.......O.......O........$........O.......O.......O.......O.....$OO..O.O.....O.O.....O.O.....O.O.....OO$O.O.....O.O.....O.O.....O.O.....O.O..O$....O.......O.......O.......O.......O.$.O.......O.......O.......O.......O....$O..O.O.....O.O.....O.O.....O.O.....O.O$OO.....O.O.....O.O.....O.O.....O.O..OO$.....O.......O.......O.......O........$........O.......O.......O.......O.....$OO..O.O.....O.O.....O.O.....O.O.....OO$O.O.....O.O.....O.O.....O.O.....O.O..O$....O.......O.......O.......O.......O.$.O.......O.......O.......O.......O....$O..O.O.....O.O.....O.O.....O.O.....O.O$OO.....O.O.....O.O.....O.O.....O.O..OO$.....O.......O.......O.......O........$........O.......O.......O.......O.....$OO..O.O.....O.O.....O.O.....O.O.....OO$O.O.....O.O.....O.O.....O.O.....O.O..O$....O.......O.......O.......O.......O.$.O.......O.......O.......O.......O....$O..O.O.....O.O.....O.O.....O.O.....O.O$OO.....O.O.....O.O.....O.O.....O.O..OO$.....O.......O.......O.......O........$........O.......O.......O.......O.....$....O.O..O..O.O..O..O.O..O..O.O..O....$....OO..OO..OO..OO..OO..OO..OO..OO....$"
>....OO..OO..OO..OO..OO..OO..OO..OO....
....O..O.O..O..O.O..O..O.O..O..O.O....
.....O.......O.......O.......O........
........O.......O.......O.......O.....
OO..O.O.....O.O.....O.O.....O.O.....OO
O.O.....O.O.....O.O.....O.O.....O.O..O
....O.......O.......O.......O.......O.
.O.......O.......O.......O.......O....
O..O.O.....O.O.....O.O.....O.O.....O.O
OO.....O.O.....O.O.....O.O.....O.O..OO
.....O.......O.......O.......O........
........O.......O.......O.......O.....
OO..O.O.....O.O.....O.O.....O.O.....OO
O.O.....O.O.....O.O.....O.O.....O.O..O
....O.......O.......O.......O.......O.
.O.......O.......O.......O.......O....
O..O.O.....O.O.....O.O.....O.O.....O.O
OO.....O.O.....O.O.....O.O.....O.O..OO
.....O.......O.......O.......O........
........O.......O.......O.......O.....
OO..O.O.....O.O.....O.O.....O.O.....OO
O.O.....O.O.....O.O.....O.O.....O.O..O
....O.......O.......O.......O.......O.
.O.......O.......O.......O.......O....
O..O.O.....O.O.....O.O.....O.O.....O.O
OO.....O.O.....O.O.....O.O.....O.O..OO
.....O.......O.......O.......O........
........O.......O.......O.......O.....
OO..O.O.....O.O.....O.O.....O.O.....OO
O.O.....O.O.....O.O.....O.O.....O.O..O
....O.......O.......O.......O.......O.
.O.......O.......O.......O.......O....
O..O.O.....O.O.....O.O.....O.O.....O.O
OO.....O.O.....O.O.....O.O.....O.O..OO
.....O.......O.......O.......O........
........O.......O.......O.......O.....
....O.O..O..O.O..O..O.O..O..O.O..O....
....OO..OO..OO..OO..OO..OO..OO..OO....
</a></pre></td></tr></table></center>
<p><a name=lonelybee>:</a><b>lonely bee</b> = <a href="lex_w.htm#workerbee">worker bee</a>
<p><a name=long>:</a><b>long</b> A term applied to an object that is of the same basic form as
some standard object, but longer. For examples see <a href="#longbarge">long barge</a>,
<a href="#longboat">long boat</a>, <a href="#longbookend">long bookend</a>, <a href="#longcanoe">long canoe</a>, <a href="#longshillelagh">long shillelagh</a>,
<a href="#longship">long ship</a> and <a href="#longsnake">long snake</a>.
<p><a name=long3>:</a><b>long^3</b> The next degree of longness after <a href="#longlong">long long</a>. Some people
prefer "extra long".
<p><a name=long4>:</a><b>long^4</b> The next degree of longness after <a href="#long3">long^3</a>. Some people
prefer "extra extra long".
<p><a name=longbarge>:</a><b>long barge</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O...$O.O..$.O.O.$..O.O$...O.$"
>.O...
O.O..
.O.O.
..O.O
...O.
</a></pre></td></tr></table></center>
<p><a name=longboat>:</a><b>long boat</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..$O.O.$.O.O$..OO$"
>.O..
O.O.
.O.O
..OO
</a></pre></td></tr></table></center>
A long boat can be used as a 90-degree or 180-degree <a href="lex_o.htm#onetime">one-time</a>
<a href="lex_t.htm#turner">turner</a>.
<p><a name=longbookend>:</a><b>long bookend</b> The following <a href="lex_i.htm#inductioncoil">induction coil</a>, longer than a <a href="lex_b.htm#bookend">bookend</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO$O...O$OOOO.$"
>...OO
O...O
OOOO.
</a></pre></td></tr></table></center>
<p><a name=longcanoe>:</a><b>long canoe</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO$.....O$....O.$...O..$O.O...$OO....$"
>....OO
.....O
....O.
...O..
O.O...
OO....
</a></pre></td></tr></table></center>
<p><a name=longhat>:</a><b>long hat</b> = <a href="#loop">loop</a>
<p><a name=longhook>:</a><b>long hook</b> = <a href="#longbookend">long bookend</a>
<p><a name=longhouse>:</a><b>long house</b> = <a href="lex_d.htm#dock">dock</a>
<p><a name=longintegral>:</a><b>long integral</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO$.O.O$.O..$..O.$O.O.$OO..$"
>..OO
.O.O
.O..
..O.
O.O.
OO..
</a></pre></td></tr></table></center>
<p><a name=longlong>:</a><b>long long</b> The next degree of longness after <a href="#long">long</a>. Some people
prefer "very long".
<p><a name=longlongbarge>:</a><b>long long barge</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O....$O.O...$.O.O..$..O.O.$...O.O$....O.$"
>.O....
O.O...
.O.O..
..O.O.
...O.O
....O.
</a></pre></td></tr></table></center>
<p><a name=longlongboat>:</a><b>long long boat</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O...$O.O..$.O.O.$..O.O$...OO$"
>.O...
O.O..
.O.O.
..O.O
...OO
</a></pre></td></tr></table></center>
<p><a name=longlongcanoe>:</a><b>long long canoe</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO$......O$.....O.$....O..$...O...$O.O....$OO.....$"
>.....OO
......O
.....O.
....O..
...O...
O.O....
OO.....
</a></pre></td></tr></table></center>
<p><a name=longlongship>:</a><b>long long ship</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...$O.O..$.O.O.$..O.O$...OO$"
>OO...
O.O..
.O.O.
..O.O
...OO
</a></pre></td></tr></table></center>
<p><a name=longlongsnake>:</a><b>long long snake</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....$O.O...$...O.O$....OO$"
>OO....
O.O...
...O.O
....OO
</a></pre></td></tr></table></center>
<p><a name=longshillelagh>:</a><b>long shillelagh</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..OO$O..O.O$.OO...$"
>OO..OO
O..O.O
.OO...
</a></pre></td></tr></table></center>
<p><a name=longship>:</a><b>long ship</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..$O.O.$.O.O$..OO$"
>OO..
O.O.
.O.O
..OO
</a></pre></td></tr></table></center>
<p><a name=longsinkingship>:</a><b>long sinking ship</b> = <a href="#longcanoe">long canoe</a>
<p><a name=longsnake>:</a><b>long snake</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...$O.O.O$...OO$"
>OO...
O.O.O
...OO
</a></pre></td></tr></table></center>
<p><a name=loop>:</a><b>loop</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO..$O..O.$.O.O.$OO.OO$"
>.OO..
O..O.
.O.O.
OO.OO
</a></pre></td></tr></table></center>
<p><a name=loopingspaceship>:</a><b>looping spaceship</b> = <a href="lex_r.htm#reflectorlessrotatingoscillator">reflectorless rotating oscillator</a>
<p><a name=losslesselbow>:</a><b>lossless elbow</b> A stationary <a href="lex_e.htm#elbow">elbow</a> in a <a href="lex_c.htm#constructionarm">construction arm</a> <a href="lex_t.htm#toolkit">toolkit</a>
that allows a <a href="lex_r.htm#recipe">recipe</a> to turn a corner with no exponential increase
in construction cost. Compare <a href="lex_s.htm#slowelbow">slow elbow</a>. It is theoretically
possible to construct lossless elbows for early construction arms
such as the one in the <a href="lex_1.htm#a-10hddemonoid">10hd Demonoid</a>, but these would currently
have to be very large.
<p>The lossless elbow that has been used the most in practice is the
<a href="lex_s.htm#snark">Snark</a>, which can be constructed directly on a <a href="lex_s.htm#singlechannel">single-channel</a>
<a href="lex_c.htm#constructionlane">construction lane</a> using a <a href="lex_s.htm#snarkmaker">Snarkmaker</a> <a href="lex_r.htm#recipe">recipe</a>. Controlled
demolition of a Snark is also possible, to remove a temporary elbow
that is no longer needed, and leave a <a href="lex_h.htm#hand">hand</a> target in its place if
necessary for further construction.
<p>A <a href="lex_s.htm#silverreflector">Silver reflector</a> was used as a lossless elbow in the first
<a href="lex_s.htm#spiralgrowth">spiral growth</a> pattern, attached to a separate
<a href="lex_u.htm#universalconstructor">universal constructor</a> component.
<p><a name=lowdensitylife>:</a><b>low-density Life</b> = <a href="lex_s.htm#sparselife">sparse Life</a>
<p><a name=lumpsofmuck>:</a><b>lumps of muck</b> The common evolutionary sequence that ends in the
<a href="lex_b.htm#blockade">blockade</a>. The name is sometimes used of the blockade itself, and
can in general be used of any stage of the evolution of the
<a href="lex_s.htm#stairstephexomino">stairstep hexomino</a>.
<p><a name=lwemulator>:</a><b>LW emulator</b> (p4) The smallest (and least useful) <a href="lex_e.htm#emulator">emulator</a>, found by
Robert Wainwright in June 1980.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO.O..O.OO..$..O........O..$...OO....OO...$OOO..OOOO..OOO$O..O......O..O$.OO........OO.$"
>..OO.O..O.OO..
..O........O..
...OO....OO...
OOO..OOOO..OOO
O..O......O..O
.OO........OO.
</a></pre></td></tr></table></center>
<p><a name=lwss>:</a><b>LWSS</b> (<i>c</i>/2 orthogonally, p4) A lightweight spaceship, the smallest
known orthogonally moving <a href="lex_s.htm#spaceship">spaceship</a>, and the second most common
(after the <a href="lex_g.htm#glider">glider</a>). Found by Conway when one formed from a random
soup in 1970. See also <a href="lex_m.htm#mwss">MWSS</a> and <a href="lex_h.htm#hwss">HWSS</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..O$O....$O...O$OOOO.$"
>.O..O
O....
O...O
OOOO.
</a></pre></td></tr></table></center>
<p>The LWSS possesses a <a href="lex_t.htm#tailspark">tail spark</a> which can easily <a href="lex_p.htm#perturb">perturb</a> other
objects which grow into its path. The spaceship can also perturb
some objects in additional ways. For examples, see <a href="lex_b.htm#blinkership">blinker ship</a>,
<a href="lex_h.htm#hivenudger">hivenudger</a>, and <a href="lex_p.htm#puffertrain">puffer train</a>.
<p>Dave Buckingham found that the LWSS can be synthesized in several
different ways using three gliders, and can be constructed from two
gliders and another small object in several more ways. Here is the
fastest <a href="lex_s.htm#synthesis">synthesis</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.....$O......$OOO....$.....OO$....OO.$......O$.......$..OO...$...OO..$..O....$"
>.O.....
O......
OOO....
.....OO
....OO.
......O
.......
..OO...
...OO..
..O....
</a></pre></td></tr></table></center>
<p><a name=lwssemulator>:</a><b>LWSS emulator</b> = <a href="#lwemulator">LW emulator</a>
<p><a name=lwssgliderbounce>:</a><b>LWSS-glider bounce</b> The following reaction in which a <a href="#lwss">LWSS</a> and a
<a href="lex_g.htm#glider">glider</a> collide to form a glider heading back between the two input
paths:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOOO........$O...O........$....O.....OOO$O..O......O..$...........O.$"
>.OOOO........
O...O........
....O.....OOO
O..O......O..
...........O.
</a></pre></td></tr></table></center>
This is one way to <a href="lex_i.htm#inject">inject</a> a glider into a existing glider stream.
The <a href="lex_i.htm#infinitegliderhotel">infinite glider hotel</a> uses this reaction.
<p><a name=lwsslwssbounce>:</a><b>LWSS-LWSS bounce</b> The following <a href="lex_s.htm#symmetric">symmetric</a> reaction in which two
<a href="#lwss">LWSSs</a> collide head-on to form two <a href="lex_g.htm#glider">gliders</a> heading apart at 90
degrees from each other. Compare <a href="#lwsslwssdeflection">LWSS-LWSS deflection</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..O.......O..O$....O.....O....$O...O.....O...O$.OOOO.....OOOO.$"
>O..O.......O..O
....O.....O....
O...O.....O...O
.OOOO.....OOOO.
</a></pre></td></tr></table></center>
This provides one way to <a href="lex_i.htm#inject">inject</a> a <a href="lex_g.htm#glider">glider</a> into a existing glider
stream. Another use is described in <a href="lex_m.htm#metamorphosis">metamorphosis</a>.
<p><a name=lwsslwssdeflection>:</a><b>LWSS-LWSS deflection</b> The following symmetric reaction in which two
LWSSs collide nearly head-on to form two gliders heading apart at 180
degrees from each other. Compare <a href="#lwsslwssbounce">LWSS-LWSS bounce</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O..O$........O....$........O...O$........OOOO.$.............$.OOOO........$O...O........$....O........$O..O.........$"
>.........O..O
........O....
........O...O
........OOOO.
.............
.OOOO........
O...O........
....O........
O..O.........
</a></pre></td></tr></table></center>
<p><a name=lwsstog>:</a><b>LWSS-to-G</b> See <a href="lex_1.htm#a-135degreemwsstog">135-degree MWSS-to-G</a>.
<p><a name=lwtds>:</a><b>LWTDS</b> Life Worker Time Deficiency Syndrome. Term coined by Dieter
Leithner to describe the problem of having to divide scarce time
between Life and real life.
<p><a name=lwvolcano>:</a><b>LW volcano</b> = <a href="lex_t.htm#toaster">toaster</a>
<p><a name=lx200>:</a><b>Lx200</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Paul Callahan in June 1997. It is
made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HL141B + <a href="lex_b.htm#bfx59h">BFx59H</a>. The Lx200
and <a href="lex_f.htm#f166">F166</a> conduits are the two original <a href="lex_d.htm#dependentconduit">dependent conduits</a>
(several more have since been discovered.) After 200 ticks, it
produces an inverted <a href="lex_h.htm#herschel">Herschel</a> turned 90 degrees counterclockwise at
(17, -40) relative to the input. Its <a href="lex_r.htm#recoverytime">recovery time</a> is 90 ticks.
It can be made <a href="lex_s.htm#spartan">Spartan</a> by replacing the <a href="lex_s.htm#snake">snakes</a> with <a href="lex_e.htm#eater1">eater1s</a> in
one of two orientations. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below
marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................OO.............$......................O.............$......................OOO...........$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$.......................OO...........$.......................OO...........$....................................$..............................O.OO..$..............................OO.O..$....................................$....................................$..............O.OO..................$..............OO.O..................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$....................................$................................OO..$................................O.O.$.OO...............................O.$OOO.OO............................OO$.OO.OOO.OO..........................$OOO.OO..OO..........................$OO..................................$....................................$....................................$....................................$................................OO..$................................OO..$....................................$......OO............................$.......O............................$....OOO.........................OO..$....O...........................OO..$..................OO................$.................O.O................$.................O..................$................OO........OO........$..........................O.........$...........................OOO......$.............................O......$"
>.....................OO.............
......................O.............
......................OOO...........
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
.......................OO...........
.......................OO...........
....................................
..............................O.OO..
..............................OO.O..
....................................
....................................
..............O.OO..................
..............OO.O..................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
....................................
................................OO..
................................O.O.
.OO...............................O.
OOO.OO............................OO
.OO.OOO.OO..........................
OOO.OO..OO..........................
OO..................................
....................................
....................................
....................................
................................OO..
................................OO..
....................................
......OO............................
.......O............................
....OOO.........................OO..
....O...........................OO..
..................OO................
.................O.O................
.................O..................
................OO........OO........
..........................O.........
...........................OOO......
.............................O......
</a></pre></td></tr></table></center>
The input shown here is a <a href="lex_h.htm#herschelgreatgrandparent">Herschel great-grandparent</a>, since the
input reaction is catalysed by the <a href="lex_t.htm#transparent">transparent</a> block before the
Herschel's standard form can appear.
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
</body>