1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (M)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">
<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
<p><a name=macrocell>:</a><b>macrocell</b> A format used by <a href="lex_g.htm#golly">Golly</a> and its <a href="lex_h.htm#hashlife">hashlife</a> algorithm,
capable of storing repetitive patterns very efficiently, even if they
contain a large number of cells. For example, a filled square 2<sup>167</sup>
cells on a side can be stored in less than three kilobytes in
macrocell format, or about 800 bytes in compressed macrocell format.
The square's total population is over a googol, 10<sup>100</sup>; the number of
atoms in the observable universe is only about 10<sup>80</sup>.
<p>This high level of compression is obtained by defining a tree
structure composed of increasingly large cell "tiles" with
power-of-two dimensions. Tile definitions of any size are re-used
whenever they appear multiple times in a large pattern (at the same
power-of-two offset). For example, the following is a macrocell
encoding of a complex <a href="lex_p.htm#pseudostilllife">pseudo still life</a> arrangement of <a href="lex_s.htm#ship">ships</a>,
with a total population over 2500 cells:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:[M2] (golly 3.0)$#R B3/S23$.**.**$*.*.*.*$**...**$$**...**$*.*.*.*$.**.**$$4 0 1 1 1$5 2 0 2 2$6 3 3 0 3$7 4 4 4 4$"
>[M2] (golly 3.0)
#R B3/S23
.**.**$*.*.*.*$**...**$$**...**$*.*.*.*$.**.**$
4 0 1 1 1
5 2 0 2 2
6 3 3 0 3
7 4 4 4 4
</a></pre></td></tr></table></center>
<p>The first line after the #R rule line defines a quadtree tile at
the lowest level - a level-3 tile in this case, meaning a 2<sup>3</sup> square
area. At this level the pattern is encoded in a modified ASCII
format with dollar signs as line separators. The next line, #2,
defines a level-4 quadtree tile, made from one empty level-3 tile in
the northwest corner (0), and three copies of the level-3 tile that
was defined on the previous line (1). Lines 3, 4, and 5 similarly
define level 5, 6, and 7 quadtree tiles by giving the line numbers of
four tiles of the next lower size.
<p>Many patterns are only moderately repetitive, so macrocell format
is somewhat less successful at compressing them. Certainly most
patterns are not nearly as regular as the artificial example above:
there are usually many different tiles defined at each level, not
just one. Chaotic patterns, such as <a href="lex_a.htm#ash">ash</a> from random <a href="lex_s.htm#soup">soups</a>,
usually need so many different tile definitions that they can be
stored more efficiently using <a href="lex_r.htm#rle">rle</a> format.
<p><a name=macrospaceship>:</a><b>macro-spaceship</b> A <a href="lex_s.htm#selfconstructing">self-constructing</a> or <a href="lex_s.htm#selfsupporting">self-supporting</a>
<a href="lex_s.htm#spaceship">spaceship</a>, such as the <a href="lex_c.htm#caterpillar">Caterpillar</a>, <a href="lex_c.htm#centipede">Centipede</a>,
<a href="lex_h.htm#halfbakedknightship">half-baked knightship</a>, <a href="lex_w.htm#waterbear">waterbear</a>, <a href="lex_d.htm#demonoid">Demonoid</a>, <a href="lex_o.htm#orthogonoid">Orthogonoid</a>, and
<a href="lex_c.htm#caterloopillar">Caterloopillar</a>. Engineered spaceships of these types tend to be
much larger and more complex than <a href="lex_e.htm#elementary">elementary</a> spaceships.
<p><a name=mango>:</a><b>mango</b> (p1) A relatively rare 180-degree rotationally <a href="lex_s.htm#symmetric">symmetric</a>
8-<a href="lex_b.htm#bit">bit</a> <a href="lex_s.htm#stilllife">still life</a>. The <a href="lex_a.htm#acorn">acorn</a> produces a mango as part of its
<a href="lex_a.htm#ash">ash</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO..$O..O.$.O..O$..OO.$"
>.OO..
O..O.
.O..O
..OO.
</a></pre></td></tr></table></center>
<p><a name=mathematician>:</a><b>mathematician</b> (p5) Found by Dave Buckingham, 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O....$...O.O...$...O.O...$..OO.OO..$O.......O$OOO...OOO$.........$OOOOOOOOO$O.......O$...OOOO..$...O..OO.$"
>....O....
...O.O...
...O.O...
..OO.OO..
O.......O
OOO...OOO
.........
OOOOOOOOO
O.......O
...OOOO..
...O..OO.
</a></pre></td></tr></table></center>
<p><a name=max>:</a><b>Max</b> A name for the smallest known <a href="lex_s.htm#spacefiller">spacefiller</a>. The name represents
the fact that the growth rate is the fastest possible. (This has not
quite been proved, however. There remains the possibility, albeit
not very likely, that a periodic <a href="lex_a.htm#agar">agar</a> could have an average
<a href="lex_d.htm#density">density</a> greater than 1/2, and a spacefiller stretching such an agar
at the same speed as the known spacefillers would have a faster
average growth rate.)
<p><a name=mazing>:</a><b>mazing</b> (p4) In terms of its minimum <a href="lex_p.htm#population">population</a> of 12 this ties with
<a href="#mold">mold</a> as the smallest p4 <a href="lex_o.htm#oscillator">oscillator</a>. Found by Dave Buckingham in
December 1973. For some constructions using mazings, see <a href="lex_p.htm#popover">popover</a>
and <a href="lex_s.htm#sixtynine">sixty-nine</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO..$.O.O...$O.....O$.O...OO$.......$...O.O.$....O..$"
>...OO..
.O.O...
O.....O
.O...OO
.......
...O.O.
....O..
</a></pre></td></tr></table></center>
<p><a name=mc>:</a><b>mc</b> = <a href="#macrocell">macrocell</a>
<p><a name=mediumfish>:</a><b>medium fish</b> = <a href="#mwss">MWSS</a>
<p><a name=megacell>:</a><b>megacell</b> = <a href="lex_p.htm#p1megacell">p1 megacell</a>.
<p><a name=memorycell>:</a><b>memory cell</b> A type of information storage <a href="lex_c.htm#circuit">circuit</a> useful in many
patterns that perform complex logical operations. Most commonly a
memory cell can store a single bit of information. See for example
<a href="lex_d.htm#demultiplexer">demultiplexer</a>, <a href="lex_h.htm#honeybit">honey bit</a>, and <a href="lex_b.htm#boatbit">boat-bit</a>. Depending on the
application, the circuit may be a <a href="lex_t.htm#togglecircuit">toggle circuit</a> or a
<a href="lex_p.htm#permanentswitch">permanent switch</a>, or it may be possible to send one or more signals
to set the circuit to a "1" state, as can be done with a <a href="lex_k.htm#keeper">keeper</a>
mechanism. In that case a different input signal must be used to
test the current state, usually with a <a href="lex_d.htm#destructiveread">destructive read</a> reaction.
<p>A more complicated example can be found in the <a href="lex_o.htm#osqrtlogt">Osqrtlogt</a> pattern,
which destructively reads a growing 2-dimensional array of minimal
memory cells. Each memory cell may either contain a <a href="lex_b.htm#boat">boat</a> (below
left) or empty space (below right), with no permanent circuitry
anywhere near:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............OO........................OO$...............OO........................OO$...........................................$...........O...............................$..........O.O..............................$...........OO..............................$...........................................$...........................................$......OO........................OO.........$.....O..O......................O..O........$......OO........................OO.........$...........................................$...........................................$.OO........................OO..............$O..O......................O..O.............$.OO......OOO...............OO......OOO.....$.........O.........................O.......$..........O.........................O......$"
>...............OO........................OO
...............OO........................OO
...........................................
...........O...............................
..........O.O..............................
...........OO..............................
...........................................
...........................................
......OO........................OO.........
.....O..O......................O..O........
......OO........................OO.........
...........................................
...........................................
.OO........................OO..............
O..O......................O..O.............
.OO......OOO...............OO......OOO.....
.........O.........................O.......
..........O.........................O......
</a></pre></td></tr></table></center>
The two <a href="lex_b.htm#beehive">beehives</a> and the <a href="lex_b.htm#block">block</a> are placed by <a href="lex_s.htm#slowsalvo">slow salvos</a>, after
an initial 90-degree <a href="lex_1.htm#a-2glidercollision">2-glider collision</a> that produces a target
<a href="lex_h.htm#honeyfarm">honey farm</a>. The beehive <a href="lex_c.htm#constellation">constellation</a> acts as a <a href="lex_o.htm#onetime">one-time</a>
<a href="lex_t.htm#turner">turner</a> for an incoming <a href="lex_g.htm#glider">glider</a>. If the boat is present, it acts
as a second one-time turner for that glider, sending back a "1"
signal. The "backstop" <a href="lex_b.htm#block">block</a> in the northeast is destroyed cleanly
in either the "0" or the "1" case.
<p><a name=merzenichsp11>:</a><b>Merzenich's p11</b> (p11) Found by Matthias Merzenich in December 2010.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO........$............O........$............O.O......$..........OO.O.O.....$.........O.O.O.O.....$........O.O..O..OO...$.......O.....O....O..$......O.......OOOO...$.....O............OOO$....O.....O.....OO..O$...O.O...O.O...O.O...$O..OO.....O.....O....$OOO............O.....$...OOOO.......O......$..O....O.....O.......$...OO..O..O.O........$.....O.O.O.O.........$.....O.O.OO..........$......O.O............$........O............$........OO...........$"
>...........OO........
............O........
............O.O......
..........OO.O.O.....
.........O.O.O.O.....
........O.O..O..OO...
.......O.....O....O..
......O.......OOOO...
.....O............OOO
....O.....O.....OO..O
...O.O...O.O...O.O...
O..OO.....O.....O....
OOO............O.....
...OOOO.......O......
..O....O.....O.......
...OO..O..O.O........
.....O.O.O.O.........
.....O.O.OO..........
......O.O............
........O............
........OO...........
</a></pre></td></tr></table></center>
<p><a name=merzenichsp18>:</a><b>Merzenich's p18</b> (p18) Found by Matthias Merzenich in June 2011.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO............$....O............$..O.O.OO.........$.O.O.O.O...OO....$.O.O........O....$OO.O........O.OO.$...O.OO....OO.O..$...O..........O..$OO.O.O.....OOO.OO$O..O.O.O..O..O.O.$..O..O.OOOO.O..O.$...OO.O....OO.O..$......O..O...O...$......O.O.OOO....$.......OO.O......$"
>...OO............
....O............
..O.O.OO.........
.O.O.O.O...OO....
.O.O........O....
OO.O........O.OO.
...O.OO....OO.O..
...O..........O..
OO.O.O.....OOO.OO
O..O.O.O..O..O.O.
..O..O.OOOO.O..O.
...OO.O....OO.O..
......O..O...O...
......O.O.OOO....
.......OO.O......
</a></pre></td></tr></table></center>
<p><a name=metacatacryst>:</a><b>metacatacryst</b> A 52-cell pattern exhibiting quadratic growth. Found
by Nick Gotts, December 2000. This was for some time the smallest
known pattern (in terms of initial population) with superlinear
growth. See <a href="lex_s.htm#switchenginepingpong">switch-engine ping-pong</a> for the lowest-population
<a href="lex_s.htm#superlineargrowth">superlinear growth</a> pattern as of July 2018, along with a list of
the record-holders.
<p><a name=metacell>:</a><b>metacell</b> CA logic circuitry that emulates the behavior of a single
cell. The circuitry is hard-wired to emulate a particular CA rule,
but changing the rule is usually a matter of making simple
adjustments. Known examples include David Bell's original 500x500
<a href="lex_u.htm#unitlifecell">unit Life cell</a>, Jared Prince's <a href="lex_d.htm#deepcell">Deep Cell</a>, Brice Due's
<a href="lex_o.htm#otcametapixel">OTCA metapixel</a>, and Adam P. Goucher's <a href="#megacell">megacell</a>.
<p><a name=metamorphosis>:</a><b>metamorphosis</b> An <a href="lex_o.htm#oscillator">oscillator</a> built by Robert Wainwright that uses
the following reaction (found by Bill Gosper) to turn <a href="lex_g.htm#glider">gliders</a> into
<a href="lex_l.htm#lwss">LWSS</a>, and converts these LWSS back into gliders by colliding them
head on using an <a href="lex_l.htm#lwsslwssbounce">LWSS-LWSS bounce</a>. There are two ways to do the
following reaction, because the <a href="lex_t.htm#twinbeesshuttlespark">twin bees shuttle spark</a> is
<a href="lex_s.htm#symmetric">symmetric</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...................O.........$....................O........$..................OOO........$.............................$.............................$.............................$.............................$.............................$............O...O.....O.OO...$OO.........O.....O....O.O.O..$OO.........O.........O....O..$...........OO...O.....O.O.O..$.............OOO......O.OO...$.............................$.............OOO.............$...........OO...O............$OO.........O...............OO$OO.........O.....O.........OO$............O...O............$"
>...................O.........
....................O........
..................OOO........
.............................
.............................
.............................
.............................
.............................
............O...O.....O.OO...
OO.........O.....O....O.O.O..
OO.........O.........O....O..
...........OO...O.....O.O.O..
.............OOO......O.OO...
.............................
.............OOO.............
...........OO...O............
OO.........O...............OO
OO.........O.....O.........OO
............O...O............
</a></pre></td></tr></table></center>
<p><a name=metamorphosisii>:</a><b>metamorphosis II</b> An oscillator built by Robert Wainwright in December
1994 based on the following p30 <a href="lex_g.htm#glider">glider</a>-to-<a href="lex_l.htm#lwss">LWSS</a> <a href="lex_c.htm#converter">converter</a> using
a <a href="lex_q.htm#queenbeeshuttlepair">queen bee shuttle pair</a>. This converter was first found by Paul
Rendell, January 1986 or earlier, but wasn't widely known about until
Paul Callahan rediscovered it in December 1994.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................O.$.....................O..$.....................OOO$........................$........................$.........O.O............$.........O..O...........$OO..........OO..........$OO........O...OO........$.....OO.....OO..........$....O....O..O...........$.........O.O............$........................$........................$........................$........................$................O.......$...............OOO......$..............OOOOO.....$.............O.O.O.O....$.............OO...OO....$........................$........................$................O.......$...............O.O......$...............O.O......$................O.......$...............OO.......$...............OO.......$...............OO.......$"
>......................O.
.....................O..
.....................OOO
........................
........................
.........O.O............
.........O..O...........
OO..........OO..........
OO........O...OO........
.....OO.....OO..........
....O....O..O...........
.........O.O............
........................
........................
........................
........................
................O.......
...............OOO......
..............OOOOO.....
.............O.O.O.O....
.............OO...OO....
........................
........................
................O.......
...............O.O......
...............O.O......
................O.......
...............OO.......
...............OO.......
...............OO.......
</a></pre></td></tr></table></center>
<p><a name=metapixel>:</a><b>metapixel</b> See <a href="#metacell">metacell</a>, <a href="lex_o.htm#otcametapixel">OTCA metapixel</a>.
<p><a name=methuselah>:</a><b>methuselah</b> Any small pattern that stabilizes only after a long time.
Term coined by Conway. Examples include <a href="lex_r.htm#rabbits">rabbits</a>, <a href="lex_a.htm#acorn">acorn</a>, the
<a href="lex_r.htm#rpentomino">R-pentomino</a>, <a href="lex_b.htm#blom">blom</a>, <a href="lex_i.htm#iwona">Iwona</a>, <a href="lex_j.htm#justyna">Justyna</a> and <a href="lex_l.htm#lidka">Lidka</a>. See also
<a href="lex_a.htm#ark">ark</a>.
<p><a name=mickeymouse>:</a><b>Mickey Mouse</b> (p1) The following <a href="lex_s.htm#stilllife">still life</a>, named by Mark Niemiec:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO....OO.$O..O..O..O$O..OOOO..O$.OO....OO.$...OOOO...$...O..O...$....OO....$"
>.OO....OO.
O..O..O..O
O..OOOO..O
.OO....OO.
...OOOO...
...O..O...
....OO....
</a></pre></td></tr></table></center>
<p><a name=middleweightemulator>:</a><b>middleweight emulator</b> = <a href="#mwemulator">MW emulator</a>
<p><a name=middleweightspaceship>:</a><b>middleweight spaceship</b> = <a href="#mwss">MWSS</a>
<p><a name=middleweightvolcano>:</a><b>middleweight volcano</b> = <a href="#mwvolcano">MW volcano</a>
<p><a name=minipressurecooker>:</a><b>mini pressure cooker</b> (p3) Found by Robert Wainwright before June
1972. Compare <a href="lex_p.htm#pressurecooker">pressure cooker</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$....O.O....$....O.O....$...OO.OO...$O.O.....O.O$OO.O.O.O.OO$...O...O...$...O.O.O...$....O.O....$.....O.....$"
>.....O.....
....O.O....
....O.O....
...OO.OO...
O.O.....O.O
OO.O.O.O.OO
...O...O...
...O.O.O...
....O.O....
.....O.....
</a></pre></td></tr></table></center>
<p><a name=mipvalue>:</a><b>M.I.P. value</b> The maximum <a href="lex_p.htm#population">population</a> divided by the initial
population for an unstable pattern. For example, the <a href="lex_r.htm#rpentomino">R-pentomino</a>
has an M.I.P. value of 63.8, since its maximum population is 319.
The term is no longer in use.
<p><a name=mitoscillator>:</a><b>MIT oscillator</b> = <a href="lex_c.htm#cuphook">cuphook</a>
<p><a name=mmmbreeder>:</a><b>MMM breeder</b> See <a href="lex_b.htm#breeder">breeder</a>.
<p><a name=mmsbreeder>:</a><b>MMS breeder</b> See <a href="lex_b.htm#breeder">breeder</a>.
<p><a name=mod>:</a><b>mod</b> The smallest number of generations it takes for an <a href="lex_o.htm#oscillator">oscillator</a>
or <a href="lex_s.htm#spaceship">spaceship</a> to reappear in its original form, possibly subject to
some rotation or reflection. The mod may be equal to the <a href="lex_p.htm#period">period</a>,
but it may also be a quarter of the period (for oscillators that
rotate 90 degrees every quarter period) or half the period (for other
oscillators which rotate 180 degrees every half period, and also for
<a href="lex_f.htm#flipper">flippers</a>).
<p><a name=mold>:</a><b>mold</b> (p4) Found by Achim Flammenkamp in 1988, but not widely known
until Dean Hickerson rediscovered it (and named it) in August 1989.
Compare with <a href="lex_j.htm#jam">jam</a>. In terms of its minimum <a href="lex_p.htm#population">population</a> of 12 it
ties with <a href="#mazing">mazing</a> as the smallest p4 <a href="lex_o.htm#oscillator">oscillator</a>. But in terms of
its 6x6 <a href="lex_b.htm#boundingbox">bounding box</a> it wins outright. In fact, of all oscillators
that fit in a 6x7 box it is the only one with <a href="lex_p.htm#period">period</a> greater than
2.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO.$..O..O$O..O.O$....O.$O.OO..$.O....$"
>...OO.
..O..O
O..O.O
....O.
O.OO..
.O....
</a></pre></td></tr></table></center>
<p><a name=monochromaticsalvo>:</a><b>monochromatic salvo</b> A <a href="lex_s.htm#slowsalvo">slow salvo</a> that uses gliders of only one
colour. For example, the slow salvos generated by
<a href="lex_h.htm#halfbakedknightship">half-baked knightships</a> are monochromatic, because they are
generated by a single type of reaction which can happen at any
position along a diagonal line. The smallest possible step size is
one <a href="lex_f.htm#fulldiagonal">full diagonal</a> (1fd), which is two <a href="lex_h.htm#halfdiagonal">half diagonals</a> (2hd), which
means that any single glider-producing reaction can only reach half
of the available glider <a href="lex_l.htm#lane">lanes</a>. See <a href="lex_c.htm#colourofaglider">colour of a glider</a>.
<p><a name=monogram>:</a><b>monogram</b> (p4) Found by Dean Hickerson, August 1989.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...OO$.O.O.O.$.OO.OO.$.O.O.O.$OO...OO$"
>OO...OO
.O.O.O.
.OO.OO.
.O.O.O.
OO...OO
</a></pre></td></tr></table></center>
<p><a name=monoparitysalvo>:</a><b>monoparity salvo</b> A <a href="lex_s.htm#slowsalvo">slow salvo</a> that uses gliders of only one
<a href="lex_p.htm#parity">parity</a>. Compare <a href="#monochromaticsalvo">monochromatic salvo</a>.
<p><a name=mooreneighbourhood>:</a><b>Moore neighbourhood</b> The set of all cells that are orthogonally or
diagonally adjacent to a cell or group of cells. The Moore
neighbourhood of a cell can be thought of as the points at a
Chebyshev distance of 1 from that cell. Compare
<a href="lex_v.htm#vonneumannneighbourhood">von Neumann neighbourhood</a>. The Conway's Life rule is based on the
Moore neighborhood, as are all the "Life-like" rules and many other
commonly investigated rule families.
<p>Cell neighbourhoods can also be defined with a higher range. The
Moore neighbourhood of range <i>n</i> can be defined recursively as the
Moore neighbourhood of the Moore neighbourhood of range <i>n</i>-1. For
example, the Moore neighbourhood of range 2 includes all cells that
are orthogonally or diagonally adjacent to the standard Moore
neighbourhood.
<p><a name=mooseantlers>:</a><b>moose antlers</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.....OO$O.......O$.OOO.OOO.$...O.O...$....O....$"
>OO.....OO
O.......O
.OOO.OOO.
...O.O...
....O....
</a></pre></td></tr></table></center>
<p><a name=mosquito>:</a><b>mosquito</b> See <a href="#mosquito1">mosquito1</a>, <a href="#mosquito2">mosquito2</a>. <a href="#mosquito3">mosquito3</a>, <a href="#mosquito4">mosquito4</a> and
<a href="#mosquito5">mosquito5</a>.
<p><a name=mosquito1>:</a><b>mosquito1</b> A <a href="lex_b.htm#breeder">breeder</a> constructed by Nick Gotts in September 1998.
The original version had an initial population of 103, which was then
the smallest for any known pattern with superlinear growth (beating
the record previously held by <a href="lex_j.htm#jaws">Jaws</a>). This was reduced to 97 by
Stephen Silver the following month, but was then almost immediately
superseded by <a href="#mosquito2">mosquito2</a>.
<p>Mosquito1 consists of the classic <a href="lex_p.htm#puffertrain">puffer train</a> plus four <a href="lex_l.htm#lwss">LWSS</a>
and four <a href="#mwss">MWSS</a> (mostly in <a href="lex_p.htm#predecessor">predecessor</a> form, to keep the population
down). Once it gets going it produces a new block-laying
<a href="lex_s.htm#switchengine">switch engine</a> (plus a lot of junk) every 280 generations. It is
therefore an MMS breeder, albeit a messy one.
<p><a name=mosquito2>:</a><b>mosquito2</b> A <a href="lex_b.htm#breeder">breeder</a> constructed by Nick Gotts in October 1998. Its
initial population of 85 was for a couple of hours the smallest for
any known pattern with superlinear growth, but was then beaten by
<a href="#mosquito3">mosquito3</a>.
<p>Mosquito2 is very like <a href="#mosquito1">mosquito1</a>, but uses two fewer <a href="#mwss">MWSS</a> and
one more <a href="lex_l.htm#lwss">LWSS</a>.
<p><a name=mosquito3>:</a><b>mosquito3</b> A <a href="lex_b.htm#breeder">breeder</a> constructed by Nick Gotts in October 1998. Its
initial population of 75 was at the time the smallest for any known
pattern with superlinear growth, but was beaten a few days later by
<a href="#mosquito4">mosquito4</a>.
<p>Mosquito3 has one less <a href="lex_l.htm#lwss">LWSS</a> than <a href="#mosquito2">mosquito2</a>. It is somewhat
different from the earlier mosquitoes in that the <a href="lex_s.htm#switchengine">switch engines</a> it
makes are glider-producing rather than block-laying.
<p><a name=mosquito4>:</a><b>mosquito4</b> A slightly improved version of <a href="#mosquito3">mosquito3</a> which Stephen
Silver produced in October 1998 making use of another discovery of
Nick Gotts (September 1997): an 8-cell pattern that evolves into a
<a href="lex_l.htm#lwss">LWSS</a> plus some junk. Mosquito4 is a <a href="lex_b.htm#breeder">breeder</a> with an initial
population of 73, at the time the smallest for any known pattern with
superlinear growth, but superseded a few days later by <a href="#mosquito5">mosquito5</a>.
<p><a name=mosquito5>:</a><b>mosquito5</b> A slightly improved version of <a href="#mosquito4">mosquito4</a> which Nick Gotts
produced in October 1998. The improvement is of a similar nature to
the improvement of mosquito4 over mosquito3. Mosquito5 is a
<a href="lex_b.htm#breeder">breeder</a> with an initial population of 71. This was the smallest
population for any known pattern with superlinear growth until it was
superseded by <a href="lex_t.htm#teeth">teeth</a>. See <a href="lex_s.htm#switchenginepingpong">switch-engine ping-pong</a> for the
smallest such pattern as of July 2018, along with a list of the
record-holders.
<p><a name=mould>:</a><b>mould</b> = <a href="#mold">mold</a>
<p><a name=movingsawtooth>:</a><b>moving sawtooth</b> A <a href="lex_s.htm#sawtooth">sawtooth</a> such that no cell is ON for more than a
finite number generations. David Bell constructed the first pattern
of this type, with a <i>c</i>/2 front end and a <i>c</i>/3 back end. The front end
is a <a href="lex_b.htm#blinkerpuffer">blinker puffer</a>. The back end ignites the <a href="lex_b.htm#blinkerfuse">blinker fuse</a>.
<p>The smallest currently known moving sawtooth was constructed in
April 2011 by a conwaylife.com forum user with the handle
'cloudy197'. The <i>c</i>/2 front end is a <a href="lex_b.htm#biblockpuffer">bi-block puffer</a>. The 2<i>c</i>/5
back end ignites the <a href="lex_b.htm#biblockfuse">bi-block fuse</a>.
<p><a name=msmbreeder>:</a><b>MSM breeder</b> See <a href="lex_b.htm#breeder">breeder</a>.
<p><a name=multipleroteightors>:</a><b>multiple roteightors</b> (p8) An <a href="lex_e.htm#extensible">extensible</a> oscillator family
consisting of one or more <a href="lex_r.htm#roteightor">roteightor</a> rotors, discovered by Dean
Hickerson in 1990.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................O...........$........OO........OOO...........$.........O.......O..............$.........O.O.....OO.............$..........OO.............O......$.......................OOO......$....OO........OOO.....O.........$.....O.......O..O......O........$.....O.O........O..O...O......O.$......OO..O....O..O.........OOO.$.........O........O..O.....O....$OO.......O..O.....OOO......OO...$.O.......OOO....................$.O.O............................$..OO....................OOO.....$...............OOO.....O..O.....$......OOO.....O..O........O.....$.....O..O........O..O....O..OO..$........O..O....O..O........O.O.$...O...O..O........O..O.......O.$...O......O..O.....OOO........OO$....O.....OOO...................$.OOO....................OO......$.O......................O.O.....$........OO......OOO.......O.....$.........O.....O..O.......OO....$......OOO.........O.............$......O......O...O..OO..........$.............O......O.O.........$..............O.......O.........$...........OOO........OO........$...........O....................$"
>....................O...........
........OO........OOO...........
.........O.......O..............
.........O.O.....OO.............
..........OO.............O......
.......................OOO......
....OO........OOO.....O.........
.....O.......O..O......O........
.....O.O........O..O...O......O.
......OO..O....O..O.........OOO.
.........O........O..O.....O....
OO.......O..O.....OOO......OO...
.O.......OOO....................
.O.O............................
..OO....................OOO.....
...............OOO.....O..O.....
......OOO.....O..O........O.....
.....O..O........O..O....O..OO..
........O..O....O..O........O.O.
...O...O..O........O..O.......O.
...O......O..O.....OOO........OO
....O.....OOO...................
.OOO....................OO......
.O......................O.O.....
........OO......OOO.......O.....
.........O.....O..O.......OO....
......OOO.........O.............
......O......O...O..OO..........
.............O......O.O.........
..............O.......O.........
...........OOO........OO........
...........O....................
</a></pre></td></tr></table></center>
<p><a name=multiplicity>:</a><b>multiplicity</b> In a <a href="lex_r.htm#reflectorlessrotatingoscillator">reflectorless rotating oscillator</a>, the maximum
number <i>n</i> of independent patterns that can orbit a single point, in a
way that reduces the period of the combined oscillator by a factor of
<i>n</i>.
<p><a name=multistatelife>:</a><b>multi-state Life</b> = <a href="lex_c.htm#colourisedlife">colourised Life</a>
<p><a name=multuminparvo>:</a><b>multum in parvo</b> (stabilizes at time 3933) A <a href="#methuselah">methuselah</a> found by
Charles Corderman, but not as long-lasting as his <a href="lex_a.htm#acorn">acorn</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OOO$..O..O$.O....$O.....$"
>...OOO
..O..O
.O....
O.....
</a></pre></td></tr></table></center>
<p><a name=mutteringmoat>:</a><b>muttering moat</b> Any <a href="lex_o.htm#oscillator">oscillator</a> whose <a href="lex_r.htm#rotor">rotor</a> consists of a closed
chain of cells each of which is adjacent to exactly two other rotor
cells. Compare <a href="lex_b.htm#babblingbrook">babbling brook</a>. Examples include the <a href="lex_b.htm#bipole">bipole</a>, the
<a href="lex_b.htm#blinker">blinker</a>, the <a href="lex_c.htm#clock">clock</a>, the <a href="lex_c.htm#cuphook">cuphook</a>, the <a href="lex_g.htm#graycounter">Gray counter</a>, the
<a href="lex_q.htm#quad">quad</a>, the <a href="lex_s.htm#scrubber">scrubber</a>, the <a href="lex_s.htm#skewedquad">skewed quad</a> and the p2 <a href="lex_s.htm#snakepit">snake pit</a>. The
following diagram shows a p2 example (by Dean Hickerson, May 1993)
with a larger rotor. See <a href="lex_r.htm#ringoffire">ring of fire</a> for a very large one.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.....$O.O.OO.$.....O.$.O..O..$..O....$..O.O.O$.....OO$"
>OO.....
O.O.OO.
.....O.
.O..O..
..O....
..O.O.O
.....OO
</a></pre></td></tr></table></center>
<p><a name=mwemulator>:</a><b>MW emulator</b> (p4) Found by Robert Wainwright in June 1980. See also
<a href="lex_e.htm#emulator">emulator</a> and <a href="lex_f.htm#filter">filter</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O.......$..OO.O...O.OO..$..O.........O..$...OO.....OO...$OOO..OOOOO..OOO$O..O.......O..O$.OO.........OO.$"
>.......O.......
..OO.O...O.OO..
..O.........O..
...OO.....OO...
OOO..OOOOO..OOO
O..O.......O..O
.OO.........OO.
</a></pre></td></tr></table></center>
<p><a name=mwss>:</a><b>MWSS</b> (<i>c</i>/2 orthogonally, p4) A middleweight spaceship, the third most
common <a href="lex_s.htm#spaceship">spaceship</a>. Found by Conway in 1970 by modifying a <a href="lex_l.htm#lwss">LWSS</a>.
See also <a href="lex_h.htm#hwss">HWSS</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O..$.O...O$O.....$O....O$OOOOO.$"
>...O..
.O...O
O.....
O....O
OOOOO.
</a></pre></td></tr></table></center>
<p>The MWSS possesses both a <a href="lex_t.htm#tailspark">tail spark</a> and a <a href="lex_b.htm#bellyspark">belly spark</a> which
can easily perturb other objects as it passes by. The spaceship can
also perturb some objects in additional ways. For examples see
<a href="lex_b.htm#blinkerpuffer">blinker puffer</a> and <a href="lex_g.htm#gliderturner">glider turner</a>.
<p>Dave Buckingham found that the MWSS can be synthesized using three
gliders, and can be constructed from two gliders and another small
object in several more ways. Here is the <a href="lex_g.htm#glidersynthesis">glider synthesis</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........O..$...........O.O$...........OO.$..............$..............$.O......OO....$.OO.....O.O...$O.O.....O.....$"
>...........O..
...........O.O
...........OO.
..............
..............
.O......OO....
.OO.....O.O...
O.O.....O.....
</a></pre></td></tr></table></center>
<p><a name=mwssemulator>:</a><b>MWSS emulator</b> = <a href="#mwemulator">MW emulator</a>
<p><a name=mwssoutoftheblue>:</a><b>MWSS out of the blue</b> The following reaction, found by Peter Rott in
November 1997, in which a <a href="lex_l.htm#lwss">LWSS</a> passing by a p46 <a href="lex_o.htm#oscillator">oscillator</a>
creates a <a href="#mwss">MWSS</a> travelling in the opposite direction. Together with
some reactions found by Dieter Leithner, and an LWSS-turning reaction
which Rott had found in November 1993 (but which was not widely known
until Paul Callahan rediscovered it in June 1994) this can be used to
prove that there exist <a href="lex_g.htm#gliderless">gliderless</a> guns for LWSS, MWSS and <a href="lex_h.htm#hwss">HWSS</a>
for every period that is a multiple of 46.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..O.................................$....O................................$O...O................................$.OOOO................................$.....................................$.....................................$.....................................$.....................................$.....................................$...................OO..............OO$..................OO...............OO$...................OOOOO.............$..OO................OOOO.............$..OO.....O...........................$........OOO.........OOOO.............$.......O.O.O.......OOOOO.............$........O..O......OO...............OO$........OOO........OO..............OO$.........O...........................$.....................................$.....................................$.....................................$.....................................$..O.......O..........................$.....................................$OOO.......OOO........................$.OO.OO.OO.OO.........................$..OOO...OOO..........................$...O.....O...........................$.....................................$.....................................$.....................................$.....................................$.....................................$.....................................$.....................................$.....................................$.....................................$.....................................$..OO.....OO..........................$..OO.....OO..........................$"
>O..O.................................
....O................................
O...O................................
.OOOO................................
.....................................
.....................................
.....................................
.....................................
.....................................
...................OO..............OO
..................OO...............OO
...................OOOOO.............
..OO................OOOO.............
..OO.....O...........................
........OOO.........OOOO.............
.......O.O.O.......OOOOO.............
........O..O......OO...............OO
........OOO........OO..............OO
.........O...........................
.....................................
.....................................
.....................................
.....................................
..O.......O..........................
.....................................
OOO.......OOO........................
.OO.OO.OO.OO.........................
..OOO...OOO..........................
...O.....O...........................
.....................................
.....................................
.....................................
.....................................
.....................................
.....................................
.....................................
.....................................
.....................................
.....................................
..OO.....OO..........................
..OO.....OO..........................
</a></pre></td></tr></table></center>
<p><a name=mwsstog>:</a><b>MWSS-to-G</b> See <a href="lex_1.htm#a-135degreemwsstog">135-degree MWSS-to-G</a>, <a href="lex_1.htm#a-45degreemwsstog">45-degree MWSS-to-G</a>.
<p><a name=mwvolcano>:</a><b>MW volcano</b> (p5) Found by Dean Hickerson in April 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......O......$....O...O....$.............$...O.....O...$.OOO.OOO.OOO.$O...OO.OO...O$O.OOO.O.OOOO.$.O...........$...O.O.O.OO.O$..OO.OOO.O.OO$...O.O..O....$...O..OO.....$..OO.........$"
>......O......
....O...O....
.............
...O.....O...
.OOO.OOO.OOO.
O...OO.OO...O
O.OOO.O.OOOO.
.O...........
...O.O.O.OO.O
..OO.OOO.O.OO
...O.O..O....
...O..OO.....
..OO.........
</a></pre></td></tr></table></center>
<p><a name=myexperiencewithbheptominosinoscillators>:</a><b>My Experience with B-heptominos in Oscillators</b> An article by Dave
Buckingham (October 1996) available from
<a href="http://conwaylife.com/ref/lifepage/patterns/bhept/bhept.html">http://conwaylife.com/ref/lifepage/patterns/bhept/bhept.html</a>. It
describes his discovery of <a href="lex_h.htm#herschelconduit">Herschel conduits</a>, including sufficient
(indeed ample) <a href="lex_s.htm#stable">stable</a> conduits to enable, for the first time, the
construction of period <i>n</i> oscillators and <a href="lex_t.htm#true">true</a> period <i>n</i> guns for
every sufficiently large integer <i>n</i>. See <a href="lex_h.htm#herschelloop">Herschel loop</a> and <a href="lex_e.htm#emu">emu</a>.
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
</body>
|