File: lex_p.htm

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (3116 lines) | stat: -rw-r--r-- 229,271 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (P)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">

<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
<p><a name=p>:</a><b>p</b> = <a href="#period">period</a>
<p><a name=p1>:</a><b>p1</b> Period 1, i.e., <a href="lex_s.htm#stable">stable</a>. In the context of logic <a href="lex_c.htm#circuit">circuitry</a>,
this tends to mean that a mechanism is constructed from
<a href="lex_h.htm#herschelconduit">Herschel conduits</a> that contain only <a href="lex_s.htm#stilllife">still lifes</a> as <a href="lex_c.htm#catalyst">catalysts</a>.
In the context of <a href="lex_s.htm#slowgliderconstruction">slow glider construction</a>, a P1 <a href="lex_s.htm#slowsalvo">slow salvo</a> is
one in which there are no constraints on the <a href="#parity">parity</a> of gliders in
the salvo, because the <a href="lex_i.htm#intermediatetarget">intermediate targets</a> are all stable
constellations. (The usual alternative is a "P2 slow salvo", where
the relative timing between adjacent gliders can be increased
arbitrarily, but only by multiples of two ticks.)
<p><a name=p104gun>:</a><b>p104 gun</b> A <a href="lex_g.htm#glidergun">glider gun</a> with period 104, found by Noam Elkies on 21
March 1996. It is based on an <a href="lex_r.htm#rpentomino">R-pentomino</a> <a href="lex_s.htm#shuttle">shuttle</a> reaction.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO........OO..........................$.OO.........O.......O..................$.OO.........O.OO...O.O............OO...$.O...........O......O.............OOO..$O.O......OO......O................OO.O.$O.OO.....OO....O....................O.O$................O..................O..O$....................................OO.$.OO....................................$.OO....................................$...............OO......................$................OO..................OO.$................O...................OO.$.OO......OOO........................OO.$O..O.......O........................O..$O.O.........................OO.....O.O.$.O.OO.......................OO.....O.OO$..OOO.............O....................$...OO............O.O...................$..................O.................OO.$....................................OO.$"
>.OO........OO..........................
.OO.........O.......O..................
.OO.........O.OO...O.O............OO...
.O...........O......O.............OOO..
O.O......OO......O................OO.O.
O.OO.....OO....O....................O.O
................O..................O..O
....................................OO.
.OO....................................
.OO....................................
...............OO......................
................OO..................OO.
................O...................OO.
.OO......OOO........................OO.
O..O.......O........................O..
O.O.........................OO.....O.O.
.O.OO.......................OO.....O.OO
..OOO.............O....................
...OO............O.O...................
..................O.................OO.
....................................OO.
</a></pre></td></tr></table></center>
<p><a name=p11bumper>:</a><b>p11 bumper</b> (p11) A periodic <a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a>
with a minimum <a href="lex_r.htm#repeattime">repeat time</a> of 44 ticks. Unlike the p5 through p8
cases where Noam Elkies' <a href="lex_d.htm#domino">domino</a>-spark based reflectors are
available, no small period-22 <a href="lex_c.htm#colourchanging">colour-changing</a> reflector is known.
A <a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a> reflector can be substituted for any <a href="lex_b.htm#bumper">bumper</a>.
This changes the timing of the output glider, which can be useful for
rephasing periodic glider streams.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............................O..$............................O.O$............................OO.$...............................$...............................$...............................$...............................$...............................$...............................$...............................$...............................$.................O.............$.................O.O...........$.................OO............$...............................$.........OO....OO..............$.........OO...O..O.............$...OO....OO....O.O.............$....O.....OO....O..............$..O.....O.OO...................$..OO..OOO...........OO.........$.....O....O.O.......O..........$..OOO.OO.OO.OOO......OOO.......$.O....O....O...O.......O.......$O.O.O...OO.O..O................$O.O......O.O.O.................$.O..OOOOO..OO..................$..OO....O.O....................$....OOOO..O....................$..OO......OO...................$..O..O.........................$....OO.........................$"
>............................O..
............................O.O
............................OO.
...............................
...............................
...............................
...............................
...............................
...............................
...............................
...............................
.................O.............
.................O.O...........
.................OO............
...............................
.........OO....OO..............
.........OO...O..O.............
...OO....OO....O.O.............
....O.....OO....O..............
..O.....O.OO...................
..OO..OOO...........OO.........
.....O....O.O.......O..........
..OOO.OO.OO.OOO......OOO.......
.O....O....O...O.......O.......
O.O.O...OO.O..O................
O.O......O.O.O.................
.O..OOOOO..OO..................
..OO....O.O....................
....OOOO..O....................
..OO......OO...................
..O..O.........................
....OO.........................
</a></pre></td></tr></table></center>
<p>In practice this reflector is not useful with input streams below
period 121, because lower-period bumpers can be used to reflect all
smaller multiples of 11 for which the bumper reaction can be made to
work.
<p><a name=p130shuttle>:</a><b>p130 shuttle</b> A <a href="lex_s.htm#shuttle">shuttle</a> found in March 2004 by David Eppstein, which
originally needed several period 5 oscillators for support. David
Bell found a reaction between two of the shuttles to produce a p130
glider gun. On 18 November 2017 Tanner Jacobi found that the
<a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#sidesnagger">sidesnagger</a> can be used to support the shuttle instead,
and this is shown here.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO................................OO.....$.....OO................................OO.....$..............................................$..............................................$.........................O....................$OO....OO..................O...........OO....OO$OO...O..O................OO..........O..O...OO$.....O.O...........OOOOOOO............O.O.....$......O...........OOO..O...............O......$..................O..OO.O.....................$...O..................O.O.................O...$..O.O...............OO.OO................O.O..$..OO................OOOO..................OO..$..............................................$..OO................OOOO..................OO..$..O.O...............OO.OO................O.O..$...O..................O.O.................O...$..................O..OO.O.....................$......O...........OOO..O...............O......$.....O.O...........OOOOOOO............O.O.....$OO...O..O................OO..........O..O...OO$OO....OO..................O...........OO....OO$.........................O....................$..............................................$..............................................$.....OO................................OO.....$.....OO................................OO.....$"
>.....OO................................OO.....
.....OO................................OO.....
..............................................
..............................................
.........................O....................
OO....OO..................O...........OO....OO
OO...O..O................OO..........O..O...OO
.....O.O...........OOOOOOO............O.O.....
......O...........OOO..O...............O......
..................O..OO.O.....................
...O..................O.O.................O...
..O.O...............OO.OO................O.O..
..OO................OOOO..................OO..
..............................................
..OO................OOOO..................OO..
..O.O...............OO.OO................O.O..
...O..................O.O.................O...
..................O..OO.O.....................
......O...........OOO..O...............O......
.....O.O...........OOOOOOO............O.O.....
OO...O..O................OO..........O..O...OO
OO....OO..................O...........OO....OO
.........................O....................
..............................................
..............................................
.....OO................................OO.....
.....OO................................OO.....
</a></pre></td></tr></table></center>
<p><a name=p144gun>:</a><b>p144 gun</b> A <a href="lex_g.htm#glidergun">glider gun</a> with <a href="lex_t.htm#true">true</a> period 144. The first one was
found by Bill Gosper in July 1994. For a full description and
pattern see <a href="lex_f.htm#factory">factory</a>.
<p><a name=p14gun>:</a><b>p14 gun</b> A glider gun which emits a period 14 glider stream. This is
the smallest possible period for any stream, so such a gun is of
great interest. There is no known true-period p14 glider gun, and
finding a small direct example is well beyond current search
algorithms' abilities. However, pseudo-period p14 guns have been
created by <a href="lex_i.htm#inject">injecting</a> gliders into a higher period glider stream.
The first pseudo p14 gun was built by Dieter Leithner in 1995.
Smaller pseudo p14 guns have since been constructed, but they are
still much too large to show here. The essential mechanism used by
them is demonstrated in <a href="lex_g.htm#gig">GIG</a>.
<p><a name=p15bouncer>:</a><b>p15 bouncer</b> Noam Elkies' <a href="lex_c.htm#colourchanging">colour-changing</a> glider reflector, with
<a href="lex_k.htm#karelsp15">Karel's p15</a> providing the necessary <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#spark">spark</a>. Compare to
the <a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_s.htm#snark">Snark</a>. The minimum <a href="lex_r.htm#repeattime">repeat time</a> is 30
ticks.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........................O..$........................O.O$........................OO.$...........................$...........................$...........................$...........................$.................O.........$................O..........$................OOO........$...........................$...OO....OO.........OO.....$..O..O..O..O....OO..OO.....$..OO......OO...O.O.........$..OO......OO....O..........$....OO..OO.................$..................OO.......$..................O........$...................OOO.....$.O..O.OO.O..O........O.....$OO..O....O..OO.............$.O..O.OO.O..O..............$"
>........................O..
........................O.O
........................OO.
...........................
...........................
...........................
...........................
.................O.........
................O..........
................OOO........
...........................
...OO....OO.........OO.....
..O..O..O..O....OO..OO.....
..OO......OO...O.O.........
..OO......OO....O..........
....OO..OO.................
..................OO.......
..................O........
...................OOO.....
.O..O.OO.O..O........O.....
OO..O....O..OO.............
.O..O.OO.O..O..............
</a></pre></td></tr></table></center>
<p><a name=p15bumper>:</a><b>p15 bumper</b> A periodic <a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a> with
<a href="lex_k.htm#karelsp15">Karel's p15</a> providing the necessary <a href="lex_s.htm#spark">spark</a>. The minimum
<a href="lex_r.htm#repeattime">repeat time</a> is 45 ticks. For an equivalent <a href="lex_c.htm#colourchanging">colour-changing</a>
periodic glider reflector see <a href="#p15bouncer">p15 bouncer</a>. A <a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a>
reflector can be substituted for any <a href="lex_b.htm#bumper">bumper</a>. This changes the
timing of the output glider, which can be useful for rephasing
periodic glider streams.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............................O.O$............................OO.$.............................O.$...............................$...............................$...............................$...............................$...............................$...............................$...............................$...............................$.................O.............$.................O.O...........$.................OO............$...............................$...............OO..............$.OO.OO.OO.....O..O.............$.OO....OO......O.O.............$.OO.OO.OO.......O..............$...............................$....OO..............OO.........$..O....O............O..........$.O......O............OOO.......$O........O.............O.......$O........O.....................$O........O.....................$.O......O......................$..O....O.......................$....OO.........................$"
>............................O.O
............................OO.
.............................O.
...............................
...............................
...............................
...............................
...............................
...............................
...............................
...............................
.................O.............
.................O.O...........
.................OO............
...............................
...............OO..............
.OO.OO.OO.....O..O.............
.OO....OO......O.O.............
.OO.OO.OO.......O..............
...............................
....OO..............OO.........
..O....O............O..........
.O......O............OOO.......
O........O.............O.......
O........O.....................
O........O.....................
.O......O......................
..O....O.......................
....OO.........................
</a></pre></td></tr></table></center>
<p><a name=p15reflector>:</a><b>p15 reflector</b> An ambiguous term that may refer to
<a href="#pdpairreflector">PD-pair reflector</a>, <a href="#p15bouncer">p15 bouncer</a>, or the more recently discovered
<a href="#p15bumper">p15 bumper</a>.
<p><a name=p184gun>:</a><b>p184 gun</b> A <a href="lex_t.htm#true">true</a> period 184 <a href="lex_d.htm#doublebarrelled">double-barrelled</a> glider gun found by
Dave Buckingham in July 1996. The <a href="lex_e.htm#engine">engine</a> in this gun is a
<a href="lex_h.htm#herscheldescendant">Herschel descendant</a>. Unlike previous glider guns, the reaction
flips on a diagonal so that both gliders travel in the same
direction.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...................O...........$.................OOO...........$................O..............$................OO.............$..............................O$............................OOO$...........................O...$...........................OO..$...............................$...............................$...............................$...............................$....................OO.........$...................O.O.........$...................O...........$...................OO.O........$..OO.................OO........$.O.O...........................$.O.............................$OO.............................$...............................$...............................$...............................$...............................$...............................$...............................$...............................$......OO.......................$.....O.O.......................$.....O.........................$....OO.........................$"
>...................O...........
.................OOO...........
................O..............
................OO.............
..............................O
............................OOO
...........................O...
...........................OO..
...............................
...............................
...............................
...............................
....................OO.........
...................O.O.........
...................O...........
...................OO.O........
..OO.................OO........
.O.O...........................
.O.............................
OO.............................
...............................
...............................
...............................
...............................
...............................
...............................
...............................
......OO.......................
.....O.O.......................
.....O.........................
....OO.........................
</a></pre></td></tr></table></center>
<p><a name=p1megacell>:</a><b>p1 megacell</b> (p1 circuitry) A <a href="lex_m.htm#metacell">metacell</a> constructed by Adam P.
Goucher in 2008, capable of being programmed to emulate any Moore
neighborhood rule, including isotropic and anisotropic non-totalistic
rules. It fits in a 32768 by 32768 bounding box, with the resulting
metacell grid at 45 degrees to the underlying Life grid. Like the
<a href="lex_o.htm#otcametapixel">OTCA metapixel</a>, it includes a large "pixel" area so that the state
of the megacell can easily be seen even at extremely small-scale zoom
levels.
<p><a name=p1telegraph>:</a><b>p1 telegraph</b> (p1 circuitry) A variant of Jason Summers' <a href="lex_t.htm#telegraph">telegraph</a>
pattern, constructed in 2010 by Adam P. Goucher using only stable
circuitry. A single incoming glider produces the entire ten-part
composite lightspeed signal that restores the beehive-chain
<a href="lex_l.htm#lightspeedwire">lightspeed wire</a> to its original position. The signal is detected
at the other end of the telegraph and converted back into a single
output signal. This simplification came at the cost of a much slower
transmission speed, one bit per 91080 ticks. In this mechanism,
sending the entire ten-part signal constitutes a '1' bit, and not
sending the signal means '0'. See also <a href="lex_h.htm#highbandwidthtelegraph">high-bandwidth telegraph</a>.
<p><a name=p22gun>:</a><b>p22 gun</b> A <a href="lex_t.htm#true">true</a> period 22 <a href="lex_g.htm#glidergun">glider gun</a> constructed by David Eppstein
in August 2000, using two interacting copies of a p22 oscillator
found earlier the same day by Jason Summers.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..................OO.........................$...................O.......O.................$...................O.O..............OO.......$....................OO............OO..O......$........................OOO.......OO.OO......$........................OO.OO.......OOO......$........................O..OO............OO..$.........................OO..............O.O.$...................................O.......O.$...........................................OO$.............................................$OO...........................................$.O...........................................$.O.O.............OOO.........................$..OO...O........O...O........................$......O.OO......O....O.......................$.....O....O......OO.O........................$......O...O........O...OO....................$.......OOO.............O.O...................$.........................O...................$.........................OO..................$"
>..................OO.........................
...................O.......O.................
...................O.O..............OO.......
....................OO............OO..O......
........................OOO.......OO.OO......
........................OO.OO.......OOO......
........................O..OO............OO..
.........................OO..............O.O.
...................................O.......O.
...........................................OO
.............................................
OO...........................................
.O...........................................
.O.O.............OOO.........................
..OO...O........O...O........................
......O.OO......O....O.......................
.....O....O......OO.O........................
......O...O........O...OO....................
.......OOO.............O.O...................
.........................O...................
.........................OO..................
</a></pre></td></tr></table></center>
<p><a name=p246gun>:</a><b>p246 gun</b> A <a href="lex_t.htm#true">true</a> period <a href="lex_g.htm#glidergun">glider gun</a> with period 246, discovered by
Dave Buckingham in June 1996. The 180-degree mod-123 symmetry of its
<a href="lex_b.htm#bookend">bookend</a>-based <a href="lex_e.htm#engine">engine</a> makes it trivial to modify it into a
<a href="lex_d.htm#doublebarrelled">double-barrelled</a> gun. Its single-barreled form is shown below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..................................O........$..................................OOO......$................................OO...O.....$...............................O.O.OO.O....$..............................O..O..O.O....$....................................O.OO...$..................................O.O......$................................O.O.O......$.................................OO.OO.....$...........................................$OO.........................................$.O.........................................$.O.O.................OO....................$..OO..................O..................OO$....................O.O..................O.$....................OO.................O.O.$.......................................OO..$...........................................$...........................................$...........................................$...........................................$...........................................$...........................................$.............................OO............$.......................O.....OO............$.................OO.OOO....................$.................O..OOOO...................$.................O.OO......................$...........................................$...........................................$.....O.....................................$....O.OOOO.................................$...O.O.OOO.................................$..O.O......................................$...O.......................................$...OO......................................$...OO......................................$...OO......................................$"
>..................................O........
..................................OOO......
................................OO...O.....
...............................O.O.OO.O....
..............................O..O..O.O....
....................................O.OO...
..................................O.O......
................................O.O.O......
.................................OO.OO.....
...........................................
OO.........................................
.O.........................................
.O.O.................OO....................
..OO..................O..................OO
....................O.O..................O.
....................OO.................O.O.
.......................................OO..
...........................................
...........................................
...........................................
...........................................
...........................................
...........................................
.............................OO............
.......................O.....OO............
.................OO.OOO....................
.................O..OOOO...................
.................O.OO......................
...........................................
...........................................
.....O.....................................
....O.OOOO.................................
...O.O.OOO.................................
..O.O......................................
...O.......................................
...OO......................................
...OO......................................
...OO......................................
</a></pre></td></tr></table></center>
<p><a name=p24gun>:</a><b>p24 gun</b> A <a href="lex_g.htm#glidergun">glider gun</a> with <a href="lex_t.htm#true">true</a> period 24. The first one was
found by Noam Elkies in June 1997. It uses three p4 <a href="lex_o.htm#oscillator">oscillators</a> to
<a href="lex_h.htm#hassle">hassle</a> a pair of <a href="lex_t.htm#trafficlight">traffic lights</a>. One of the oscillators was very
large and custom-made. Shown below is a much smaller version built
by Jason Summers and Karel Suhajda in December 2002, using the same
mechanism but with a smaller oscillator:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................O..O................$.....................OOOOOO................$.................OO.O........O.............$.............OO.O.O.O.OOOOOOOO..O..........$...........OOO......O.O...O...OOO..........$..........O....O..O.O...O...OO.............$...........OOOOO..O.OOOO.O...O.OO..........$............O....OO.....O.O.OO..O....OO.O..$..........O...OO...O.OO..OO..OO.....O.OO.O.$..........OOOOO.OOOO.O..............O....O.$.....................O........O..OO.O.OO.OO$............OOO...OOO...O.O......O.O.O.O.O.$...........O......O....O..O.O.O....O.O.O.O.$............OO..O.O.......O..OO...O.O.OO.OO$OO.OO..................OO.OO.OOO..O...O.O..$.O.O......O...O.O.O....O..O.............O..$O..O..O..O.O...O.OOO...O.O........O.O.OO...$OOO.OO.O.OOO...........O.........OO........$...O.O.O.OO......................O.........$..O.OO...O.O..............OO.....O..O......$.O...OO....O.............OOO.....O.........$.OO.......OO..............OO.....OO........$..........OO......OOO.............O.O.OO...$.OO.......OO......O.O...................O..$.O...OO....O......OOO.............O...O.O..$..O.OO...O.O......................O.O.OO.OO$...O.O.O.OO........................O.O.O.O.$OOO.OO.O.OOO.....................O.O.O.O.O.$O..O..O..O.O.........OO..........OO.O.OO.OO$.O.O......O..........O..............O....O.$OO.OO.................OOO...........O.OO.O.$........................O............OO.O..$"
>.......................O..O................
.....................OOOOOO................
.................OO.O........O.............
.............OO.O.O.O.OOOOOOOO..O..........
...........OOO......O.O...O...OOO..........
..........O....O..O.O...O...OO.............
...........OOOOO..O.OOOO.O...O.OO..........
............O....OO.....O.O.OO..O....OO.O..
..........O...OO...O.OO..OO..OO.....O.OO.O.
..........OOOOO.OOOO.O..............O....O.
.....................O........O..OO.O.OO.OO
............OOO...OOO...O.O......O.O.O.O.O.
...........O......O....O..O.O.O....O.O.O.O.
............OO..O.O.......O..OO...O.O.OO.OO
OO.OO..................OO.OO.OOO..O...O.O..
.O.O......O...O.O.O....O..O.............O..
O..O..O..O.O...O.OOO...O.O........O.O.OO...
OOO.OO.O.OOO...........O.........OO........
...O.O.O.OO......................O.........
..O.OO...O.O..............OO.....O..O......
.O...OO....O.............OOO.....O.........
.OO.......OO..............OO.....OO........
..........OO......OOO.............O.O.OO...
.OO.......OO......O.O...................O..
.O...OO....O......OOO.............O...O.O..
..O.OO...O.O......................O.O.OO.OO
...O.O.O.OO........................O.O.O.O.
OOO.OO.O.OOO.....................O.O.O.O.O.
O..O..O..O.O.........OO..........OO.O.OO.OO
.O.O......O..........O..............O....O.
OO.OO.................OOO...........O.OO.O.
........................O............OO.O..
</a></pre></td></tr></table></center>
<p><a name=p256gun>:</a><b>p256 gun</b> A <a href="lex_t.htm#true">true</a> period 256 four-barrelled <a href="lex_g.htm#glidergun">glider gun</a> found by
Dave Buckingham in September 1995. It uses four <a href="lex_r.htm#r64">R64</a> <a href="lex_c.htm#conduit">conduits</a> to
make the second smallest known <a href="lex_h.htm#herschelloop">Herschel loop</a> (after the
<a href="lex_s.htm#simkinglidergun">Simkin glider gun</a>). The p256 gun was an early "teaser" from Dave
Buckingham before he released his full <a href="lex_h.htm#herschel">Herschel</a> <a href="lex_t.htm#technology">technology</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............................OO................$...............................OO.....OO.........$......................................OO.........$.................................................$.................................................$.......OO........OO.................OO...........$.......OO.........O.................OO...........$..................O.O.....................OO.....$...................OO.....................OO.....$.OO..............................................$.OO..............................................$.....OO..........................................$.....OO...............O..........................$......................O.O........................$......................OOO........................$........................O........................$OO...............................................$OO.........................................OO....$...........................................O.....$.........................................O.O.....$.........................................OO......$.................................................$.................................................$.................................................$.................................................$.................................................$.................................................$.................................................$.................................................$.................................................$.................................................$......OO.......................................OO$......O........................................OO$.......O.........................................$......OO.........................................$......................O.O........................$.......................OO.................OO.....$.......................O..................OO.....$..............................................OO.$..............................................OO.$.....OO..........................................$.....OO..........................................$...........OO...........................OO.......$...........OO...........................OO.......$.................................................$.................................................$.........OO......................................$.........OO.....OO...............................$................OO...............................$"
>...............................OO................
...............................OO.....OO.........
......................................OO.........
.................................................
.................................................
.......OO........OO.................OO...........
.......OO.........O.................OO...........
..................O.O.....................OO.....
...................OO.....................OO.....
.OO..............................................
.OO..............................................
.....OO..........................................
.....OO...............O..........................
......................O.O........................
......................OOO........................
........................O........................
OO...............................................
OO.........................................OO....
...........................................O.....
.........................................O.O.....
.........................................OO......
.................................................
.................................................
.................................................
.................................................
.................................................
.................................................
.................................................
.................................................
.................................................
.................................................
......OO.......................................OO
......O........................................OO
.......O.........................................
......OO.........................................
......................O.O........................
.......................OO.................OO.....
.......................O..................OO.....
..............................................OO.
..............................................OO.
.....OO..........................................
.....OO..........................................
...........OO...........................OO.......
...........OO...........................OO.......
.................................................
.................................................
.........OO......................................
.........OO.....OO...............................
................OO...............................
</a></pre></td></tr></table></center>
Either <a href="lex_e.htm#eater">eaters</a> or <a href="lex_s.htm#snake">snakes</a> can be added as shown above, to suppress
three of the glider streams so that only one stream escapes. This
gun's p256 glider stream is well-suited for repeated reactions with
receding <a href="lex_c.htm#cordership">Corderships</a>, or for "Hashlife-friendly" <a href="lex_s.htm#signal">signal</a>
<a href="lex_c.htm#circuit">circuitry</a>.
<p><a name=p29pentadecathlonhassler>:</a><b>p29 pentadecathlon hassler</b> A <a href="lex_h.htm#hassler">hassler</a> where two copies of a period
29 oscillator (which is itself a <a href="#prepulsar">pre-pulsar</a> hassler) change the
period of a <a href="#pentadecathlon">pentadecathlon</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........O.......O....................O.......O..........$.........O.O.....O.O..................O.O.....O.O.........$..........O.......O....................O.......O..........$..........................................................$..........................................................$..........................................................$.........................OO....OO.........................$.........................OOO..OOO.........................$...OO....................OO....OO....................OO...$...O.......O.....O......................O.....O.......O...$OO.O......OOO...OOO....................OOO...OOO......O.OO$O..OO.....OOO...OOO....................OOO...OOO.....OO..O$.OO....O.............OO............OO.............O....OO.$...OOOOO.............O.O..........O.O.............OOOOO...$...O....OO.............O..........O.............OO....O...$....OO..O.......OO.....OO........OO.....OO.......O..OO....$......O.O.......OO......................OO.......O.O......$......O.O.O..O..............................O..O.O.O......$.......OO.OOOO..............................OOOO.OO.......$.........O......................................O.........$.........O.O..................................O.O.........$..........OO..................................OO..........$"
>..........O.......O....................O.......O..........
.........O.O.....O.O..................O.O.....O.O.........
..........O.......O....................O.......O..........
..........................................................
..........................................................
..........................................................
.........................OO....OO.........................
.........................OOO..OOO.........................
...OO....................OO....OO....................OO...
...O.......O.....O......................O.....O.......O...
OO.O......OOO...OOO....................OOO...OOO......O.OO
O..OO.....OOO...OOO....................OOO...OOO.....OO..O
.OO....O.............OO............OO.............O....OO.
...OOOOO.............O.O..........O.O.............OOOOO...
...O....OO.............O..........O.............OO....O...
....OO..O.......OO.....OO........OO.....OO.......O..OO....
......O.O.......OO......................OO.......O.O......
......O.O.O..O..............................O..O.O.O......
.......OO.OOOO..............................OOOO.OO.......
.........O......................................O.........
.........O.O..................................O.O.........
..........OO..................................OO..........
</a></pre></td></tr></table></center>
<p><a name=p30gun>:</a><b>p30 gun</b> A <a href="lex_g.htm#glidergun">glider gun</a> with <a href="lex_t.htm#true">true</a> period 30. The first one, found
by Bill Gosper in November 1970 (see <a href="lex_g.htm#gosperglidergun">Gosper glider gun</a>), was also
the first gun found of any period. All known p30 glider guns are
made from two or more interacting <a href="lex_q.htm#queenbeeshuttle">queen bee shuttles</a>. Paul Callahan
found 30 different ways that three <a href="lex_q.htm#queenbeeshuttle">queen bee shuttles</a> can react to
form a period 30 glider gun. One of the most interesting of these is
shown below in which the gliders emerge in an unexpected direction.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...................................$.O...................................$.O.O......O.............O............$..OO......OOOO........O.O............$...........OOOO......O.O.............$...........O..O.....O..O.............$...........OOOO......O.O.............$..........OOOO........O.O........OO..$..........O.............O........O.O.$...................................O.$...................................OO$.....................................$................OOO..................$...............OO.OO.................$...............OO.OO.................$...............OOOOO.................$..............OO...OO................$.....................................$.....................................$.....................................$.....................................$.....................................$.....................................$..............OO.....................$...............O.....................$............OOO......................$............O........................$"
>OO...................................
.O...................................
.O.O......O.............O............
..OO......OOOO........O.O............
...........OOOO......O.O.............
...........O..O.....O..O.............
...........OOOO......O.O.............
..........OOOO........O.O........OO..
..........O.............O........O.O.
...................................O.
...................................OO
.....................................
................OOO..................
...............OO.OO.................
...............OO.OO.................
...............OOOOO.................
..............OO...OO................
.....................................
.....................................
.....................................
.....................................
.....................................
.....................................
..............OO.....................
...............O.....................
............OOO......................
............O........................
</a></pre></td></tr></table></center>
<p><a name=p30reflector>:</a><b>p30 reflector</b> = <a href="lex_b.htm#buckaroo">buckaroo</a>
<p><a name=p30shuttle>:</a><b>p30 shuttle</b> = <a href="lex_q.htm#queenbeeshuttle">queen bee shuttle</a>
<p><a name=p36gun>:</a><b>p36 gun</b> A glider gun with <a href="lex_t.htm#true">true</a> period 36. The first one was found
by Jason Summers in 2004. Shown below is a smaller version using
improvements by Adam P. Goucher and Scot Ellison:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................................................O.$..............................................OOO.$.............................................O....$.............................................OO...$..................................................$..................................................$..................................................$..................................................$..................................................$..................................................$.................................OO...............$................................O..O..............$................................O.O.O.............$.................................O..OOO...........$..................................................$...................................OO.....OO......$...................................O.....O.OO.....$.........................................O..O.....$..........................................OOO.....$......................................OO..OO......$.....................................OOO..........$.....................................O..O.........$.....................................OO.O.....O...$......................................OO.....OO...$..........................OO......................$OO.......................O..O..............OOO..O.$.O........................O.O................O.O.O$.O.O..................OO...O..................O..O$..OO..........O........O.OO....................OO.$.............OO..........O........................$............OO.O.........O........................$.............O.O..................................$..............OO..................................$.......................OO.........................$.......................O.O........................$.............O.........O.OO.......................$.............O..........OO........................$............OO.O........O.........................$...........O...OO.................................$..........O.O.....................................$..........O..O....................................$...........OO...........O...........OO............$.......................O.O...........O............$.......................O.O..OOOOOOOOO.............$....................OO.O..O.OOOOOOO..OOO..........$....................OO.O....OOOOOO..O..O..........$.......................O.............OO...........$.......................O.O....OO..................$........................OO....OO..................$"
>................................................O.
..............................................OOO.
.............................................O....
.............................................OO...
..................................................
..................................................
..................................................
..................................................
..................................................
..................................................
.................................OO...............
................................O..O..............
................................O.O.O.............
.................................O..OOO...........
..................................................
...................................OO.....OO......
...................................O.....O.OO.....
.........................................O..O.....
..........................................OOO.....
......................................OO..OO......
.....................................OOO..........
.....................................O..O.........
.....................................OO.O.....O...
......................................OO.....OO...
..........................OO......................
OO.......................O..O..............OOO..O.
.O........................O.O................O.O.O
.O.O..................OO...O..................O..O
..OO..........O........O.OO....................OO.
.............OO..........O........................
............OO.O.........O........................
.............O.O..................................
..............OO..................................
.......................OO.........................
.......................O.O........................
.............O.........O.OO.......................
.............O..........OO........................
............OO.O........O.........................
...........O...OO.................................
..........O.O.....................................
..........O..O....................................
...........OO...........O...........OO............
.......................O.O...........O............
.......................O.O..OOOOOOOOO.............
....................OO.O..O.OOOOOOO..OOO..........
....................OO.O....OOOOOO..O..O..........
.......................O.............OO...........
.......................O.O....OO..................
........................OO....OO..................
</a></pre></td></tr></table></center>
<p><a name=p3bumper>:</a><b>p3 bumper</b> A variant of Tanner Jacobi's <a href="lex_b.htm#bumper">bumper</a> found by Arie Paap in
April 2018. Two forms of the period 3 <a href="lex_o.htm#oscillator">oscillator</a> <a href="lex_c.htm#catalyst">catalyst</a> are
shown below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O........................O..................$O.O......................O.O..................$.OO.......................OO..................$......................O.......................$....................OOO.......................$...................O..........................$...................OO.........................$..................OO..........................$.......OO........OO.............OO.........OO.$......O..O....O...O............O..O....O.OOOO.$......O.O...OOO.OOO............O.O...OOO..O.O.$.......O.........O..............O.............$............OOOOOO...................OOO......$..OO........OO.O...........OO.......O.OOO.O.OO$...O.......OO...............O......O....O.OO.O$OOO......................OOO.......OO..OOO....$O........................O............O...OOO.$.......................................OOO..O.$.........................................O....$"
>..O........................O..................
O.O......................O.O..................
.OO.......................OO..................
......................O.......................
....................OOO.......................
...................O..........................
...................OO.........................
..................OO..........................
.......OO........OO.............OO.........OO.
......O..O....O...O............O..O....O.OOOO.
......O.O...OOO.OOO............O.O...OOO..O.O.
.......O.........O..............O.............
............OOOOOO...................OOO......
..OO........OO.O...........OO.......O.OOO.O.OO
...O.......OO...............O......O....O.OO.O
OOO......................OOO.......OO..OOO....
O........................O............O...OOO.
.......................................OOO..O.
.........................................O....
</a></pre></td></tr></table></center>
<p>For bounding box optimization purposes, it's also possible to
replace the <a href="lex_e.htm#eater1">eater1</a> in a p3, p6 or p9 bumper with another period 3
oscillator, saving one row along the south edge at the cost of a
higher population.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O.........................$..O.O.........................$...OO.........................$..............................$..............................$..............................$..............................$..............................$.............................O$......O......O.............OOO$.O...O.O...O.O............O...$O.O..O.O....OO.............O..$O.OOO.O.................O..O..$.O..OO........OO........O.....$..OOO........O..O....OOO..O...$.............O.O....OOOO.O....$....OOO.......O...............$...O..O............O..O.O.....$...OOOOO.OO...........O.......$.O.O...OO.O.......OOO.........$.OO......O....................$"
>....O.........................
..O.O.........................
...OO.........................
..............................
..............................
..............................
..............................
..............................
.............................O
......O......O.............OOO
.O...O.O...O.O............O...
O.O..O.O....OO.............O..
O.OOO.O.................O..O..
.O..OO........OO........O.....
..OOO........O..O....OOO..O...
.............O.O....OOOO.O....
....OOO.......O...............
...O..O............O..O.O.....
...OOOOO.OO...........O.......
.O.O...OO.O.......OOO.........
.OO......O....................
</a></pre></td></tr></table></center>
<p>The <a href="lex_r.htm#repeattime">repeat time</a> for all these variants is 36 ticks, as shown.
<p><a name=p44gun>:</a><b>p44 gun</b> A <a href="lex_g.htm#glidergun">glider gun</a> with a <a href="lex_t.htm#true">true</a> period of 44. The first one was
found by Dave Buckingham in April 1992. It uses two interacting
copies of an <a href="lex_o.htm#oscillator">oscillator</a> which he also found. In 1996 he found a
gun which only used one copy of the oscillator. Paul Callahan
improved it in 1997, resulting in the gun shown below:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................OO......OO.................$.................OO......OO.................$............................................$............................................$............................................$............................................$............................................$............................................$.OO......................................OO.$O.O......................................O.O$O.O.OO................................OO.O.O$.O.O.O................................O.O.O.$...O....................................O...$..O..O.............O....O.............O..O..$..O...............OO....OO...............O..$..O...O..........O........O..........O...O..$..O...O...........OO....OO...........O...O..$..O................O....O................O..$..O..O................................O..O..$...O....................................O...$.O.O.O................................O.O.O.$O.O.OO................................OO.O.O$O.O......................................O.O$.OO......................................OO.$............................................$............................................$............................................$...............OO...........................$................O...........................$.............OOO............................$.............O....................OO........$..................OO..............O.O.......$..................OO................O.......$....................................OO......$............................................$............................................$............................................$....................OO......................$...................O.O......................$...................O........................$..................OO........................$"
>.................OO......OO.................
.................OO......OO.................
............................................
............................................
............................................
............................................
............................................
............................................
.OO......................................OO.
O.O......................................O.O
O.O.OO................................OO.O.O
.O.O.O................................O.O.O.
...O....................................O...
..O..O.............O....O.............O..O..
..O...............OO....OO...............O..
..O...O..........O........O..........O...O..
..O...O...........OO....OO...........O...O..
..O................O....O................O..
..O..O................................O..O..
...O....................................O...
.O.O.O................................O.O.O.
O.O.OO................................OO.O.O
O.O......................................O.O
.OO......................................OO.
............................................
............................................
............................................
...............OO...........................
................O...........................
.............OOO............................
.............O....................OO........
..................OO..............O.O.......
..................OO................O.......
....................................OO......
............................................
............................................
............................................
....................OO......................
...................O.O......................
...................O........................
..................OO........................
</a></pre></td></tr></table></center>
<p><a name=p44mwssgun>:</a><b>p44 MWSS gun</b> A gun discovered by Dieter Leithner in April 1997, in a
somewhat larger form. This was the smallest known gliderless gun and
smallest known MWSS gun until the construction in 2017 of the gun
shown under <a href="lex_g.htm#gliderless">gliderless</a>, based on <a href="lex_t.htm#tannersp46">Tanner's p46</a>.
<p>The p44 MWSS gun is based on a p44 oscillator discovered by Dave
Buckingham in early 1992, shown here in an improved form found in
January 2005 by Jason Summers using a new p4 <a href="lex_s.htm#sparker">sparker</a> by Nicolay
Beluchenko. A glider shape appears in this gun for three consecutive
generations, but always as part of a larger <a href="lex_c.htm#cluster">cluster</a>, so even a
purist would regard this gun as gliderless.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O..........................................$..OO...O.O....O...................................$..O..OO..O.O.OO.O..OOO..OO........................$....OO.......OO.O.O.OO..OO........................$...OOO.......O.......OOO.........O................$.......................O.......OOO................$.......................O......O........OOO........$..............................OO.......O..O.......$.........OO..............O.............O..........$.........OO.............O..............O...O......$.........................OO............O..........$........................O.O.............O.O.......$..................................................$.......................O.O.....OOO................$........................O.....O..O..............OO$OO............OOO.......O......OO...........OO.O.O$OO...........O...O..........................OO.O..$.............OO.OO..............................O.$.................................OO.........OO.OO.$..............................OO.............O.O..$.............................................O.O..$..............................................O...$.............OO.OO.............O.O................$OO...........O...O.............OO.................$OO............OOO.................................$...........................OO.....................$...........................O.O....................$.............................O....................$.............................OO...................$..................................................$.........OO.......................................$.........OO.......................................$..................................................$.......................O..........................$.......................O..........................$...OOO.......O.......OOO..........................$....OO.......OO.O.O.OO..OO........................$..O..OO..O.O.OO.O..OOO..OO........................$..OO...O.O....O...................................$.......O..........................................$"
>.......O..........................................
..OO...O.O....O...................................
..O..OO..O.O.OO.O..OOO..OO........................
....OO.......OO.O.O.OO..OO........................
...OOO.......O.......OOO.........O................
.......................O.......OOO................
.......................O......O........OOO........
..............................OO.......O..O.......
.........OO..............O.............O..........
.........OO.............O..............O...O......
.........................OO............O..........
........................O.O.............O.O.......
..................................................
.......................O.O.....OOO................
........................O.....O..O..............OO
OO............OOO.......O......OO...........OO.O.O
OO...........O...O..........................OO.O..
.............OO.OO..............................O.
.................................OO.........OO.OO.
..............................OO.............O.O..
.............................................O.O..
..............................................O...
.............OO.OO.............O.O................
OO...........O...O.............OO.................
OO............OOO.................................
...........................OO.....................
...........................O.O....................
.............................O....................
.............................OO...................
..................................................
.........OO.......................................
.........OO.......................................
..................................................
.......................O..........................
.......................O..........................
...OOO.......O.......OOO..........................
....OO.......OO.O.O.OO..OO........................
..O..OO..O.O.OO.O..OOO..OO........................
..OO...O.O....O...................................
.......O..........................................
</a></pre></td></tr></table></center>
<p><a name=p45gun>:</a><b>p45 gun</b> A <a href="lex_t.htm#true">true</a>-period glider gun discovered by Matthias Merzenich
in April 2010. By most measures this is the smallest known
odd-period gun of any type, either true-period or <a href="#pseudo">pseudo</a>-period:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............O..O..O..........................$...............OOOOOOO..........................$................................................$...............OOOOOOO..........................$...............O..O..O..........................$................................................$................................................$................................................$................................................$................................................$................O..O............................$............OO..O..O............................$............OO..O..O.......OO...................$...........................OO....OO...O..O...OO.$.................................OOOOO....OOOOO.$.................................OO...O..O...OO.$...........................OOO..................$................................................$OO.OO...........................................$.O.O.......................OOO..................$.O.O......OOO...................................$OO.OO.............................O.O...........$.O.O...............................OO...........$.O.O......OOO......................O............$OO.OO...........................................$................................................$...........OO...................................$...........OO.......O..O..OO....................$....................O..O..OO....................$....................O..O........................$................................................$................................................$...............................................O$.............................................O.O$..............................................OO$..................O..O..O.......................$..................OOOOOOO.......................$................................................$..................OOOOOOO.......................$..................O..O..O.......................$"
>...............O..O..O..........................
...............OOOOOOO..........................
................................................
...............OOOOOOO..........................
...............O..O..O..........................
................................................
................................................
................................................
................................................
................................................
................O..O............................
............OO..O..O............................
............OO..O..O.......OO...................
...........................OO....OO...O..O...OO.
.................................OOOOO....OOOOO.
.................................OO...O..O...OO.
...........................OOO..................
................................................
OO.OO...........................................
.O.O.......................OOO..................
.O.O......OOO...................................
OO.OO.............................O.O...........
.O.O...............................OO...........
.O.O......OOO......................O............
OO.OO...........................................
................................................
...........OO...................................
...........OO.......O..O..OO....................
....................O..O..OO....................
....................O..O........................
................................................
................................................
...............................................O
.............................................O.O
..............................................OO
..................O..O..O.......................
..................OOOOOOO.......................
................................................
..................OOOOOOO.......................
..................O..O..O.......................
</a></pre></td></tr></table></center>
<p><a name=p46gun>:</a><b>p46 gun</b> A glider gun which has true-period 46. The first one found
was the <a href="lex_n.htm#newgun">new gun</a> by Bill Gosper in 1971. Prior to the discovery of
<a href="lex_t.htm#tannersp46">Tanner's p46</a> in October 2017, all known p46 guns were made from two
or more <a href="lex_t.htm#twinbeesshuttle">twin bees shuttles</a> that interact (e.g., see
<a href="lex_t.htm#twinbeesshuttlepair">twin bees shuttle pair</a>). See <a href="lex_e.htm#edgeshooter">edge shooter</a> and <a href="lex_d.htm#doublebarrelled">double-barrelled</a>
for two more of these.
<p>On 21 October 2017 Heinrich Koenig found a glider gun using two
copies of <a href="lex_t.htm#tannersp46">Tanner's p46</a> placed at right angles to each other. This
is the first p46 gun found which makes no use of the
<a href="lex_t.htm#twinbeesshuttle">twin bees shuttle</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO.............................$.....O.............................$.....O.O...........................$......OO..OO.......................$..........OO.......................$...................................$...................................$...................................$...................................$...................................$...................................$O..................................$OOO.......OO.......................$...O......O.O......................$..O.O.......O......................$..OO......O.O......................$..........OO.......................$..OO...............................$..O................................$...OOO.............................$.....O.............................$........OO.........................$.........O.........................$......OOO..............OOO.........$......O...............O...O........$.....................O.....O.......$.............OO......O.....O.......$.............OO......OOO.OOO.......$...............................OO..$...............................O.O.$............OO...................O.$.............O...................OO$..........OOO................OO....$..........O.............O....O.....$.......................O.O.O.O.....$......................O.OO.OO......$......................O............$.....................OO............$"
>....OO.............................
.....O.............................
.....O.O...........................
......OO..OO.......................
..........OO.......................
...................................
...................................
...................................
...................................
...................................
...................................
O..................................
OOO.......OO.......................
...O......O.O......................
..O.O.......O......................
..OO......O.O......................
..........OO.......................
..OO...............................
..O................................
...OOO.............................
.....O.............................
........OO.........................
.........O.........................
......OOO..............OOO.........
......O...............O...O........
.....................O.....O.......
.............OO......O.....O.......
.............OO......OOO.OOO.......
...............................OO..
...............................O.O.
............OO...................O.
.............O...................OO
..........OOO................OO....
..........O.............O....O.....
.......................O.O.O.O.....
......................O.OO.OO......
......................O............
.....................OO............
</a></pre></td></tr></table></center>
<p>See <a href="lex_g.htm#gliderless">gliderless</a> for a <a href="lex_m.htm#mwss">MWSS</a> gun also made using two copies of
Tanner's p46.
<p><a name=p46shuttle>:</a><b>p46 shuttle</b> = <a href="lex_t.htm#twinbeesshuttle">twin bees shuttle</a>
<p><a name=p48gun>:</a><b>p48 gun</b> A <a href="lex_t.htm#true">true</a> period compound <a href="lex_g.htm#glidergun">glider gun</a> based on the <a href="#p24gun">p24 gun</a>,
using a <a href="lex_r.htm#richsp16">Rich's p16</a> <a href="lex_o.htm#oscillator">oscillator</a> as a <a href="lex_f.htm#filter">filter</a> to remove half of the
gliders from the <a href="lex_s.htm#stream">stream</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................OO...........OO.............$................O..O.........O..O............$................O.O...OO.OO...O.O............$..............OO..O.O.......O.O..OO..........$...............O.O.O....O....O.O.O...........$..............O..OO..OOOOOOO..OO..O..........$..............OO.....O.O.O.O.....OO..........$.......................O.O...................$.....O..OO.........OOO.....OOO...............$....O.O..O..O.....O.O.O...O.O.O..............$....O.OO.O.O.O....OO..OOOOO..OO..............$...OO.O..O.O..O..............................$...O..O.OO..O................................$....OOO.O.O...OOO............................$......OO.O.....OO............................$..O.O..O.O...O..O....O.O.O...................$..OO..OO.O.OO..OOO....OOO.............OO.....$........OO.O...OO......O.............O..O....$..OOOOO....O........................OO.......$.O....O.OOO.................OO.....OOO.....O.$.O.OO.O.O......OO.......O...O.O....O..O...O.O$OO.O..O......OOOO........O....O.....OOO...OO.$.O.O.O.O.....OO..O.....OOO....OO.............$.O.O.OO.O..O........................OOO...OO.$OO.OO..OO...OOOO...................O..O...O.O$...O..OOO..O..OO....O..............OOO.....O.$...O.O.OO.....O....O.O........O.....OO.......$..OO.O..OO.O..O...O...O........O.....O..O....$....O...OO..O..O...O.O.......OOO......OO.....$....O.O.......O.....O........................$...OO.OO..........OOO........................$..........OO....OOOOOOO....OO................$..........O..O..OO.O.OO..O..O................$...........OO.OOOO...OOOO.OO.................$........OOO..O...........O..OOO..............$.......O...OO.OO.......OO.OO...O.............$.......OO.O...OO.......OO...O.OO.............$........O.OOO...O.....O...OOO.O..............$.......O......OO.......OO......O..........O..$........OOOOOO...........OOOOOO............O.$..........O..O...........O..O............OOO.$"
>.................OO...........OO.............
................O..O.........O..O............
................O.O...OO.OO...O.O............
..............OO..O.O.......O.O..OO..........
...............O.O.O....O....O.O.O...........
..............O..OO..OOOOOOO..OO..O..........
..............OO.....O.O.O.O.....OO..........
.......................O.O...................
.....O..OO.........OOO.....OOO...............
....O.O..O..O.....O.O.O...O.O.O..............
....O.OO.O.O.O....OO..OOOOO..OO..............
...OO.O..O.O..O..............................
...O..O.OO..O................................
....OOO.O.O...OOO............................
......OO.O.....OO............................
..O.O..O.O...O..O....O.O.O...................
..OO..OO.O.OO..OOO....OOO.............OO.....
........OO.O...OO......O.............O..O....
..OOOOO....O........................OO.......
.O....O.OOO.................OO.....OOO.....O.
.O.OO.O.O......OO.......O...O.O....O..O...O.O
OO.O..O......OOOO........O....O.....OOO...OO.
.O.O.O.O.....OO..O.....OOO....OO.............
.O.O.OO.O..O........................OOO...OO.
OO.OO..OO...OOOO...................O..O...O.O
...O..OOO..O..OO....O..............OOO.....O.
...O.O.OO.....O....O.O........O.....OO.......
..OO.O..OO.O..O...O...O........O.....O..O....
....O...OO..O..O...O.O.......OOO......OO.....
....O.O.......O.....O........................
...OO.OO..........OOO........................
..........OO....OOOOOOO....OO................
..........O..O..OO.O.OO..O..O................
...........OO.OOOO...OOOO.OO.................
........OOO..O...........O..OOO..............
.......O...OO.OO.......OO.OO...O.............
.......OO.O...OO.......OO...O.OO.............
........O.OOO...O.....O...OOO.O..............
.......O......OO.......OO......O..........O..
........OOOOOO...........OOOOOO............O.
..........O..O...........O..O............OOO.
</a></pre></td></tr></table></center>
<p><a name=p4bumper>:</a><b>p4 bumper</b> (p4) A periodic <a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a>
with a minimum <a href="lex_r.htm#repeattime">repeat time</a> of 36. Unlike the p5 through p8 cases
where Noam Elkies' <a href="lex_d.htm#domino">domino</a> spark-based reflectors are available, no
small period-4 <a href="lex_c.htm#colourchanging">colour-changing</a> reflector is known. A <a href="lex_s.htm#stable">stable</a>
<a href="lex_s.htm#snark">Snark</a> reflector can be substituted for any <a href="lex_b.htm#bumper">bumper</a>. This changes
the timing of the output glider, which can be useful for rephasing
periodic glider streams.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................O..$.....................O.O$.....................OO.$........................$........................$........................$........................$........................$........................$............O...........$............O.O.........$............OO..........$........................$....OO....OO............$...O..O..O..O...........$..........O.O...........$...........O............$..O..O..................$..O.OO.........OO.......$...O.OOO.......O........$OOO...O.O.......OOO.....$O.......O.........O.....$........OO..............$"
>.....................O..
.....................O.O
.....................OO.
........................
........................
........................
........................
........................
........................
............O...........
............O.O.........
............OO..........
........................
....OO....OO............
...O..O..O..O...........
..........O.O...........
...........O............
..O..O..................
..O.OO.........OO.......
...O.OOO.......O........
OOO...O.O.......OOO.....
O.......O.........O.....
........OO..............
</a></pre></td></tr></table></center>
<p><a name=p4reflector>:</a><b>p4 reflector</b> The following <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a>, discovered by Karel
Suhajda in October 2012. Its minimum repeat time is 52 ticks.
Unlike the various <a href="lex_b.htm#bouncer">bouncers</a> discovered many years earlier, it is a
<a href="lex_c.htm#colourpreserving">colour-preserving</a> reflector, so it was made obsolete the following
year by the discovery of the much smaller stable <a href="lex_s.htm#snark">Snark</a>, which uses
the same initial <a href="lex_b.htm#bait">bait</a> reaction and so produces an output glider
with the same timing. For a smaller periodic <a href="lex_c.htm#colourpreserving">colour-preserving</a>
glider reflector with a different output timing, see <a href="#p4bumper">p4 bumper</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................................O.........................$...............................O..........................$...............................OOO.......O.O..............$........................................O.OO..............$......................................OOO.....O...........$.....................................O...OOOOOOOO.........$..................................O.O.O..O.......O........$..............O...................OOOO.OO.OOOOOOO.O.......$..............OOO..................OOO.....O.O..O.O..OO...$.................O...................OOO.O.O...OO.O.O.O...$................OO.............OOO..OO.OOOOO....O.O.O.....$.............................O.O...OOO.OO.O..O.OOOO..O..OO$...........................OO.....O....O..O..O...O....O..O$...................O.......OO.O.O..O......O..O....OOOOOOO.$..................O...........O.O..O..O..O.........O......$..................OOO........O....O..O...........O...OO...$............................O.OOOOOOO........OO.O.OOO.O...$.............................O.........O.O....O.O.O.......$...................OO..........OOOOOOOOO.OOO..O.O.........$...................OO.......O...O.......O...O.O.O.........$...........................O..O...OOOO..O..O.O.O..........$.............................OO...O...O.O.O..O............$.............................O.....OOO.O.O.OO..O..........$........OO...............O...OOO.....O...O...OOO..........$...OO..O..O..................O...OO..O..O.OO..............$...O....O.O..................O...OOOO...O.O.OO............$OO.O.....O................OOO...O......OO...O.O...........$.O.O.OO....................OOO.....O..OO..O.O.O...........$O..O..O........OO...........OOO..OOO.OOO..O.O.OO..........$OO..O....O.....O.O..........O..O...O...O..O.O.............$.....OOOOO.......O...........O.O..O.OO...OOOO.............$................O..........O.O.O.OOO.OOO.O................$.......O.........OOO......O.OO.O..OO......................$......O.O..........O......O.....O......OO.O...............$.......O...................OOOOO......O..OO...............$.............................O........OO..................$"
>................................O.........................
...............................O..........................
...............................OOO.......O.O..............
........................................O.OO..............
......................................OOO.....O...........
.....................................O...OOOOOOOO.........
..................................O.O.O..O.......O........
..............O...................OOOO.OO.OOOOOOO.O.......
..............OOO..................OOO.....O.O..O.O..OO...
.................O...................OOO.O.O...OO.O.O.O...
................OO.............OOO..OO.OOOOO....O.O.O.....
.............................O.O...OOO.OO.O..O.OOOO..O..OO
...........................OO.....O....O..O..O...O....O..O
...................O.......OO.O.O..O......O..O....OOOOOOO.
..................O...........O.O..O..O..O.........O......
..................OOO........O....O..O...........O...OO...
............................O.OOOOOOO........OO.O.OOO.O...
.............................O.........O.O....O.O.O.......
...................OO..........OOOOOOOOO.OOO..O.O.........
...................OO.......O...O.......O...O.O.O.........
...........................O..O...OOOO..O..O.O.O..........
.............................OO...O...O.O.O..O............
.............................O.....OOO.O.O.OO..O..........
........OO...............O...OOO.....O...O...OOO..........
...OO..O..O..................O...OO..O..O.OO..............
...O....O.O..................O...OOOO...O.O.OO............
OO.O.....O................OOO...O......OO...O.O...........
.O.O.OO....................OOO.....O..OO..O.O.O...........
O..O..O........OO...........OOO..OOO.OOO..O.O.OO..........
OO..O....O.....O.O..........O..O...O...O..O.O.............
.....OOOOO.......O...........O.O..O.OO...OOOO.............
................O..........O.O.O.OOO.OOO.O................
.......O.........OOO......O.OO.O..OO......................
......O.O..........O......O.....O......OO.O...............
.......O...................OOOOO......O..OO...............
.............................O........OO..................
</a></pre></td></tr></table></center>
<p><a name=p54shuttle>:</a><b>p54 shuttle</b> (p54) A surprising variant of the <a href="lex_t.htm#twinbeesshuttle">twin bees shuttle</a>
found by Dave Buckingham in 1973. See also <a href="lex_c.htm#centinal">centinal</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.........................OO$.O.........................O.$.O.O.......O.............O.O.$..OO.....O..O.....O......OO..$............O.....OO.........$........O..........OO........$........O...OO....OO.........$.........OOOOO...............$.............................$.........OOOOO...............$........O...OO....OO.........$........O..........OO........$............O.....OO.........$..OO.....O..O.....O......OO..$.O.O.......O.............O.O.$.O.........................O.$OO.........................OO$"
>OO.........................OO
.O.........................O.
.O.O.......O.............O.O.
..OO.....O..O.....O......OO..
............O.....OO.........
........O..........OO........
........O...OO....OO.........
.........OOOOO...............
.............................
.........OOOOO...............
........O...OO....OO.........
........O..........OO........
............O.....OO.........
..OO.....O..O.....O......OO..
.O.O.......O.............O.O.
.O.........................O.
OO.........................OO
</a></pre></td></tr></table></center>
<p><a name=p5bouncer>:</a><b>p5 bouncer</b> (p5) A <a href="lex_c.htm#colourchanging">colour-changing</a> glider reflector constructed by
Noam Elkies in September 1998 by welding together two special-purpose
period-5 <a href="lex_s.htm#sparker">sparkers</a>. The minimum <a href="lex_r.htm#repeattime">repeat time</a> is 25 ticks. For
<a href="lex_c.htm#colourpreserving">colour-preserving</a> glider reflectors see <a href="#p5bumper">p5 bumper</a> and the
<a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a> reflector.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........................O..$........................OO...$.........................OO..$.............................$.............................$........OO...................$.....O..O.O........O.........$....O.O.O.O.......O..........$...O.O.O..OO......OOO........$...O...O.O..O................$OO.OO..O.O.O..........OO.....$O.O....OOO..O.....OO..OO.....$..O.OOO...OO.....O.O.........$..O..O.....O......O..........$...O...O.O..O............OO..$....OOO.OO.OO.......OO....O..$......O....O........OO..OOO..$.......OOO.O.....OO.....OOO..$..........O.OO...OO.....OO...$.........O..O..OOO.O........O$.........OO..OOO...........OO$................O............$.............OOOO.O..........$............O..O...O.........$............OO...O.OOO.......$.............O.O..O...O......$.............O.OO.O..OO......$..............O..O...........$...............OO............$"
>..........................O..
........................OO...
.........................OO..
.............................
.............................
........OO...................
.....O..O.O........O.........
....O.O.O.O.......O..........
...O.O.O..OO......OOO........
...O...O.O..O................
OO.OO..O.O.O..........OO.....
O.O....OOO..O.....OO..OO.....
..O.OOO...OO.....O.O.........
..O..O.....O......O..........
...O...O.O..O............OO..
....OOO.OO.OO.......OO....O..
......O....O........OO..OOO..
.......OOO.O.....OO.....OOO..
..........O.OO...OO.....OO...
.........O..O..OOO.O........O
.........OO..OOO...........OO
................O............
.............OOOO.O..........
............O..O...O.........
............OO...O.OOO.......
.............O.O..O...O......
.............O.OO.O..OO......
..............O..O...........
...............OO............
</a></pre></td></tr></table></center>
<p><a name=p5bumper>:</a><b>p5 bumper</b> A periodic <a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a> with a
<a href="lex_m.htm#middleweightvolcano">middleweight volcano</a> producing the necessary <a href="lex_s.htm#spark">spark</a>. The minimum
<a href="lex_r.htm#repeattime">repeat time</a> is 35 ticks. For an equivalent <a href="lex_c.htm#colourchanging">colour-changing</a>
periodic glider reflector see <a href="#p5bouncer">p5 bouncer</a>. A <a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a>
reflector can be substituted for any <a href="lex_b.htm#bumper">bumper</a>. This changes the
timing of the output glider, which can be useful for rephasing
periodic glider streams.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............................O$..........................OO.$...........................OO$.............................$.............................$.............................$.............................$.............................$.............................$...OO..O..........O..........$...O..O.O.........O.O........$....O.O.O.........OO.........$...OO.O.OO...................$..O...OO..O.....OO...........$.O..OO...OOO...O..O..........$.O.O.OO..OOO....O.O..........$..O.OO...OOO.....O...........$......OO..O..................$OOOOO.O.OO...........OO......$O..O..O.O............O.......$.....O..O.............OOO....$......OO................O....$"
>............................O
..........................OO.
...........................OO
.............................
.............................
.............................
.............................
.............................
.............................
...OO..O..........O..........
...O..O.O.........O.O........
....O.O.O.........OO.........
...OO.O.OO...................
..O...OO..O.....OO...........
.O..OO...OOO...O..O..........
.O.O.OO..OOO....O.O..........
..O.OO...OOO.....O...........
......OO..O..................
OOOOO.O.OO...........OO......
O..O..O.O............O.......
.....O..O.............OOO....
......OO................O....
</a></pre></td></tr></table></center>
<p><a name=p5reflector>:</a><b>p5 reflector</b> Traditional name for <a href="#p5bouncer">p5 bouncer</a> before 2016, but with
the discovery of the <a href="#p5bumper">p5 bumper</a> this has become an ambiguous
reference.
<p><a name=p60gun>:</a><b>p60 gun</b> A glider gun with a <a href="lex_t.htm#true">true</a> period of 60. The first one was
found by Bill Gosper in 1970 and is shown below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............................O..........$............................O.O........$...........OO..................OO......$.........O...O.................OO....OO$...OO...O.....O................OO....OO$...OO..OO.O...O.............O.O........$........O.....O.............O..........$.........O...O.........................$...........OO..........................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$.......................................$..........O.O..........................$.........O..O...OO.....................$OO......OO.....OOO.OO..OO..............$OO....OO...O...O...O...O.O.............$........OO.....O.O........O............$.........O..O..OO......O..O............$..........O.O.............O............$.......................O.O.......OO....$.......................OO........O.O...$...................................O...$...................................OO..$"
>............................O..........
............................O.O........
...........OO..................OO......
.........O...O.................OO....OO
...OO...O.....O................OO....OO
...OO..OO.O...O.............O.O........
........O.....O.............O..........
.........O...O.........................
...........OO..........................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
.......................................
..........O.O..........................
.........O..O...OO.....................
OO......OO.....OOO.OO..OO..............
OO....OO...O...O...O...O.O.............
........OO.....O.O........O............
.........O..O..OO......O..O............
..........O.O.............O............
.......................O.O.......OO....
.......................OO........O.O...
...................................O...
...................................OO..
</a></pre></td></tr></table></center>
There are several other ways to create a p60 gun from two p30 guns
using period-doubling reactions similar to the one shown here.
<p><a name=p690gun>:</a><b>p690 gun</b> A <a href="lex_t.htm#true">true</a> period 690 <a href="lex_g.htm#glider">glider</a> gun found by Noam Elkies in
July 1996. It is composed of a p30 <a href="lex_q.htm#queenbeeshuttlepair">queen bee shuttle pair</a> and a
p46 <a href="lex_t.htm#twinbeesshuttle">twin bees shuttle</a> whose sparks occasionally react with each
other. This is a very compact gun for such a high period and is used
in many patterns requiring sparse glider streams.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........O........................................$...........OOO......................................$..............O.....................................$.............OO.....................................$....................................................$....................................................$....................................................$....................................................$...............OOO..................................$..............O...O.................................$....................................................$.............O.....O................................$.............OO...OO................................$....................................................$..........................................OO.O......$................O......OO............OOO..OO..O.....$OO.............O.O.....OO.............OO......O...OO$.O.............O.O.....................OOO...OOOO..O$.O.O.....O.....O........................O...O...OOO.$..OO...O.O.....O........O.....O.....................$......O.O......O..O.....O.....O.........O...O...OOO.$.....O..O......O..O....................OOO...OOOO..O$......O.O.......OO..OO...........OO...OO......O...OO$.......O.O...........................OOO..OO..O.....$.........O..............O.....O...........OO.O......$........................O.....O.....................$"
>...........O........................................
...........OOO......................................
..............O.....................................
.............OO.....................................
....................................................
....................................................
....................................................
....................................................
...............OOO..................................
..............O...O.................................
....................................................
.............O.....O................................
.............OO...OO................................
....................................................
..........................................OO.O......
................O......OO............OOO..OO..O.....
OO.............O.O.....OO.............OO......O...OO
.O.............O.O.....................OOO...OOOO..O
.O.O.....O.....O........................O...O...OOO.
..OO...O.O.....O........O.....O.....................
......O.O......O..O.....O.....O.........O...O...OOO.
.....O..O......O..O....................OOO...OOOO..O
......O.O.......OO..OO...........OO...OO......O...OO
.......O.O...........................OOO..OO..O.....
.........O..............O.....O...........OO.O......
........................O.....O.....................
</a></pre></td></tr></table></center>
<p><a name=p6bouncer>:</a><b>p6 bouncer</b> (p6) Noam Elkies' <a href="lex_c.htm#colourchanging">colour-changing</a> glider reflector using
the <a href="#p6pipsquirter">p6 pipsquirter</a>, with a minimum <a href="lex_r.htm#repeattime">repeat time</a> of 24 ticks. For
<a href="lex_c.htm#colourpreserving">colour-preserving</a> glider reflectors see <a href="#p6bumper">p6 bumper</a> and the
<a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a> reflector.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................O.$......................O..$......................OOO$...OO....................$...O.....................$.....O...................$....OOOO.........O.......$...O....O.......O........$...OOOOO.O......OOO......$.OO....O.O...............$O..O.....OO.........OO...$OO.O.O.O..O.....OO..OO...$...O..O.OOO....O.O.......$...OO.O...O.....O........$.....O.O.OO..............$.....O.O.O........OO.....$......O..O........O......$.......OO..........OOO...$.....................O...$"
>.......................O.
......................O..
......................OOO
...OO....................
...O.....................
.....O...................
....OOOO.........O.......
...O....O.......O........
...OOOOO.O......OOO......
.OO....O.O...............
O..O.....OO.........OO...
OO.O.O.O..O.....OO..OO...
...O..O.OOO....O.O.......
...OO.O...O.....O........
.....O.O.OO..............
.....O.O.O........OO.....
......O..O........O......
.......OO..........OOO...
.....................O...
</a></pre></td></tr></table></center>
<p><a name=p6bumper>:</a><b>p6 bumper</b> (p6) A periodic <a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a>
with a <a href="lex_u.htm#unix">unix</a> providing the necessary <a href="lex_s.htm#spark">spark</a>. The minimum
<a href="lex_r.htm#repeattime">repeat time</a> is 36 ticks. For an equivalent <a href="lex_c.htm#colourchanging">colour-changing</a>
periodic glider reflector see <a href="#p6bouncer">p6 bouncer</a>. A <a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a>
reflector can be substituted for any <a href="lex_b.htm#bumper">bumper</a>. This changes the
timing of the output glider, which can be useful for rephasing
periodic glider streams.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................O..$.......................O.O$.......................OO.$..........................$..........................$..........................$..........................$..........................$..........................$..............O...........$..............O.O.........$..............OO..........$..........................$............OO............$.....OO....O..O...........$.....OO.....O.O...........$.............O............$..........................$.....OOO.........OO.......$OO..O.OO.........O........$OO..OO............OOO.....$....OO..............O.....$"
>.......................O..
.......................O.O
.......................OO.
..........................
..........................
..........................
..........................
..........................
..........................
..............O...........
..............O.O.........
..............OO..........
..........................
............OO............
.....OO....O..O...........
.....OO.....O.O...........
.............O............
..........................
.....OOO.........OO.......
OO..O.OO.........O........
OO..OO............OOO.....
....OO..............O.....
</a></pre></td></tr></table></center>
<p><a name=p6pipsquirter>:</a><b>p6 pipsquirter</b> (p6) A <a href="#pipsquirter">pipsquirter</a> oscillator found by Noam Elkies
in November 1997, used in various <a href="lex_h.htm#hassler">hasslers</a> and the colour-changing
<a href="#p6bouncer">p6 bouncer</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.........$.....O.........$...............$...O...O.......$.OOO.O.OOO.....$O...OO....O....$O.OO..OO.O.O...$.O..OO..OO.O...$..OO..OO.O.O.OO$....O..O.O.O.OO$....OOOO.OO....$........O......$......O.O......$......OO.......$"
>.....O.........
.....O.........
...............
...O...O.......
.OOO.O.OOO.....
O...OO....O....
O.OO..OO.O.O...
.O..OO..OO.O...
..OO..OO.O.O.OO
....O..O.O.O.OO
....OOOO.OO....
........O......
......O.O......
......OO.......
</a></pre></td></tr></table></center>
<p><a name=p6reflector>:</a><b>p6 reflector</b> Traditional name for <a href="#p6bouncer">p6 bouncer</a> before 2016, but with
the discovery of the <a href="#p6bumper">p6 bumper</a> this has become an ambiguous
reference.
<p><a name=p6shuttle>:</a><b>p6 shuttle</b> (p6) The following oscillator found by Nicolay Beluchenko
in February 2004.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.............$OOO...........$...O..........$..OO..........$..............$......O.......$.....OOOO.....$......O..O....$.......OOO....$..............$..........OO..$..........O...$...........OOO$.............O$"
>O.............
OOO...........
...O..........
..OO..........
..............
......O.......
.....OOOO.....
......O..O....
.......OOO....
..............
..........OO..
..........O...
...........OOO
.............O
</a></pre></td></tr></table></center>
This is <a href="lex_e.htm#extensible">extensible</a> in more than one way:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O........................$OOO......................$...O.....................$..OO.....................$.........................$......O..................$.....OOOO................$......O..O...............$.......OOO...............$.........................$..........OOO............$..........O..O...........$...........OOOO..........$.............O...........$.........................$.................O.......$................OOO......$.................O.O.....$.................O.O.....$..................OO.....$.....................OO..$.....................O.O.$.......................O.$.......................OO$"
>O........................
OOO......................
...O.....................
..OO.....................
.........................
......O..................
.....OOOO................
......O..O...............
.......OOO...............
.........................
..........OOO............
..........O..O...........
...........OOOO..........
.............O...........
.........................
.................O.......
................OOO......
.................O.O.....
.................O.O.....
..................OO.....
.....................OO..
.....................O.O.
.......................O.
.......................OO
</a></pre></td></tr></table></center>
<p><a name=p72quasishuttle>:</a><b>p72 quasi-shuttle</b> (p72) The following <a href="lex_o.htm#oscillator">oscillator</a>, found by Jason
Summers in August 2005. Although this looks at first sight like a
<a href="lex_s.htm#shuttle">shuttle</a>, it isn't really.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............................O......$.............................OO......$............................O.OO.....$.OOOO......................OOO..O....$O....O.......................O.O.O...$O...O.O.......................O.O.O..$.O...O.O......OO...............O..OOO$.......O.....O.O................OO.O.$.......O.....O...................OO..$....O..O.....OOO.................O...$.....OO..............................$.....................................$.....OO..............................$....O..O.....OOO.................O...$.......O.....O...................OO..$.......O.....O.O................OO.O.$.O...O.O......OO...............O..OOO$O...O.O.......................O.O.O..$O....O.......................O.O.O...$.OOOO......................OOO..O....$............................O.OO.....$.............................OO......$..............................O......$"
>..............................O......
.............................OO......
............................O.OO.....
.OOOO......................OOO..O....
O....O.......................O.O.O...
O...O.O.......................O.O.O..
.O...O.O......OO...............O..OOO
.......O.....O.O................OO.O.
.......O.....O...................OO..
....O..O.....OOO.................O...
.....OO..............................
.....................................
.....OO..............................
....O..O.....OOO.................O...
.......O.....O...................OO..
.......O.....O.O................OO.O.
.O...O.O......OO...............O..OOO
O...O.O.......................O.O.O..
O....O.......................O.O.O...
.OOOO......................OOO..O....
............................O.OO.....
.............................OO......
..............................O......
</a></pre></td></tr></table></center>
<p><a name=p7bouncer>:</a><b>p7 bouncer</b> (p7) Noam Elkies' <a href="lex_c.htm#colourchanging">colour-changing</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a>
using a <a href="#p7pipsquirter">p7 pipsquirter</a>, with a minimum <a href="lex_r.htm#repeattime">repeat time</a> of 28 ticks.
A high-<a href="lex_c.htm#clearance">clearance</a> version is shown in <a href="#p7pipsquirter">p7 pipsquirter</a>. For
<a href="lex_c.htm#colourpreserving">colour-preserving</a> glider reflectors see <a href="#p7bumper">p7 bumper</a> and the
<a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a> reflector.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................O.$......................O..$......................OOO$.........................$.........................$.........................$.........................$................O........$......OO.......O.........$......O.O......OOO.......$........O................$...O..O.OO.........OO....$...OOOO..O.....OO..OO....$.......OOO....O.O........$...OOOO..O.....O.........$..O...O.OO...............$.O.OOOO.O........OO......$.O.O..O.O........O.......$OO.O.O.O.OO.......OOO....$O..OOO.O..O.........O....$..O...O.O................$...OO.O.OO...............$....O....................$..O.O.OOOO...............$.O.OOOO..O...............$.O.....O.................$..OOOOOO.O...............$....O...O.O..............$.......O..O..............$........OO...............$"
>.......................O.
......................O..
......................OOO
.........................
.........................
.........................
.........................
................O........
......OO.......O.........
......O.O......OOO.......
........O................
...O..O.OO.........OO....
...OOOO..O.....OO..OO....
.......OOO....O.O........
...OOOO..O.....O.........
..O...O.OO...............
.O.OOOO.O........OO......
.O.O..O.O........O.......
OO.O.O.O.OO.......OOO....
O..OOO.O..O.........O....
..O...O.O................
...OO.O.OO...............
....O....................
..O.O.OOOO...............
.O.OOOO..O...............
.O.....O.................
..OOOOOO.O...............
....O...O.O..............
.......O..O..............
........OO...............
</a></pre></td></tr></table></center>
<p><a name=p7bumper>:</a><b>p7 bumper</b> (p7) A periodic <a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a>
with a minimum <a href="lex_r.htm#repeattime">repeat time</a> of 35 ticks. For an equivalent
<a href="lex_c.htm#colourchanging">colour-changing</a> periodic glider reflector see <a href="#p7bouncer">p7 bouncer</a>. A
<a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a> reflector can be substituted for any <a href="lex_b.htm#bumper">bumper</a>. This
changes the timing of the output glider, which can be useful for
rephasing periodic glider streams.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......O..................$....O.O.......OO.....OO..$.....OO......O..O...O..O.$.........................$.......OO.......O...O....$......O..O....O.......O..$......O.O.....OO.....OO..$.......O.........O.O.....$.............O..OO.OO..O.$..OO........O.O..O.O..O.O$...O........O..O.O.O.O..O$OOO.............O...O....$O........................$"
>......O..................
....O.O.......OO.....OO..
.....OO......O..O...O..O.
.........................
.......OO.......O...O....
......O..O....O.......O..
......O.O.....OO.....OO..
.......O.........O.O.....
.............O..OO.OO..O.
..OO........O.O..O.O..O.O
...O........O..O.O.O.O..O
OOO.............O...O....
O........................
</a></pre></td></tr></table></center>
<p><a name=p7pipsquirter>:</a><b>p7 pipsquirter</b> A <a href="#pipsquirter">pipsquirter</a> oscillator found by Noam Elkies in
August 1999, used in various <a href="lex_h.htm#hassler">hasslers</a> and the colour-changing
<a href="#p7reflector">p7 reflector</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................O.....$........O.......O.....$.OO...OOO..O..........$..O..O...OOO..O...O.OO$..O.O.OO....OOO.O.OO.O$OO..O.O.OOOO....O.....$.O.OO........OOO.OOOO.$.O....O.O.OO...O.O..O.$OO.O.O.OO....O.O......$.O.O......OOOO.O......$.O..OOOOOO....O.......$OO....O..O..O.........$............OO........$"
>................O.....
........O.......O.....
.OO...OOO..O..........
..O..O...OOO..O...O.OO
..O.O.OO....OOO.O.OO.O
OO..O.O.OOOO....O.....
.O.OO........OOO.OOOO.
.O....O.O.OO...O.O..O.
OO.O.O.OO....O.O......
.O.O......OOOO.O......
.O..OOOOOO....O.......
OO....O..O..O.........
............OO........
</a></pre></td></tr></table></center>
<p>A larger period-7 pipsquirter is used in cases where space is
limited where the reflector should extend southward for as short a
distance as possible:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO..................................$......OOO................................$....O....O...............................$..OOOOOO.O.............................O.$.O.....O.OO....OO.....................O..$.O.OO.O....O..O.O.....................OOO$..O...O.OO.O..O..........................$....O.O..O.OO.O..........................$...OO...O.....OO.........................$..O..OO.O.OOOO..O...OO...................$O..O...O.O...O.O...O.O..........O........$OO.O...O..OO.O..OOOO..OO.......O.........$.O.O.OO.O.O.O.O.O...OO..O......OOO.......$O..OOO..O.....O....O..O.O................$O.O...O.OO...OO....O.OO.OO.........OO....$.O.OOOO..O..O.O....O.....O.....OO..OO....$...O...O......OO...O..OOOO....O.O........$...O.OO..O..O.O....O.....O.....O.........$....O.O.OO...OO....O.OO.OO...............$......O.O.....O....O..O.O........OO......$......O.O...O.O.O...OO..O........O.......$.......O...O.O..OOOO..OO..........OOO....$...........O.O.O...O.O..............O....$............OO.OO...OO...................$"
>.....OO..................................
......OOO................................
....O....O...............................
..OOOOOO.O.............................O.
.O.....O.OO....OO.....................O..
.O.OO.O....O..O.O.....................OOO
..O...O.OO.O..O..........................
....O.O..O.OO.O..........................
...OO...O.....OO.........................
..O..OO.O.OOOO..O...OO...................
O..O...O.O...O.O...O.O..........O........
OO.O...O..OO.O..OOOO..OO.......O.........
.O.O.OO.O.O.O.O.O...OO..O......OOO.......
O..OOO..O.....O....O..O.O................
O.O...O.OO...OO....O.OO.OO.........OO....
.O.OOOO..O..O.O....O.....O.....OO..OO....
...O...O......OO...O..OOOO....O.O........
...O.OO..O..O.O....O.....O.....O.........
....O.O.OO...OO....O.OO.OO...............
......O.O.....O....O..O.O........OO......
......O.O...O.O.O...OO..O........O.......
.......O...O.O..OOOO..OO..........OOO....
...........O.O.O...O.O..............O....
............OO.OO...OO...................
</a></pre></td></tr></table></center>
<p><a name=p7reflector>:</a><b>p7 reflector</b> Traditional name for <a href="#p7bouncer">p7 bouncer</a> before 2016, but with
the discovery of the <a href="#p7bumper">p7 bumper</a> this has become an ambiguous
reference.
<p><a name=p8bouncer>:</a><b>p8 bouncer</b> A glider <a href="lex_r.htm#reflector">reflector</a> constructed by Noam Elkies in
September 1998, with a minimum <a href="lex_r.htm#repeattime">repeat time</a> of 24 ticks. It is a
<a href="lex_c.htm#constellation">constellation</a> containing a <a href="lex_f.htm#figure8">figure-8</a>, <a href="lex_b.htm#boat">boat</a>, <a href="lex_e.htm#eater1">eater1</a>, and
<a href="lex_b.htm#block">block</a>. For <a href="lex_c.htm#colourpreserving">colour-preserving</a> glider reflectors see <a href="#p8bumper">p8 bumper</a>
and the <a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a> reflector.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................O.$...............O..$...............OOO$..................$..................$..................$..........O.......$.........O........$.........OOO......$..................$.............OO...$.........OO..OO...$........O.O.......$.........O........$.....O............$....O.O....OO.....$...O...O...O......$..O...O.....OOO...$.O...O........O...$O...O.............$.O.O..............$..O...............$"
>................O.
...............O..
...............OOO
..................
..................
..................
..........O.......
.........O........
.........OOO......
..................
.............OO...
.........OO..OO...
........O.O.......
.........O........
.....O............
....O.O....OO.....
...O...O...O......
..O...O.....OOO...
.O...O........O...
O...O.............
.O.O..............
..O...............
</a></pre></td></tr></table></center>
<p><a name=p8bumper>:</a><b>p8 bumper</b> A periodic <a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a> with a
<a href="lex_b.htm#blocker">blocker</a> attached to provide the necessary spark. The minimum
<a href="lex_r.htm#repeattime">repeat time</a> is 40 ticks. For an equivalent <a href="lex_c.htm#colourchanging">colour-changing</a>
periodic glider reflector see <a href="#p8bouncer">p8 bouncer</a>. A <a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a>
reflector can be substituted for any <a href="lex_b.htm#bumper">bumper</a>. This changes the
timing of the output glider, which can be useful for rephasing
periodic glider streams.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................O..$....................O.O$....................OO.$.......................$.......................$.......................$.......................$.......................$.......................$.......................$..........O............$..........O.O..........$..........OO...........$.......................$........OO.............$.OO....O..O............$.OO.....O.O............$.OO......O.............$..O....................$.O.O.........OO........$OO.O.........O.........$..............OOO......$................O......$.OO....................$.OO....................$"
>....................O..
....................O.O
....................OO.
.......................
.......................
.......................
.......................
.......................
.......................
.......................
..........O............
..........O.O..........
..........OO...........
.......................
........OO.............
.OO....O..O............
.OO.....O.O............
.OO......O.............
..O....................
.O.O.........OO........
OO.O.........O.........
..............OOO......
................O......
.OO....................
.OO....................
</a></pre></td></tr></table></center>
<p><a name=p8gtoh>:</a><b>p8 G-to-H</b> A small periodic variant of a stable two-glider-to-Herschel
component found by Paul Callahan in November 1998 and used in the
<a href="lex_c.htm#callahangtoh">Callahan G-to-H</a>, <a href="lex_s.htm#silverreflector">Silver reflector</a> and <a href="lex_s.htm#silvergtoh">Silver G-to-H</a>. The
minimum <a href="lex_r.htm#repeattime">repeat time</a> is 192 ticks, though some lower periods such as
96 are possible via <a href="lex_o.htm#overclocking">overclocking</a>. Here a <a href="lex_g.htm#ghostherschel">ghost Herschel</a> marks
the output signal location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O.........O...................$....OOO.....OOO...................$.......O...O......................$..O...OO...OO.....................$...O..............................$.OOO..............................$..................................$..................................$..................................$...............................O..$...............................O..$....................OO.........OOO$....................OO...........O$........OO........................$.......O..O.......................$..OO....OO........................$.O.O..............................$.O................................$OO................................$..........OO......................$..........O.......................$...........OOO....................$.............O...........OO.......$.....................OO..OO.......$....................O.O...........$.....................O............$.................O................$................O.O....OO.........$...............O...O...O..........$..............O...O.....OOO.......$.............O...O........O.......$............O...O.................$.............O.O..................$..............O...................$"
>....O.........O...................
....OOO.....OOO...................
.......O...O......................
..O...OO...OO.....................
...O..............................
.OOO..............................
..................................
..................................
..................................
...............................O..
...............................O..
....................OO.........OOO
....................OO...........O
........OO........................
.......O..O.......................
..OO....OO........................
.O.O..............................
.O................................
OO................................
..........OO......................
..........O.......................
...........OOO....................
.............O...........OO.......
.....................OO..OO.......
....................O.O...........
.....................O............
.................O................
................O.O....OO.........
...............O...O...O..........
..............O...O.....OOO.......
.............O...O........O.......
............O...O.................
.............O.O..................
..............O...................
</a></pre></td></tr></table></center>
<p><a name=p8reflector>:</a><b>p8 reflector</b> Traditional name for <a href="#p8bouncer">p8 bouncer</a> before 2016, but with
the discovery of the <a href="#p8bumper">p8 bumper</a> this has become an ambiguous
reference.
<p><a name=p90gun>:</a><b>p90 gun</b> A glider gun with <a href="lex_t.htm#true">true</a> period 90. The one below by Dean
Hickerson uses the output of two p30 guns in a period-multiplying
reaction:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................................O.........................$......................................OOOO......................$................................OO.....OOOO.......O.............$...........................O...O..O....O..O......O.O............$..........................O.O...OO.....OOOO....OO...O...........$.........OO...............OO.O........OOOO.....OO...O.........OO$.........O.O..............OO.OO.......O........OO...O.........OO$....OO......O.............OO.O...................O.O............$OO.O..O..O..O.............O.O.....................O.............$OO..OO......O........O.....O...........O.O......................$.........O.O.......O.O.................OO.......................$.........OO.........OO..................O.......................$................................................................$................................................................$...........................................OO...................$...........................................OO...................$................................................................$................................................................$................................................................$................................................................$................................................................$................................................................$........................................OO......................$........................................O.......................$.........................................OOO....................$...........................................O....................$"
>......................................O.........................
......................................OOOO......................
................................OO.....OOOO.......O.............
...........................O...O..O....O..O......O.O............
..........................O.O...OO.....OOOO....OO...O...........
.........OO...............OO.O........OOOO.....OO...O.........OO
.........O.O..............OO.OO.......O........OO...O.........OO
....OO......O.............OO.O...................O.O............
OO.O..O..O..O.............O.O.....................O.............
OO..OO......O........O.....O...........O.O......................
.........O.O.......O.O.................OO.......................
.........OO.........OO..................O.......................
................................................................
................................................................
...........................................OO...................
...........................................OO...................
................................................................
................................................................
................................................................
................................................................
................................................................
................................................................
........................................OO......................
........................................O.......................
.........................................OOO....................
...........................................O....................
</a></pre></td></tr></table></center>
<p><a name=p92gun>:</a><b>p92 gun</b> A glider gun with a <a href="lex_t.htm#true">true</a> period of 92. The first one was
found by Bill Gosper in 1971 using a period doubling reaction using
two p46 guns. Many different p92 guns are known that use multiple
<a href="lex_t.htm#twinbeesshuttle">twin bees shuttles</a>. A period 92 gun can also be made by adding a
<a href="lex_s.htm#semicenark">semi-cenark</a> to any period 46 glider gun.
<p>On 18 November 2017, Martin Grant found a new gun using one twin
bees shuttle and one <a href="lex_t.htm#tannersp46">Tanner's p46</a> oscillator, making it the
smallest known p92 gun.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO..............O.........................$.....O.............O.O........................$.....O.O...........O.O........................$......OO..OO.....OOO.OO....................OO.$..........OO....O..........................OO.$.................OOO.OO........O..............$...................O.OO....OO..O..............$.......OO.O.O.............O.....O...........OO$.......OO.O.O............OO..O.O............OO$.......OO...O.............OO...O..............$.......OO....OO......OO....OOO................$O......OO.....OO.....OO.......................$OOO.......OOO.O............OOO................$...O.....OO...O.O.O.......OO...O..............$..O.O......O..O...O......OO..O.O............OO$..OO.......O.O..O.O.......O.....O...........OO$...........................OO..O..............$..OO...........................O..............$..O........................................OO.$....O......................................OO.$...OO.........................................$........OO....................................$.........O.....................O..............$......OOO.......................O.............$......O.......................OOO.............$"
>....OO..............O.........................
.....O.............O.O........................
.....O.O...........O.O........................
......OO..OO.....OOO.OO....................OO.
..........OO....O..........................OO.
.................OOO.OO........O..............
...................O.OO....OO..O..............
.......OO.O.O.............O.....O...........OO
.......OO.O.O............OO..O.O............OO
.......OO...O.............OO...O..............
.......OO....OO......OO....OOO................
O......OO.....OO.....OO.......................
OOO.......OOO.O............OOO................
...O.....OO...O.O.O.......OO...O..............
..O.O......O..O...O......OO..O.O............OO
..OO.......O.O..O.O.......O.....O...........OO
...........................OO..O..............
..OO...........................O..............
..O........................................OO.
....O......................................OO.
...OO.........................................
........OO....................................
.........O.....................O..............
......OOO.......................O.............
......O.......................OOO.............
</a></pre></td></tr></table></center>
<p><a name=p9bumper>:</a><b>p9 bumper</b> A periodic <a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a> with a
<a href="lex_r.htm#repeattime">repeat time</a> of 36. Unlike the p5 through p8 cases where Noam
Elkies' <a href="lex_d.htm#domino">domino</a> spark-based reflectors are available, no small
period-9 <a href="lex_c.htm#colourchanging">colour-changing</a> reflector is known. A <a href="lex_s.htm#stable">stable</a> <a href="lex_s.htm#snark">Snark</a>
reflector can be substituted for any <a href="lex_b.htm#bumper">bumper</a>. This changes the
timing of the output glider, which can be useful for rephasing
periodic glider streams.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........................O..$........................O.O$........................OO.$...........................$...........................$...........................$...........................$...........................$...........................$...............O...........$......OO.......O.O.........$.....O.O.......OO..........$.OO..O.....................$.O.O.OO......OO............$...O...O....O..O...........$O..O.O.OO....O.O...........$OOO..O.O......O............$...OO.O....................$..O..O..O.........OO.......$...OOOOOO.........O........$...................OOO.....$.....OO..............O.....$.....OO....................$"
>........................O..
........................O.O
........................OO.
...........................
...........................
...........................
...........................
...........................
...........................
...............O...........
......OO.......O.O.........
.....O.O.......OO..........
.OO..O.....................
.O.O.OO......OO............
...O...O....O..O...........
O..O.O.OO....O.O...........
OOO..O.O......O............
...OO.O....................
..O..O..O.........OO.......
...OOOOOO.........O........
...................OOO.....
.....OO..............O.....
.....OO....................
</a></pre></td></tr></table></center>
<p><a name=pairofbookends>:</a><b>pair of bookends</b> = <a href="lex_b.htm#bookends">bookends</a>
<p><a name=pairoftables>:</a><b>pair of tables</b> = <a href="lex_t.htm#tableontable">table on table</a>
<p><a name=paperclip>:</a><b>paperclip</b> (p1) A relatively 180-degree rotationally <a href="lex_s.htm#symmetric">symmetric</a>
14-<a href="lex_b.htm#bit">bit</a> <a href="lex_s.htm#stilllife">still life</a>. The <a href="lex_i.htm#iwona">Iwona</a> <a href="lex_m.htm#methuselah">methuselah</a> contains a paperclip
in its <a href="lex_a.htm#ash">ash</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO.$.O..O$.O.OO$OO.O.$O..O.$.OO..$"
>..OO.
.O..O
.O.OO
OO.O.
O..O.
.OO..
</a></pre></td></tr></table></center>
<p><a name=parallelgreyship>:</a><b>parallel grey ship</b> = <a href="lex_w.htm#withthegraingreyship">with-the-grain grey ship</a>
<p><a name=parallelhbk>:</a><b>Parallel HBK</b> ((6,3)<i>c</i>/245912, p245912) A much smaller successor to the
<a href="lex_h.htm#halfbakedknightship">half-baked knightship</a>, constructed by Chris Cain in September 2014.
Several slow-salvo recipes are needed to support the multi-glider
salvo <a href="lex_s.htm#seed">seeds</a> at the upstream end of the spaceship. "Parallel" means
that these recipes are sent in parallel instead of one after the
other, in series, as in the original HBK.
<p><a name=parallelhbkgun>:</a><b>Parallel HBK gun</b> An <a href="lex_a.htm#armless">armless</a> constructor pattern that is programmed
to build <a href="#parallelhbk">Parallel HBK</a> oblique spaceships every 125906944 ticks.
This gun was created by Chris Cain on 3 January 2015.
<p><a name=parasite>:</a><b>parasite</b> A self-sustaining reaction attached to the output of a rake
or puffer, that damages or modifies the standard output. Compare
<a href="lex_t.htm#tagalong">tagalong</a>. In 2009, while experimenting with <a href="lex_n.htm#noveltygenerator">novelty generator</a>
patterns in <a href="lex_g.htm#golly">Golly</a>, Mitchell Riley discovered parasites on glider
streams from p20 and p8 backward rakes. In some cases, parasites can
even "reproduce", as in the pattern below, though the number of
copies is limited since they will eventually use up their host glider
stream:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......O.............O.........$.....OOO...........OOO........$...OO.OOO.........OOO.OO......$....O..O.OO.....OO.O..O.......$.OO.O....O.O...O.O....O.OO....$.OO.O.O..O.OO.OO.O..O.O.OO....$.O........O.O.O.O........O....$OO.......OO.O.O.OO.......OO...$............O.O...............$.......OOO.O...O.OOO..........$......OO...........OO.........$......O.....O....OO..O........$.....OO....OOO...OO..O........$...........O.OO...OOO.........$............OOO....O..........$............OOO...............$............OOO...............$............OO................$..............................$...................O.O........$....................OO........$...............OO...O.........$........OO......OO............$.......OO......O..............$.........O....................$..............................$..............................$.................OO...........$..........O......OOO..........$.........OOO.O...OOO..........$........OO.O.....OOO..........$........OO......O.OO..........$........OO......OOO....OO.....$........OO.OO....O.....O......$.........OO...........OO......$..........OOO.O...O.OOO.......$...............O.O............$...OO.......OO.O.O.OO.......OO$....O........O.O.O.O........O.$....OO.O.O..O.OO.OO.O..O.O.OO.$....OO.O....O.O...O.O....O.OO.$.......O..O.OO.....OO.O..O....$......OO.OOO.........OOO.OO...$........OOO...........OOO.....$.........O.............O......$"
>......O.............O.........
.....OOO...........OOO........
...OO.OOO.........OOO.OO......
....O..O.OO.....OO.O..O.......
.OO.O....O.O...O.O....O.OO....
.OO.O.O..O.OO.OO.O..O.O.OO....
.O........O.O.O.O........O....
OO.......OO.O.O.OO.......OO...
............O.O...............
.......OOO.O...O.OOO..........
......OO...........OO.........
......O.....O....OO..O........
.....OO....OOO...OO..O........
...........O.OO...OOO.........
............OOO....O..........
............OOO...............
............OOO...............
............OO................
..............................
...................O.O........
....................OO........
...............OO...O.........
........OO......OO............
.......OO......O..............
.........O....................
..............................
..............................
.................OO...........
..........O......OOO..........
.........OOO.O...OOO..........
........OO.O.....OOO..........
........OO......O.OO..........
........OO......OOO....OO.....
........OO.OO....O.....O......
.........OO...........OO......
..........OOO.O...O.OOO.......
...............O.O............
...OO.......OO.O.O.OO.......OO
....O........O.O.O.O........O.
....OO.O.O..O.OO.OO.O..O.O.OO.
....OO.O....O.O...O.O....O.OO.
.......O..O.OO.....OO.O..O....
......OO.OOO.........OOO.OO...
........OOO...........OOO.....
.........O.............O......
</a></pre></td></tr></table></center>
<p><a name=parent>:</a><b>parent</b> A pattern is said to be a parent of the pattern it gives rise
to after one generation. Some patterns have infinitely many parents,
but others have none at all (see <a href="lex_g.htm#gardenofeden">Garden of Eden</a>). Typically
parents are considered trivial if they contain groups of cells that
can be removed without changing the result, such as isolated faraway
cells.
<p><a name=parentcells>:</a><b>parent cells</b> The three cells that cause a new cell to be born.
<p><a name=parity>:</a><b>parity</b> Even or odd, particularly as applied to the <a href="#phase">phase</a> of an
oscillator or spaceship. For example, in <a href="lex_s.htm#slowsalvo">slow salvo</a> constructions,
the <a href="lex_i.htm#intermediatetarget">intermediate targets</a> are frequently period 2, most often
because they contain <a href="lex_b.htm#blinker">blinkers</a> or <a href="lex_t.htm#trafficlight">traffic lights</a>. A glider
striking a P2 constellation will generally produce a different result
depending on its parity. Period-4 intermediate targets are rare (or
not used), so it doesn't matter for example whether an odd-parity
glider in a slow salvo is phase 1 or phase 3. Only the even/odd
parity is important.
<p><a name=partialresult>:</a><b>partial result</b> An intermediate object found by a <a href="lex_s.htm#searchprogram">search program</a>
which might be a substantial part of a complete <a href="lex_s.htm#spaceship">spaceship</a> or
<a href="lex_o.htm#oscillator">oscillator</a>, but which isn't complete.
<p>Running a partial result works for a few generations until the
<a href="lex_s.htm#speedoflight">speed of light</a> corruption from any unfinished edge destroys the
whole object. But a partial result can still be used to see whether
the object (if ever finished) would provide a desired <a href="lex_s.htm#spark">spark</a> or
<a href="#perturbation">perturbation</a>. If no partial results are found then it is likely
that no such object exists under the constraints of the search.
<p>Very large partial results can indicate that there is a good chance
that the object being searched for might actually exist (but this is
no guarantee). Rerunning the search using the partial result as a
base and relaxing some constraints, widening or adjusting the search
area, or splitting the object into multiple <a href="lex_a.htm#arm">arms</a> might result in
finding a complete working object.
<p>As an example, here is a large partial result for a period 6
<a href="lex_k.htm#knightship">knightship</a> found by Josh Ball in April 2017. The first 22 columns
were rediscovered in 2018 as part of the successful search for
<a href="lex_s.htm#sirrobin">Sir Robin</a>. See also <a href="lex_a.htm#almostknightship">almost knightship</a> for an earlier small
example by Eugene Langvagen.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OOO...................$...O..OO..................$...O....O.................$..........................$...OOO...OO.OOO...........$.OO.O.O....O.OO...........$...O..O....O..OO..........$O..O........O.............$O....O..OO..O..O..........$.O.OOO..OO...OO...........$...OO.O.OO.O...O..........$.........OO.OOO...........$.........O.....O..........$............OOO..OOO......$...............O.OO.......$..........OO.O...OOO......$..........OO..O..OO.......$............OOOO...O......$.............OO.O..O......$...........OO.O.O.O.......$..............O...........$...........O.......OO.....$............OO.....OO.....$..............OO.O........$................OOO..O.O..$................OO...O....$.................O........$..................OOOOO.O.$...................OO..OOO$...................OO....O$.......................OO.$"
>....OOO...................
...O..OO..................
...O....O.................
..........................
...OOO...OO.OOO...........
.OO.O.O....O.OO...........
...O..O....O..OO..........
O..O........O.............
O....O..OO..O..O..........
.O.OOO..OO...OO...........
...OO.O.OO.O...O..........
.........OO.OOO...........
.........O.....O..........
............OOO..OOO......
...............O.OO.......
..........OO.O...OOO......
..........OO..O..OO.......
............OOOO...O......
.............OO.O..O......
...........OO.O.O.O.......
..............O...........
...........O.......OO.....
............OO.....OO.....
..............OO.O........
................OOO..O.O..
................OO...O....
.................O........
..................OOOOO.O.
...................OO..OOO
...................OO....O
.......................OO.
</a></pre></td></tr></table></center>
<p><a name=pd>:</a><b>PD</b> = <a href="#pentadecathlon">pentadecathlon</a>
<p><a name=pdhassler>:</a><b>PD hassler</b> = <a href="#p29pentadecathlonhassler">p29 pentadecathlon hassler</a>
<p><a name=pdpairreflector>:</a><b>PD-pair reflector</b> A pair of <a href="#pentadecathlon">pentadecathlons</a> arranged so that their
<a href="lex_v.htm#vspark">V sparks</a> turn a glider by 90 degrees. The minimum <a href="lex_r.htm#repeattime">repeat time</a> is
45 ticks.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OOO......$.......................$.............O...O.....$.............O...O.....$.......................$..............OOO......$.......................$.......................$..............OOO......$.......................$.............O...O.....$.............O...O.....$....................O..$..............OOO...O.O$....................OO.$.......................$O..O.OO.O..O...........$OOOO.OO.OOOO...........$O..O.OO.O..O...........$"
>..............OOO......
.......................
.............O...O.....
.............O...O.....
.......................
..............OOO......
.......................
.......................
..............OOO......
.......................
.............O...O.....
.............O...O.....
....................O..
..............OOO...O.O
....................OO.
.......................
O..O.OO.O..O...........
OOOO.OO.OOOO...........
O..O.OO.O..O...........
</a></pre></td></tr></table></center>
This was found by Mark Niemiec on 6 January 1996, which is relatively
recent considering how old <a href="#pentadecathlon">pentadecathlon</a> <a href="lex_t.htm#technology">technology</a> is.
<p><a name=pedestle>:</a><b>pedestle</b> (p5) An <a href="lex_o.htm#oscillator">oscillator</a> found by Dave Buckingham in 1973.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$....O.O....$.O..OO.....$.OOO.......$.....OOO...$...OO...O..$..O....O..O$.O.O.O.O.OO$.O.O...O.O.$OO.O.O.O.O.$O..O....O..$..O...OO...$...OOO.....$.......OOO.$.....OO..O.$....O.O....$.....O.....$"
>.....O.....
....O.O....
.O..OO.....
.OOO.......
.....OOO...
...OO...O..
..O....O..O
.O.O.O.O.OO
.O.O...O.O.
OO.O.O.O.O.
O..O....O..
..O...OO...
...OOO.....
.......OOO.
.....OO..O.
....O.O....
.....O.....
</a></pre></td></tr></table></center>
<p><a name=pennylane>:</a><b>penny lane</b> (p4) Found by Dave Buckingham, 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO.....OO...$...O.......O...$OO.O.......O.OO$OO.O.OOOOO.O.OO$....O..O..O....$.....OOOOO.....$...............$.......O.......$......O.O......$.......O.......$"
>...OO.....OO...
...O.......O...
OO.O.......O.OO
OO.O.OOOOO.O.OO
....O..O..O....
.....OOOOO.....
...............
.......O.......
......O.O......
.......O.......
</a></pre></td></tr></table></center>
<p><a name=pentadecathlon>:</a><b>pentadecathlon</b> (p15) Found in 1970 by Conway while tracking the
history of short rows of cells, 10 cells giving this object, which is
the most <a href="lex_n.htm#natural">natural</a> <a href="lex_o.htm#oscillator">oscillator</a> of period greater than 3. In fact it
is the fifth most common <a href="lex_o.htm#oscillator">oscillator</a> overall, appearing in random
soups slightly more frequently than the <a href="lex_c.htm#clock">clock</a>, but much less
frequently than the <a href="lex_b.htm#blinker">blinker</a>, <a href="lex_t.htm#toad">toad</a>, <a href="lex_b.htm#beacon">beacon</a> or <a href="#pulsar">pulsar</a>. The
pentadecathlon can be constructed using just three gliders, as shown
in <a href="lex_g.htm#glidersynthesis">glider synthesis</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O....O..$OO.OOOO.OO$..O....O..$"
>..O....O..
OO.OOOO.OO
..O....O..
</a></pre></td></tr></table></center>
<p>The pentadecathlon is the only known oscillator that has two
<a href="#phase">phases</a> that are different <a href="#polyomino">polyominoes</a>. It produces accessible
<a href="lex_v.htm#vspark">V sparks</a> and <a href="lex_d.htm#domino">domino</a> sparks, which give it a great capacity for
doing <a href="#perturbation">perturbations</a>, especially for period 30 based <a href="lex_t.htm#technology">technology</a>.
See <a href="lex_r.htm#relay">relay</a> for example.
<p><a name=pentant>:</a><b>pentant</b> (p5) Found by Dave Buckingham, July 1976.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO........$.O........$.O.O......$..OO....OO$.........O$.....OOOO.$.....O....$..O...OOO.$..OOOO..O.$.....O....$....O.....$....OO....$"
>OO........
.O........
.O.O......
..OO....OO
.........O
.....OOOO.
.....O....
..O...OOO.
..OOOO..O.
.....O....
....O.....
....OO....
</a></pre></td></tr></table></center>
<p><a name=pentaplet>:</a><b>pentaplet</b> Any 5-cell <a href="#polyplet">polyplet</a>.
<p><a name=pentapole>:</a><b>pentapole</b> (p2) The <a href="lex_b.htm#barberpole">barberpole</a> of length 5.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO......$O.O.....$........$..O.O...$........$....O.O.$.......O$......OO$"
>OO......
O.O.....
........
..O.O...
........
....O.O.
.......O
......OO
</a></pre></td></tr></table></center>
<p><a name=pentoad>:</a><b>pentoad</b> (p5) Found by Bill Gosper, June 1977. This is <a href="lex_e.htm#extensible">extensible</a>:
if an eater is moved back four spaces then another <a href="lex_z.htm#zhexomino">Z-hexomino</a> can
be inserted. (This extensibility was discovered by Scott Kim.)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO$...........O.$.........O.O.$.........OO..$.....OO......$......O......$......O......$......OO.....$..OO.........$.O.O.........$.O...........$OO...........$"
>...........OO
...........O.
.........O.O.
.........OO..
.....OO......
......O......
......O......
......OO.....
..OO.........
.O.O.........
.O...........
OO...........
</a></pre></td></tr></table></center>
<p><a name=pentomino>:</a><b>pentomino</b> Any 5-cell <a href="#polyomino">polyomino</a>. There are 12 such patterns, and
Conway assigned them all letters in the range O to Z, loosely based
on their shapes. Only in the case of the <a href="lex_r.htm#rpentomino">R-pentomino</a> has Conway's
label remained in common use, but all of them can nonetheless be
found in this lexicon.
<p><a name=period>:</a><b>period</b> The smallest number of generations it takes for an
<a href="lex_o.htm#oscillator">oscillator</a> or <a href="lex_s.htm#spaceship">spaceship</a> to reappear in its original form. The
term can also be used for a <a href="#puffer">puffer</a>, <a href="lex_w.htm#wick">wick</a>, <a href="lex_f.htm#fuse">fuse</a>, <a href="lex_s.htm#superstring">superstring</a>,
stream of <a href="lex_s.htm#spaceship">spaceships</a>, <a href="lex_f.htm#factory">factory</a> or <a href="lex_g.htm#gun">gun</a>. In the last case there
is a distinction between <a href="lex_t.htm#true">true</a> period and <a href="#pseudo">pseudo</a> period. There is
also a somewhat different concept of period for <a href="lex_w.htm#wicktrailer">wicktrailers</a>.
<p><a name=perioddoubler>:</a><b>period doubler</b> See <a href="#periodmultiplier">period multiplier</a>.
<p><a name=periodic>:</a><b>periodic</b> For <a href="lex_c.htm#circuit">circuit</a> mechanisms, "periodic" is the opposite of <a href="#p1">p1</a>
or <a href="lex_s.htm#stable">stable</a>. Periodic <a href="lex_c.htm#circuit">circuits</a> necessarily contain <a href="lex_o.htm#oscillator">oscillators</a>,
and therefore they can generally only accept input <a href="lex_s.htm#signal">signals</a> that are
<a href="lex_s.htm#synchronized">synchronized</a> to the combined <a href="#period">period</a> of those oscillators (but see
<a href="lex_u.htm#universalregulator">universal regulator</a>).
<p>For <a href="lex_s.htm#signal">signal</a> <a href="lex_s.htm#stream">streams</a>, "periodic" means that signals will only be
present in the stream at one out of every <i>n</i> ticks, where <i>n</i> is the
<a href="#period">period</a> of the stream. In a periodic <a href="lex_i.htm#intermittentstream">intermittent stream</a> there
may be gaps, so that signals do not always appear at every nth tick.
However, if a signal does appear, its distance measured in ticks from
previous and future signals will always be an exact multiple of <i>n</i>.
<p><a name=periodmultiplier>:</a><b>period multiplier</b> A term commonly used for a <a href="#pulsedivider">pulse divider</a>, because
dividing the number of <a href="lex_s.htm#signal">signals</a> in a regular stream by <i>N</i> necessarily
multiplies the <a href="#period">period</a> by <i>N</i>. The term "period multiplier" can be
somewhat misleading in this context, because most such circuits can
accept input streams that are not strictly <a href="#periodic">periodic</a>.
<p>Reactions have also been found to period double or period triple
the output of some <a href="lex_r.htm#rake">rakes</a> to create high-period rakes in a
relatively small space (i.e., an exponential increase in period for a
linear increase in size).
<p>For <a href="lex_h.htm#herschel">Herschel</a> signals and <a href="lex_g.htm#glidergun">glider guns</a>, a number of small period
doubler, tripler, and quadrupler mechanisms are known. For example,
the following <a href="lex_c.htm#conduit">conduit</a> produces one output glider after accepting
four input <a href="lex_b.htm#bheptomino">B-heptominoes</a>, or four Herschels if a conduit such as
<a href="lex_f.htm#f117">F117</a> is prepended that includes the same <a href="lex_b.htm#bfx59h">BFx59H</a> converter.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................O........................$....................OOO......................$.......................O.....................$............OO........OO.....................$.............O...............................$.............O.O.............................$OO............OO.............................$O.O..........................................$..O..........................................$..OO.........................................$.............................................$.............................................$...........................................OO$...........................................OO$.............................................$.O...OO......................................$.OO..OO......................................$..OO.........................................$.OO..........................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.............................................$.................................OO..........$.........OO......................OO..........$........O.O..................................$........O....................................$.......OO....................................$"
>....................O........................
....................OOO......................
.......................O.....................
............OO........OO.....................
.............O...............................
.............O.O.............................
OO............OO.............................
O.O..........................................
..O..........................................
..OO.........................................
.............................................
.............................................
...........................................OO
...........................................OO
.............................................
.O...OO......................................
.OO..OO......................................
..OO.........................................
.OO..........................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.............................................
.................................OO..........
.........OO......................OO..........
........O.O..................................
........O....................................
.......OO....................................
</a></pre></td></tr></table></center>
<p>See <a href="lex_s.htm#semisnark">semi-Snark</a> and <a href="lex_t.htm#tremisnark">tremi-Snark</a> for additional examples using
<a href="lex_g.htm#glider">glider</a> streams. As of June 2018 no stable period-multiplying
<a href="lex_e.htm#elementaryconduit">elementary conduits</a> are known for a multiplication factor of five
or higher, though it is easy to construct composite ones.
<p><a name=permanentswitch>:</a><b>permanent switch</b> A <a href="lex_s.htm#signal">signal</a>-carrying <a href="lex_c.htm#circuit">circuit</a> that can be modified
so that it cleanly absorbs any future signals instead of allowing
them to pass. Optionally there may be a separate mechanism to
restore the circuit to its original function.
<p>In the following example, a glider from the northeast (shown) will
perform a simple <a href="lex_b.htm#blockpull">block pull</a> that switches off an <a href="lex_f.htm#f166">F166</a> conduit, so
that any future Herschel inputs will be cleanly absorbed. A glider
from the southwest (also shown) can restore the block to its original
position.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO........................................................$..O........................................................$.O.........................................................$.OO...............................................OO.......$...................................................O.......$..................................................O........$..................................................OO.......$..................................O........................$..................................O.O......................$O...OO............................OO.......................$OO..OO.....................................................$.OO......................OO................................$OO.......................OO..........................OO....$.....................................................OO....$...........................................................$...........................................................$...........................................................$...........................................................$.............OO............................................$............O.O........OO..................................$..............O.......O.O..................................$......................O....................................$.....................OO.........................OO.........$................................................OO.........$...........................................................$...........................................................$..................................OO.....................OO$...................................O......................O$................................OOO....................OOO.$................................O......................O...$............................................OO.............$............................................O..............$.............................................OOO...........$...............................................O...........$"
>.OO........................................................
..O........................................................
.O.........................................................
.OO...............................................OO.......
...................................................O.......
..................................................O........
..................................................OO.......
..................................O........................
..................................O.O......................
O...OO............................OO.......................
OO..OO.....................................................
.OO......................OO................................
OO.......................OO..........................OO....
.....................................................OO....
...........................................................
...........................................................
...........................................................
...........................................................
.............OO............................................
............O.O........OO..................................
..............O.......O.O..................................
......................O....................................
.....................OO.........................OO.........
................................................OO.........
...........................................................
...........................................................
..................................OO.....................OO
...................................O......................O
................................OOO....................OOO.
................................O......................O...
............................................OO.............
............................................O..............
.............................................OOO...........
...............................................O...........
</a></pre></td></tr></table></center>
<p><a name=perpendiculargreyship>:</a><b>perpendicular grey ship</b> = <a href="lex_a.htm#againstthegraingreyship">against-the-grain grey ship</a>
<p><a name=perturb>:</a><b>perturb</b> To change the fate of an object by reacting it with other
objects. Typically, the other objects are sparks from <a href="lex_s.htm#spaceship">spaceships</a>
or <a href="lex_o.htm#oscillator">oscillators</a>, or are <a href="lex_e.htm#eater">eaters</a> or impacting spaceships.
Perturbations are typically done to turn a <a href="lex_d.htm#dirty">dirty</a> reaction into a
<a href="lex_c.htm#clean">clean</a> one, or to change the products of a reaction. In many
desirable cases the perturbing objects are not destroyed by the
reaction, or else are easily replenished.
<p><a name=perturbation>:</a><b>perturbation</b> = <a href="#perturb">perturb</a>.
<p><a name=pf35w>:</a><b>PF35W</b> One of the three <a href="lex_e.htm#elementary">elementary</a> conduits used in the composite
<a href="lex_f.htm#fx176">Fx176</a> <a href="lex_h.htm#herschelconduit">Herschel conduit</a>. It converts an input <a href="#piheptomino">pi-heptomino</a> into
an output <a href="lex_w.htm#wing">wing</a> in 35 ticks. In November 2017, Aidan F. Pierce
discovered the compact PF35W variant below, which improved the repeat
time of the Fx176 to 73 ticks and allowed <a href="lex_g.htm#glider">gliders</a> from following
<a href="lex_d.htm#dependentconduit">dependent conduits</a> to escape freely:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.........OO...$OOO....OO..O...$...O..O..OO....$..OO...OO..OOO.$.........O.O..O$.........O...OO$..........O....$.........OO....$...............$...............$...............$...............$...OOO.........$.....O.........$...OOO.........$...............$...............$...............$...............$...............$...............$...............$...............$..OO...........$...O...........$OOO............$O..............$"
>O.........OO...
OOO....OO..O...
...O..O..OO....
..OO...OO..OOO.
.........O.O..O
.........O...OO
..........O....
.........OO....
...............
...............
...............
...............
...OOO.........
.....O.........
...OOO.........
...............
...............
...............
...............
...............
...............
...............
...............
..OO...........
...O...........
OOO............
O..............
</a></pre></td></tr></table></center>
Several variants of the key catalyst are known, including <a href="lex_w.htm#weld">welded</a>
additions for the Fx176 that absorb the following Herschel's first
natural glider, since a standard fishhook eater doesn't quite fit.
The following is a complete <a href="lex_f.htm#fx176">Fx176</a> conduit incorporating the new
PF45W:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:   ......................O...........................$......................OOO...OO....................$..............OO.........O..O..OO.................$..............OO........OO...OO..O................$...............................O.OOO..............$...............................O....O.OO..........$................................O.O.O.O.O.........$...............................OO.OO...O..........$OO................................................$.O...................................OOOOO........$.O.O.................................O...O........$..OO...................................O..........$.........................OOO..........OOO.........$...........................O.............O........$.........................OOO............OO........$..................................................$..................................................$..................................................$..O...............................................$..O.O...............................OO...........O$..OOO...............................OO.........OOO$....O..........................................O..$...............................................O..$..............OO........OO........................$..............OO..OO.....O........................$..................O.O.OOO.........................$....................O.O...........................$....................OO....OO......................$.........................O.O....OO................$.........................O......OO................$........................OO........................$"
>   ......................O...........................
......................OOO...OO....................
..............OO.........O..O..OO.................
..............OO........OO...OO..O................
...............................O.OOO..............
...............................O....O.OO..........
................................O.O.O.O.O.........
...............................OO.OO...O..........
OO................................................
.O...................................OOOOO........
.O.O.................................O...O........
..OO...................................O..........
.........................OOO..........OOO.........
...........................O.............O........
.........................OOO............OO........
..................................................
..................................................
..................................................
..O...............................................
..O.O...............................OO...........O
..OOO...............................OO.........OOO
....O..........................................O..
...............................................O..
..............OO........OO........................
..............OO..OO.....O........................
..................O.O.OOO.........................
....................O.O...........................
....................OO....OO......................
.........................O.O....OO................
.........................O......OO................
........................OO........................
</a></pre></td></tr></table></center>
<p><a name=phase>:</a><b>phase</b> A representative generation of a periodic object such as an
<a href="lex_o.htm#oscillator">oscillator</a> or <a href="lex_s.htm#spaceship">spaceship</a>. The number of phases is equal to the
<a href="#period">period</a> of the object. The phases of an object usually repeat in
the same cyclic sequence forever, although some <a href="#perturbation">perturbations</a> can
cause a <a href="#phasechange">phase change</a>.
<p><a name=phasechange>:</a><b>phase change</b> A <a href="#perturbation">perturbation</a> of a periodic object that causes the
object to skip forward or backward by one or more <a href="#phase">phases</a>. If the
perturbation is repeated indefinitely, this can effectively change
the <a href="#period">period</a> of the object. An example of this, found by Dean
Hickerson in November 1998, is shown below. In this example, the
period of the <a href="lex_o.htm#oscillator">oscillator</a> would be 7 if the <a href="lex_m.htm#mold">mold</a> were removed, but
the period is increased to 8 because of the repeated phase changes
caused by the mold's <a href="lex_s.htm#spark">spark</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........O....$.........O.OO..$..OO.........O.$..O......O..O.O$.......O...O..O$OOOOOO.O....OO.$O..............$.OO.OO...OO....$..O.O....O.O...$..O.O......O...$...O.......OO..$"
>..........O....
.........O.OO..
..OO.........O.
..O......O..O.O
.......O...O..O
OOOOOO.O....OO.
O..............
.OO.OO...OO....
..O.O....O.O...
..O.O......O...
...O.......OO..
</a></pre></td></tr></table></center>
<p>The following pattern demonstrates a p4 <i>c</i>/2 <a href="lex_s.htm#spaceship">spaceship</a> found by
Jason Summers, in which the phase is changed as it deletes a
<a href="lex_f.htm#forwardglider">forward glider</a>. This phase change allows the spaceship to be used
to delete a glider wave produced by a <a href="lex_r.htm#rake">rake</a> whose period is 2 (mod
4).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O...........................$.......OOO.OO.......................$......OO...O.OO.....................$.....OO..O.....O....................$......O.....O...O.OOO...............$.....OO.....O...O.O..O..............$...OO.O.OO....O.O.O...O.............$....O.O..OO...........O.............$.OO.O..O..O.........O...............$.OO.O.....OO.........O.OOO..........$.O.O.............OOO.O.O.OO.........$OO.OO...........OO.O..O.O.O.........$..............OO.O...OOO..OO.....OO.$.............O...O......O........O.O$............O.....O..OO.O.OO.....O..$...........O..O.O......O.O..........$...........O.....OO....OOO..........$.............O..........O...........$..........O.O...........O...........$.........OO.O.OOO...................$........O.O.O...O...................$.......OO.O.........................$......O...O.....OO..................$....................................$......OO.OO.........................$"
>........O...........................
.......OOO.OO.......................
......OO...O.OO.....................
.....OO..O.....O....................
......O.....O...O.OOO...............
.....OO.....O...O.O..O..............
...OO.O.OO....O.O.O...O.............
....O.O..OO...........O.............
.OO.O..O..O.........O...............
.OO.O.....OO.........O.OOO..........
.O.O.............OOO.O.O.OO.........
OO.OO...........OO.O..O.O.O.........
..............OO.O...OOO..OO.....OO.
.............O...O......O........O.O
............O.....O..OO.O.OO.....O..
...........O..O.O......O.O..........
...........O.....OO....OOO..........
.............O..........O...........
..........O.O...........O...........
.........OO.O.OOO...................
........O.O.O...O...................
.......OO.O.........................
......O...O.....OO..................
....................................
......OO.OO.........................
</a></pre></td></tr></table></center>
<p>Phase changing reactions have enabled the construction of
spaceships having periods that were otherwise unknown, and also allow
the construction of period-doubling and period-tripling <a href="lex_c.htm#convoy">convoys</a> to
easily produce very high period rakes.
<p>See also <a href="lex_b.htm#blinkerpuffer">blinker puffer</a>.
<p><a name=phaseshift>:</a><b>phase shift</b> = <a href="#phasechange">phase change</a>
<p><a name=phi>:</a><b>phi</b> The following common <a href="lex_s.htm#spark">spark</a>. The name comes from the shape in
the generation after the one shown here.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO.$O...O$O...O$.OOO.$"
>.OOO.
O...O
O...O
.OOO.
</a></pre></td></tr></table></center>
One <a href="lex_o.htm#oscillator">oscillator</a> which produces this spark is <a href="lex_t.htm#tannersp46">Tanner's p46</a>. The
<a href="#pentadecathlon">pentadecathlon</a> produces a slightly corrupted version of this spark.
<p><a name=phicalculator>:</a><b>phi calculator</b> (p1 circuitry) See <a href="#picalculator">pi calculator</a>.
<p><a name=phoenix>:</a><b>phoenix</b> Any pattern all of whose cells die in every generation, but
which never dies as a whole. A <a href="lex_s.htm#spaceship">spaceship</a> cannot be a phoenix, and
in fact every finite phoenix eventually evolves into an <a href="lex_o.htm#oscillator">oscillator</a>.
The following 12-cell oscillator (found by the MIT group in December
1971) is the smallest known phoenix, and is sometimes called simply
"the phoenix".
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O...$..O.O...$......O.$OO......$......OO$.O......$...O.O..$...O....$"
>....O...
..O.O...
......O.
OO......
......OO
.O......
...O.O..
...O....
</a></pre></td></tr></table></center>
This is <a href="lex_e.htm#extensible">extensible</a> and is just the first of a family of phoenixes
made by joining <a href="lex_c.htm#component">components</a> together to form a loop. Here is
another member of this family.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................O.......O......$.....................O.O.....O.O....$.................O.O.....O.O........$.................O.......O......OO..$.....O.......O.O....................$.....O.O.....O...................O..$...O.....O.O........................$.........O........................OO$..OO................................$..................................O.$.O..................................$................................OO..$OO........................O.........$........................O.O.....O...$..O...................O.....O.O.....$....................O.O.......O.....$..OO......O.......O.................$........O.O.....O.O.................$....O.O.....O.O.....................$......O.......O.....................$"
>.....................O.......O......
.....................O.O.....O.O....
.................O.O.....O.O........
.................O.......O......OO..
.....O.......O.O....................
.....O.O.....O...................O..
...O.....O.O........................
.........O........................OO
..OO................................
..................................O.
.O..................................
................................OO..
OO........................O.........
........................O.O.....O...
..O...................O.....O.O.....
....................O.O.......O.....
..OO......O.......O.................
........O.O.....O.O.................
....O.O.....O.O.....................
......O.......O.....................
</a></pre></td></tr></table></center>
Every known phoenix oscillator has period 2. In January 2000,
Stephen Silver showed that a period 3 oscillator cannot be a phoenix.
The situation for higher periods is unknown.
<p>An easy <a href="lex_s.htm#synthesis">synthesis</a> of the phoenix is possible using four blocks as
<a href="lex_s.htm#seed">seeds</a>. A <a href="#puffer">puffer</a> creating a growing row of phoenixes has the
unusual property that the percentage of live cells that stay alive
for more than one generation approaches zero. See <a href="lex_l.htm#lonedotagar">lone dot agar</a>
for an example of an infinite phoenix.
<p><a name=pi>:</a><b>pi</b> = <a href="#piheptomino">pi-heptomino</a>
<p><a name=pianolabreeder>:</a><b>Pianola breeder</b> A series of patterns by Paul Tooke in 2010, based on
a simplification and extension of the <a href="lex_g.htm#gemini">Gemini</a> spaceship's
construction mechanism. Tooke produced a number of
slow-salvo-constructed patterns with <a href="lex_s.htm#superlineargrowth">superlinear growth</a>, including
a series of breeder patterns of previously unknown types. For some
patterns, the Gemini's two <a href="lex_c.htm#constructionarm">construction arms</a> were moved to a
permanent stationary platform, using fourteen glider-loop channels
instead of twelve.
<p>Some of these breeder patterns remain difficult to classify
unambiguously. For example, one pattern was designed to be an MSS
breeder - a modified <a href="lex_g.htm#gemini">Gemini</a> spaceship puffing <a href="lex_s.htm#slidegun">slide guns</a> which
build lines of <a href="lex_b.htm#block">blocks</a>. However, the slide guns produce both moving
and stationary objects at a linear rate, because streams of gliders
are needed to reach out to the construction zone to do the <a href="#push">push</a>
reaction and build more blocks. The pattern could therefore be
classified as a hybrid MSM/MSS breeder. Other breeder patterns
utilizing slide guns and <a href="lex_u.htm#universalconstructor">universal constructor</a> technology are
likely to cause similar classification ambiguities.
<p><a name=picalculator>:</a><b>pi calculator</b> (p1 circuitry) A device constructed by Adam P. Goucher
in February 2010, which calculates the decimal digits of pi (the
transcendental number, not the Life pattern!) and displays them in
the Life universe as 8x10 dot matrix characters formed by
arrangements of blocks along a diagonal stripe at the top. A <a href="#push">push</a>
reaction moves a ten-block diagonal cursor to the next position as
part of the "printing" operation for each new digit.
<p>The actual calculation is done in binary, using a streaming spigot
algorithm based on linear fractional transformations. The pi
calculator is made up of a 188-state computer connected to a printing
device via period-8 <a href="lex_r.htm#regulator">regulators</a> and a binary-to-decimal conversion
mechanism. The complete pattern can be found in <a href="lex_g.htm#golly">Golly</a>'s Very Large
Patterns online archive, along with the very similar 177-state phi
calculator which uses a simpler algorithm to calculate and print the
Golden Ratio.
<p><a name=piclimber>:</a><b>pi climber</b> The reaction that defines rate of travel of the
<a href="lex_c.htm#caterpillar">Caterpillar</a> spaceship. A pi climber consists of a pi-heptomino
"climbing" a chain of blinkers, moving 17 cells every 45 ticks, and
leaving behind an identical chain of blinkers, shifted downward by 6
cells. A single pi climber does not produce any gliders or other
output, but two or more of them travelling on nearby blinker chains
can be arranged to emit gliders every 45 ticks. Compare
<a href="lex_h.htm#herschelpairclimber">Herschel-pair climber</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O..$..O..$..O..$.....$.....$.....$.....$.....$.....$.....$.....$.....$.....$.....$.....$..O..$.OOO.$.O.O.$"
>..O..
..O..
..O..
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
..O..
.OOO.
.O.O.
</a></pre></td></tr></table></center>
<p><a name=piheptomino>:</a><b>pi-heptomino</b> (stabilizes at time 173) A common pattern. The name is
also applied to later generations of this object. In a <a href="#piship">pi ship</a>,
for example, the pi-heptomino itself never arises.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO$O.O$O.O$"
>OOO
O.O
O.O
</a></pre></td></tr></table></center>
<p><a name=pincers>:</a><b>pincers</b> = <a href="lex_g.htm#greatonoff">great on-off</a>
<p><a name=pinwheel>:</a><b>pinwheel</b> (p4) Found by Simon Norton, April 1970. Compare <a href="lex_c.htm#clockii">clock II</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......OO....$......OO....$............$....OOOO....$OO.O....O...$OO.O..O.O...$...O...OO.OO$...O.O..O.OO$....OOOO....$............$....OO......$....OO......$"
>......OO....
......OO....
............
....OOOO....
OO.O....O...
OO.O..O.O...
...O...OO.OO
...O.O..O.OO
....OOOO....
............
....OO......
....OO......
</a></pre></td></tr></table></center>
<p><a name=piorbital>:</a><b>pi orbital</b> (p168) Found by Noam Elkies, August 1995. In this
<a href="lex_o.htm#oscillator">oscillator</a>, a <a href="#piheptomino">pi-heptomino</a> is turned ninety degrees every 42
generations. A second pi can be inserted to reduce the period to 84.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OO....OO....OO...............................$.............O..O.O....O.O..O..............................$.............OOO..........OOO..............................$................OO......OO.................................$...............O..OOOOOO..O................................$...............OO........OO................................$...........................................................$........O.............................OO..........O........$.......O...OOO......O.........O.......OO.........O.O.......$........O.OOOOO..........OOO...O...........................$............O...O.....O.OOOOO.O..................O.........$............OO....OOO.....O......................OO........$............OO....OOO....OO...................OOOOO........$...................O.....OO...................OO.OO.....OO.$.................................................O......O.O$.....................................................OO.O.O$.....................................................O.O.O.$.......................................................O...$...................................OOO.........O.O...O..O..$.......OO..........................O..O........O..O.....O..$.......OO..............................O.......O.O..O...O..$...................................O..O.............O...O..$...................................OOO..................O..$.....................................................O..O..$................................................O......O...$.............................................OO.OO...O.O.O.$.............................................OOOOO...OO.O.O$.........O......................................OO......O.O$........O.O.....................................O.......OO.$...........................................................$.OO.......O.....................................O.O........$O.O......OO......................................O.........$O.O.OO...OOOOO.............................................$.O.O.O...OO.OO.............................................$...O......O................................................$..O..O.....................................................$..O........................................................$..O...O....................................................$..O...O..O.O......................................OO.......$..O.....O..O......................................OO.......$..O..O...O.O...............................................$...O.......................................................$.O.O.O.....................................................$O.O.OO.....................................................$O.O......O.................................................$.OO.....OO.OO...................OO.....O...................$........OOOOO...................OO....OOO....OO............$........OO......................O.....OOO....OO............$.........O..................O.OOOOO.O.....O...O............$...........................O...OOO..........OOOOO.O........$.......O.O.........OO.......O.........O......OOO...O.......$........O..........OO.............................O........$...........................................................$................................OO........OO...............$................................O..OOOOOO..O...............$.................................OO......OO................$..............................OOO..........OOO.............$..............................O..O.O....O.O..O.............$...............................OO....OO....OO..............$"
>..............OO....OO....OO...............................
.............O..O.O....O.O..O..............................
.............OOO..........OOO..............................
................OO......OO.................................
...............O..OOOOOO..O................................
...............OO........OO................................
...........................................................
........O.............................OO..........O........
.......O...OOO......O.........O.......OO.........O.O.......
........O.OOOOO..........OOO...O...........................
............O...O.....O.OOOOO.O..................O.........
............OO....OOO.....O......................OO........
............OO....OOO....OO...................OOOOO........
...................O.....OO...................OO.OO.....OO.
.................................................O......O.O
.....................................................OO.O.O
.....................................................O.O.O.
.......................................................O...
...................................OOO.........O.O...O..O..
.......OO..........................O..O........O..O.....O..
.......OO..............................O.......O.O..O...O..
...................................O..O.............O...O..
...................................OOO..................O..
.....................................................O..O..
................................................O......O...
.............................................OO.OO...O.O.O.
.............................................OOOOO...OO.O.O
.........O......................................OO......O.O
........O.O.....................................O.......OO.
...........................................................
.OO.......O.....................................O.O........
O.O......OO......................................O.........
O.O.OO...OOOOO.............................................
.O.O.O...OO.OO.............................................
...O......O................................................
..O..O.....................................................
..O........................................................
..O...O....................................................
..O...O..O.O......................................OO.......
..O.....O..O......................................OO.......
..O..O...O.O...............................................
...O.......................................................
.O.O.O.....................................................
O.O.OO.....................................................
O.O......O.................................................
.OO.....OO.OO...................OO.....O...................
........OOOOO...................OO....OOO....OO............
........OO......................O.....OOO....OO............
.........O..................O.OOOOO.O.....O...O............
...........................O...OOO..........OOOOO.O........
.......O.O.........OO.......O.........O......OOO...O.......
........O..........OO.............................O........
...........................................................
................................OO........OO...............
................................O..OOOOOO..O...............
.................................OO......OO................
..............................OOO..........OOO.............
..............................O..O.O....O.O..O.............
...............................OO....OO....OO..............
</a></pre></td></tr></table></center>
<p><a name=piportraitor>:</a><b>pi portraitor</b> (p32) Found by Robert Wainwright in 1984 or 1985.
Compare with <a href="lex_g.htm#gourmet">gourmet</a> and <a href="#popover">popover</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO...........$......OO.O....O.OO......$......O..........O......$.......OO......OO.......$....OOO..OOOOOO..OOO....$....O..O........O..O....$.OO.O.O..........O.O.OO.$.O.O.O............O.O.O.$...O................O...$.O..O..............O..O.$....O.......OOO....O....$O...O.......O.O....O...O$O...O.......O.O....O...O$....O..............O....$.O..O..............O..O.$...O................O...$.O.O.O............O.O.O.$.OO.O.O..........O.O.OO.$....O..O........O..O....$....OOO..OOOOOO..OOO....$.......OO......OO.......$......O..........O......$......OO.O....O.OO......$...........OO...........$"
>...........OO...........
......OO.O....O.OO......
......O..........O......
.......OO......OO.......
....OOO..OOOOOO..OOO....
....O..O........O..O....
.OO.O.O..........O.O.OO.
.O.O.O............O.O.O.
...O................O...
.O..O..............O..O.
....O.......OOO....O....
O...O.......O.O....O...O
O...O.......O.O....O...O
....O..............O....
.O..O..............O..O.
...O................O...
.O.O.O............O.O.O.
.OO.O.O..........O.O.OO.
....O..O........O..O....
....OOO..OOOOOO..OOO....
.......OO......OO.......
......O..........O......
......OO.O....O.OO......
...........OO...........
</a></pre></td></tr></table></center>
<p><a name=pipsquirt>:</a><b>pipsquirt</b> = <a href="#pipsquirter">pipsquirter</a>
<p><a name=pipsquirter>:</a><b>pipsquirter</b> An <a href="lex_o.htm#oscillator">oscillator</a> that produces a <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#spark">spark</a> that is
orientated parallel to the direction from which it is produced (in
contrast to domino sparkers like the <a href="#pentadecathlon">pentadecathlon</a> and <a href="lex_h.htm#hwss">HWSS</a>,
which produce domino sparks perpendicular to the direction of
production). See <a href="#p6pipsquirter">p6 pipsquirter</a>, <a href="#p7pipsquirter">p7 pipsquirter</a>.
<p><a name=piship>:</a><b>pi ship</b> A <a href="lex_g.htm#growingspaceship">growing spaceship</a> in which the back part consists of a
<a href="#piheptomino">pi-heptomino</a> travelling at a speed of 3<i>c</i>/10. The first example was
constructed by David Bell. All known pi ships are too large to show
here, but the following diagram shows how the pi fuse works.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............O............$...........O.O...........$OO........OO.OO........OO$OO.....................OO$"
>............O............
...........O.O...........
OO........OO.OO........OO
OO.....................OO
</a></pre></td></tr></table></center>
<p><a name=piston>:</a><b>piston</b> (p2) Found in 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.......OO$O.O..O..O.O$..OOOO..O..$O.O..O..O.O$OO.......OO$"
>OO.......OO
O.O..O..O.O
..OOOO..O..
O.O..O..O.O
OO.......OO
</a></pre></td></tr></table></center>
<p><a name=piwave>:</a><b>pi wave</b> A line of <a href="#piheptomino">pi-heptominoes</a> stabilizing one another. For
example, an infinite line of pi-heptominoes arranged as shown below
produces a pi wave that moves at a speed of 3<i>c</i>/10 with period 30, and
leaves no debris.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO...............OOO...............OOO...............OOO$O.O...............O.O...............O.O...............O.O$O.O...............O.O...............O.O...............O.O$"
>OOO...............OOO...............OOO...............OOO
O.O...............O.O...............O.O...............O.O
O.O...............O.O...............O.O...............O.O
</a></pre></td></tr></table></center>
<p><a name=pixel>:</a><b>pixel</b> = <a href="lex_c.htm#cell">cell</a>
<p><a name=plet>:</a><b>plet</b> = <a href="#polyplet">polyplet</a>
<p><a name=polyomino>:</a><b>polyomino</b> A finite collection of orthogonally connected cells. The
mathematical study of polyominoes was initiated by Solomon Golomb in
1953. Conway's early investigations of Life and other cellular
automata involved tracking the histories of small polyominoes, this
being a reasonable way to ascertain the typical behaviour of
different cellular automata when the patterns had to be evolved by
hand rather than by computer. Polyominoes have no special
significance in Life, but their extensive study during the early
years lead to a number of important discoveries and has influenced
the terminology of Life. (Note on spelling: As with "dominoes" the
plural may also be spelt without an e. In this lexicon I have
followed Golomb in using the longer form.)
<p>It is possible for a polyomino to be an <a href="lex_o.htm#oscillator">oscillator</a>. In fact
there are infinitely many examples of such polyominoes, namely the
<a href="lex_c.htm#cross">cross</a> and its larger analogues. The only other known examples are
the <a href="lex_b.htm#block">block</a>, the <a href="lex_b.htm#blinker">blinker</a>, the <a href="lex_t.htm#toad">toad</a>, the <a href="lex_s.htm#star">star</a> and (in two
different phases) the <a href="#pentadecathlon">pentadecathlon</a>.
<p>A polyomino can also be a <a href="lex_s.htm#spaceship">spaceship</a>, as the <a href="lex_l.htm#lwss">LWSS</a>, <a href="lex_m.htm#mwss">MWSS</a> and
<a href="lex_h.htm#hwss">HWSS</a> show.
<p><a name=polyplet>:</a><b>polyplet</b> A finite collection of orthogonally or diagonally connected
cells. This king-wise connectivity is a more natural concept in Life
than the orthogonal connectivity of the <a href="#polyomino">polyomino</a>.
<p><a name=pond>:</a><b>pond</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO.$O..O$O..O$.OO.$"
>.OO.
O..O
O..O
.OO.
</a></pre></td></tr></table></center>
<p><a name=pondonpond>:</a><b>pond on pond</b> (p1) This term is often used to mean <a href="lex_b.htm#bipond">bi-pond</a>, but may
also be used of the following <a href="#pseudostilllife">pseudo still life</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO...OO.$O..O.O..O$O..O.O..O$.OO...OO.$"
>.OO...OO.
O..O.O..O
O..O.O..O
.OO...OO.
</a></pre></td></tr></table></center>
<p><a name=popover>:</a><b>popover</b> (p32) Found by Robert Wainwright in August 1984. Compare
with <a href="lex_g.htm#gourmet">gourmet</a> and <a href="#piportraitor">pi portraitor</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................O..........$.....................O..........$.....................OOO........$.............OO.......OO........$.............OO..OOO..OO........$...................OOO..........$...................OOO..........$..............OO................$..OOO........O..O...............$..OOO........O.O................$OOO..OO...O...O....OOO..........$.....OO...O.....................$....OOO...O.....................$....O.................OO...OO...$....O...........OOO..O..O..OO...$........O.......O.O...O.O.......$.......O.O......O.O....O........$...OO..O..O................O....$...OO...OO.................O....$.....................O...OOO....$.....................O...OO.....$..........OOO........O...OO..OOO$.................OO........OOO..$................O..O.......OOO..$................O.O.............$..........OOO....O..............$..........OOO...................$........OO..OOO..OO.............$........OO.......OO.............$........OOO.....................$..........O.....................$..........O.....................$"
>.....................O..........
.....................O..........
.....................OOO........
.............OO.......OO........
.............OO..OOO..OO........
...................OOO..........
...................OOO..........
..............OO................
..OOO........O..O...............
..OOO........O.O................
OOO..OO...O...O....OOO..........
.....OO...O.....................
....OOO...O.....................
....O.................OO...OO...
....O...........OOO..O..O..OO...
........O.......O.O...O.O.......
.......O.O......O.O....O........
...OO..O..O................O....
...OO...OO.................O....
.....................O...OOO....
.....................O...OO.....
..........OOO........O...OO..OOO
.................OO........OOO..
................O..O.......OOO..
................O.O.............
..........OOO....O..............
..........OOO...................
........OO..OOO..OO.............
........OO.......OO.............
........OOO.....................
..........O.....................
..........O.....................
</a></pre></td></tr></table></center>
<p><a name=population>:</a><b>population</b> The number of ON cells.
<p><a name=ppentomino>:</a><b>P-pentomino</b> Conway's name for the following <a href="#pentomino">pentomino</a>, a common
<a href="lex_s.htm#spark">spark</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO$OO$O.$"
>OO
OO
O.
</a></pre></td></tr></table></center>
<p><a name=pps>:</a><b>PPS</b> (<i>c</i>/5 orthogonally, p30) A pre-pulsar spaceship. Any of three
different p30 <i>c</i>/5 orthogonal <a href="lex_s.htm#spaceship">spaceships</a> in which a <a href="#prepulsar">pre-pulsar</a> is
pushed by a pair of <a href="lex_s.htm#spider">spiders</a>. The back sparks of the spaceship can
be used to perturb gliders in many different ways, allowing the easy
construction of <i>c</i>/5 puffers. The first PPS was found by David Bell
in May 1998 based on a p15 pre-pulsar spaceship found by Noam Elkies
in December 1997. See also <a href="lex_s.htm#spps">SPPS</a> and <a href="lex_a.htm#apps">APPS</a>.
<p>The pattern below shows the basic mechanism of a PPS. The two
isolated sparks at the left and right sides are the <a href="lex_e.htm#edgespark">edge sparks</a>
from the two supporting spiders.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O.....O...$..O.O...O.O..$.............$..OOO...OOO..$.............$.............$.............$..OOO...OOO..$.............$O.O.O...O.O.O$...O.....O...$"
>...O.....O...
..O.O...O.O..
.............
..OOO...OOO..
.............
.............
.............
..OOO...OOO..
.............
O.O.O...O.O.O
...O.....O...
</a></pre></td></tr></table></center>
<p><a name=prebeehive>:</a><b>pre-beehive</b> The following common <a href="#parent">parent</a> of the <a href="lex_b.htm#beehive">beehive</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO$OOO$"
>OOO
OOO
</a></pre></td></tr></table></center>
<p><a name=preblock>:</a><b>pre-block</b> The following common <a href="#parent">parent</a> of the <a href="lex_b.htm#block">block</a>. Another such
pattern is the <a href="lex_g.htm#grin">grin</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.$OO$"
>O.
OO
</a></pre></td></tr></table></center>
<p><a name=precursor>:</a><b>precursor</b> = <a href="#predecessor">predecessor</a>
<p><a name=predecessor>:</a><b>predecessor</b> Any pattern that evolves into a given pattern after one
or more generations.
<p><a name=prepreblock>:</a><b>pre-pre-block</b> A common predecessor to the <a href="#preblock">pre-block</a> (and thus the
<a href="lex_b.htm#block">block</a>):
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.O$.OO$"
>O.O
.OO
</a></pre></td></tr></table></center>
This is easily created by a two-glider collision. Hitting the
pre-pre-block with a glider can create a <a href="lex_m.htm#mwss">MWSS</a>. Both of these
reactions are shown below:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..........$..O.........$OOO.........$............$............$...OOO....OO$.....O...OO.$....O......O$"
>.O..........
..O.........
OOO.........
............
............
...OOO....OO
.....O...OO.
....O......O
</a></pre></td></tr></table></center>
<p><a name=prepulsar>:</a><b>pre-pulsar</b> A common <a href="#predecessor">predecessor</a> of the <a href="#pulsar">pulsar</a>, such as that shown
below. This duplicates itself in 15 generations. (It fails,
however, to be a true <a href="lex_r.htm#replicator">replicator</a> because of the way the two copies
then interact.)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO...OOO$O.O...O.O$OOO...OOO$"
>OOO...OOO
O.O...O.O
OOO...OOO
</a></pre></td></tr></table></center>
<p>A pair of <a href="lex_t.htm#tub">tubs</a> can be placed to eat half the pre-pulsar as it
replicates; this gives the p30 oscillator <a href="lex_e.htm#eureka">Eureka</a> where the
pre-pulsar's replication becomes a movement back and forth. See
<a href="lex_t.htm#twirlingttetsonsii">twirling T-tetsons II</a> for a variation on this idea. By other means
the replication of the pre-pulsar can be made to occur in just 14
generations as half of it is eaten; this allows the construction of
p28 and p29 oscillators. The pre-pulsar was also a vital component
of the first known p26 and p47 oscillators.
<p>See also <a href="#pps">PPS</a>.
<p><a name=prepulsarspaceship>:</a><b>pre-pulsar spaceship</b> = <a href="#pps">PPS</a>.
<p><a name=pressurecooker>:</a><b>pressure cooker</b> (p3) Found by the MIT group in September 1971.
Compare <a href="lex_m.htm#minipressurecooker">mini pressure cooker</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$....O.O....$....O.O....$...OO.OO...$O.O.....O.O$OO.O.O.O.OO$...O...O...$...O...O...$....OOO....$...........$...O.OO....$...OO.O....$"
>.....O.....
....O.O....
....O.O....
...OO.OO...
O.O.....O.O
OO.O.O.O.OO
...O...O...
...O...O...
....OOO....
...........
...O.OO....
...OO.O....
</a></pre></td></tr></table></center>
<p><a name=primer>:</a><b>primer</b> A pattern originally constructed by Dean Hickerson in November
1991 that emits a stream of <a href="lex_l.htm#lwss">LWSSs</a> representing the prime numbers.
Some improvements were found by Jason Summers in October 2005.
<p><a name=prng>:</a><b>PRNG</b> = <a href="#pseudorandomnumbergenerator">pseudo-random number generator</a>
<p><a name=propagator>:</a><b>propagator</b> = <a href="lex_l.htm#linearpropagator">linear propagator</a>
<p><a name=protein>:</a><b>protein</b> (p3) Found by Dave Buckingham, November 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO.......$....O........$......O......$..OOOO.O.OO..$.O.....O.O..O$.O..OO.O.O.OO$OO.O.....O...$...O..OO.O...$...O....O....$....OOOO.....$.............$....OO.......$....OO.......$"
>....OO.......
....O........
......O......
..OOOO.O.OO..
.O.....O.O..O
.O..OO.O.O.OO
OO.O.....O...
...O..OO.O...
...O....O....
....OOOO.....
.............
....OO.......
....OO.......
</a></pre></td></tr></table></center>
<p><a name=pseudo>:</a><b>pseudo</b> Opposite of <a href="lex_t.htm#true">true</a>. A <a href="lex_g.htm#gun">gun</a> emitting a period <i>n</i> <a href="lex_s.htm#stream">stream</a> of
spaceships (or rakes) is said to be a pseudo period <i>n</i> gun if its
mechanism oscillates with a period greater than <i>n</i>. This period will
necessarily be a multiple of <i>n</i>. If the base mechanism's period is
instead a fraction of <i>n</i>, then a <a href="#periodmultiplier">period multiplier</a> must also be
present which is considered to be part of the mechanism, and the gun
as a whole is still a true period gun. For example, a <a href="lex_f.htm#filter">filter</a> may
be used on a lower-period gun to produce a compound gun such as the
true <a href="#p48gun">p48 gun</a>.
<p>Pseudo period <i>n</i> glider guns are known to exist for all periods
greater than or equal to 14, with smaller periods being impossible.
All known <a href="#p14gun">p14 guns</a> are pseudo guns requiring several <a href="lex_s.htm#signal">signal</a>
<a href="lex_i.htm#inject">injections</a>, so they are quite large. The following smaller example
is a pseudo period 123 gun, interleaving the streams from two true
period 246 guns:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..................................O...........................$..................................OOO.........................$................................OO...O........................$...............................O.O.OO.O.......................$..............................O..O..O.O.......................$....................................O.OO......................$..................................O.O.........................$......................OOO.......O.O.O.........................$.................................OO.OO........................$.....................O..O.....................................$OO...................OOO......................................$.O............................................................$.O.O...................OO.OO..................................$..OO...............OO..OO.O.O............OO...................$...................OO..OO...O............O....................$...........................OOO.........O.O...........OO.......$.......................OO..OOO.........OO............O.O......$..................O.O..OOO............................OOO.....$..................O.O...OO.............................OO.....$...................O.................................O.O......$................................................OO..O.O.......$................................................O.O..O........$.................................................OOOO.........$.............................OO...................OO..........$.............................OO...............................$..............................................................$..............................................................$.....................................OOOO.....................$....................................OOOOO.O...................$.....................................O..O.O...................$.....O...................................OO...................$....O.OOOO.............................O.O....................$...O.O.OOO..........................OO............O.........OO$..O.O..............................O.OOOO..........O........O.$...O...............................O...OO........OOO......O.O.$...OO.............OO................OO.O..................OO..$...OO.............O.O................OOO......................$...OO..............OOO........................................$....................OO........................................$..................O.O.........................................$.............OO..O.O..........................................$.............O.O..O...........................................$..............OOOO..............................OO............$...............OO...............................OO............$....................OO.OO.....................................$.....................O.O......................................$.....................O........................................$..................OO.O..O.....................................$...................O.O.OOO....................................$...................O.OO...O...................................$....................O...OO....................................$.....................OOO......................................$.......................O......................................$"
>..................................O...........................
..................................OOO.........................
................................OO...O........................
...............................O.O.OO.O.......................
..............................O..O..O.O.......................
....................................O.OO......................
..................................O.O.........................
......................OOO.......O.O.O.........................
.................................OO.OO........................
.....................O..O.....................................
OO...................OOO......................................
.O............................................................
.O.O...................OO.OO..................................
..OO...............OO..OO.O.O............OO...................
...................OO..OO...O............O....................
...........................OOO.........O.O...........OO.......
.......................OO..OOO.........OO............O.O......
..................O.O..OOO............................OOO.....
..................O.O...OO.............................OO.....
...................O.................................O.O......
................................................OO..O.O.......
................................................O.O..O........
.................................................OOOO.........
.............................OO...................OO..........
.............................OO...............................
..............................................................
..............................................................
.....................................OOOO.....................
....................................OOOOO.O...................
.....................................O..O.O...................
.....O...................................OO...................
....O.OOOO.............................O.O....................
...O.O.OOO..........................OO............O.........OO
..O.O..............................O.OOOO..........O........O.
...O...............................O...OO........OOO......O.O.
...OO.............OO................OO.O..................OO..
...OO.............O.O................OOO......................
...OO..............OOO........................................
....................OO........................................
..................O.O.........................................
.............OO..O.O..........................................
.............O.O..O...........................................
..............OOOO..............................OO............
...............OO...............................OO............
....................OO.OO.....................................
.....................O.O......................................
.....................O........................................
..................OO.O..O.....................................
...................O.O.OOO....................................
...................O.OO...O...................................
....................O...OO....................................
.....................OOO......................................
.......................O......................................
</a></pre></td></tr></table></center>
<p>The same distinction between true and pseudo also exists for
<a href="#puffer">puffers</a>.
<p><a name=pseudobarberpole>:</a><b>pseudo-barberpole</b> (p5) Found by Achim Flammenkamp in August 1994. In
terms of its minimum <a href="#population">population</a> of 15 this is the smallest known p5
<a href="lex_o.htm#oscillator">oscillator</a>. See also <a href="lex_b.htm#barberpole">barberpole</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OO$...........O$.........O..$.......O.O..$............$.....O.O....$............$...O.O......$............$..OO........$O...........$OO..........$"
>..........OO
...........O
.........O..
.......O.O..
............
.....O.O....
............
...O.O......
............
..OO........
O...........
OO..........
</a></pre></td></tr></table></center>
<p><a name=pseudorandomglidergenerator>:</a><b>pseudo-random glider generator</b> A <a href="#pseudorandomnumbergenerator">pseudo-random number generator</a> in
which the bits are represented by the presence or absence of
<a href="lex_g.htm#glider">gliders</a>. The first pseudo-random glider generator was built by
Bill Gosper. David Bell built the first moving one in 1997, using
<i>c</i>/3 <a href="lex_r.htm#rake">rakes</a>.
<p><a name=pseudorandomnumbergenerator>:</a><b>pseudo-random number generator</b> A pseudo-random number generator
(PRNG) is an algorithm that produces a sequence of bits that looks
random (but cannot really be random, being algorithmically
determined).
<p>In Life, the term refers to a PRNG implemented as a Life pattern,
with the bits represented by the presence or absence of objects such
as <a href="lex_g.htm#glider">gliders</a> or <a href="lex_b.htm#block">blocks</a>. Such a PRNG usually contains gliders or
other <a href="lex_s.htm#spaceship">spaceships</a> in a loop with a feedback mechanism that causes
later spaceships to interfere with the generation of earlier
spaceships. The <a href="#period">period</a> can be very high, as a loop of <i>n</i> spaceships
has 2<sup><i>n</i></sup> possible states.
<p><a name=pseudostilllife>:</a><b>pseudo still life</b> A <a href="lex_s.htm#stable">stable</a> pattern whose live cells are either
immediately adjacent to each other, or are connected into a single
group by adjacent dead cells where birth is suppressed by
overpopulation.
<p>The definition of <a href="lex_s.htm#strictstilllife">strict still life</a> rules out such stable
patterns as the <a href="lex_b.htm#biblock">bi-block</a>. In such patterns there are dead cells
which have more than 3 neighbours in total, but fewer than 3 in any
component still life. These patterns are called pseudo still lifes,
and have been enumerated up to 32 bits, as shown in the table below.
<pre>
  --------------
  Bits    Number
  --------------
   8           1
   9           1
  10           7
  11          16
  12          55
  13         110
  14         279
  15         620
  16        1645
  17        4067
  18       10843
  19       27250
  20       70637
  21      179011
  22      462086
  23     1184882
  24     3068984
  25     7906676
  26    20463274
  27    52816265
  28   136655095
  29   353198379
  30   914075620
  31  2364815358
  32  6123084116
  --------------
</pre>
<p>Attribution of these counts is given in <a href="lex_s.htm#strictstilllife">strict still life</a>; see
also <a href="https://oeis.org/A056613">https://oeis.org/A056613</a>. The unique 32-bit <a href="lex_t.htm#triplepseudo">triple pseudo</a>
still life is included in the last count in the table. As the number
of bits increases, the pseudo still life count goes up exponentially
by approximately O(2.56<sup><i>n</i></sup>). By comparison, the rate for
<a href="lex_s.htm#strictstilllife">strict still lifes</a> is about O(2.46<sup><i>n</i></sup>) while for <a href="lex_q.htm#quasistilllife">quasi still lifes</a>
it's around O(3.04<sup><i>n</i></sup>).
<p>If a stable pattern's live cells plus its overpopulated dead cells
do not form a single mutually adjacent group, the pattern is usually
referred to as a <a href="lex_c.htm#constellation">constellation</a>. It is also a <a href="lex_s.htm#stilllife">still life</a> in the
general sense, but is neither "pseudo" nor "strict".
<p><a name=puffer>:</a><b>puffer</b> An object that moves like a <a href="lex_s.htm#spaceship">spaceship</a>, except that it leaves
debris behind. The first known puffers were found by Bill Gosper and
travelled at <i>c</i>/2 orthogonally (see diagram below for the very first
one, found in 1971).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO......O.....O......OOO.$O..O.....OOO...OOO.....O..O$...O....OO.O...O.OO....O...$...O...................O...$...O..O.............O..O...$...O..OO...........OO..O...$..O...OO...........OO...O..$"
>.OOO......O.....O......OOO.
O..O.....OOO...OOO.....O..O
...O....OO.O...O.OO....O...
...O...................O...
...O..O.............O..O...
...O..OO...........OO..O...
..O...OO...........OO...O..
</a></pre></td></tr></table></center>
<p>Not long afterwards <i>c</i>/12 diagonal puffers were found (see
<a href="lex_s.htm#switchengine">switch engine</a>). Discounting <a href="lex_w.htm#wickstretcher">wickstretchers</a>, which are not
puffers in the conventional sense, no new velocity was obtained after
this until David Bell found the first <i>c</i>/3 orthogonal puffer in April
1996. Other new puffer speeds followed over the next several years.
<p>Many spaceships that travel orthogonally at a speed less than <i>c</i>/2
have useful side or back <a href="lex_s.htm#spark">sparks</a>. These can be used to perturb
<a href="lex_s.htm#standardspaceship">standard spaceships</a> that approach from behind. A common technique
for creating puffers for a new speed uses a <a href="lex_c.htm#convoy">convoy</a> of the new
spaceships to create debris from an approaching standard spaceship
such that a new standard spaceship is recreated on the same path as
the original one. This forms a closed loop, resulting in a
high-period puffer for the new speed.
<p>As of June 2018, puffers have been found matching every known
velocity of <a href="lex_e.htm#elementary">elementary</a> spaceship, except for <i>c</i>/6 and <i>c</i>/7 diagonal
and (2,1)<i>c</i>/6. It is also generally easy to create puffers based on
<a href="lex_m.htm#macrospaceship">macro-spaceships</a>, simply by removing some part of the trailing
cleanup mechanism.
<p><a name=pufferengine>:</a><b>puffer engine</b> A pattern which can be used as the main component of a
<a href="#puffer">puffer</a>. The pattern may itself be a puffer (e.g. the classic
<a href="#puffertrain">puffer train</a>), it may be a spaceship (e.g. the <a href="lex_s.htm#schickengine">Schick engine</a>), or
it may even be unstable (e.g. the <a href="lex_s.htm#switchengine">switch engine</a>).
<p><a name=pufferfish>:</a><b>pufferfish</b> (<i>c</i>/2, p12) A puffer discovered by Richard Schank in
November 2014, from a symmetric soup search using an early version of
<a href="lex_a.htm#apgsearch">apgsearch</a>. It consists of a pair of <a href="lex_b.htm#bheptomino">B-heptominoes</a> stabilised by
a backend that leaves only pairs of blocks behind. It is simple
enough to be easily synthesized with gliders.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O.......O...$..OOO.....OOO..$.OO..O...O..OO.$...OOO...OOO...$...............$....O.....O....$..O..O...O..O..$O.....O.O.....O$OO....O.O....OO$......O.O......$...O.O...O.O...$....O.....O....$"
>...O.......O...
..OOO.....OOO..
.OO..O...O..OO.
...OOO...OOO...
...............
....O.....O....
..O..O...O..O..
O.....O.O.....O
OO....O.O....OO
......O.O......
...O.O...O.O...
....O.....O....
</a></pre></td></tr></table></center>
See <a href="lex_s.htm#soup">soup</a> for a random initial pattern, generated by <a href="lex_a.htm#apgsearch">apgsearch</a> and
recorded in <a href="lex_c.htm#catagolue">Catagolue</a>, that produces a pufferfish.
<p><a name=pufferfishspaceship>:</a><b>pufferfish spaceship</b> (<i>c</i>/2, p36) Generally, any <a href="lex_s.htm#spaceship">spaceship</a>
constructed using <a href="#pufferfish">pufferfish</a>. May refer specifically to the
extensible <i>c</i>/2 <a href="lex_s.htm#spaceship">spaceship</a> constructed by Ivan Fomichev in December
2014, the first such spaceship to contain no period-2 or period-4
parts. (The first two or three rows might be considered to be period
2 or 4, but they are directly dependent on following rows for
support.).
<p>The pattern consists of two adjacent <a href="#pufferfish">pufferfish</a> <a href="#puffer">puffers</a>, plus
four copies of a nontrivial period 36 <i>c</i>/2 <a href="lex_f.htm#fuse">fuse</a> for pufferfish
<a href="lex_e.htm#exhaust">exhaust</a>, discovered using a randomized soup search.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O.......O..................O.......O........$......OOO.....OOO................OOO.....OOO.......$.....O..OO...OO..O..............OO.O.....O.OO......$.....O...O...O...O...............OO.O...O.OO.......$......OO.OO.OO.OO..............O.OO.......OO.O.....$......OO.O...O.OO.............O.O..O.O.O.O..O.O....$........O.....O...............O.O...OO.OO...O.O....$.........OO.OO.................OOO.O.....O.OOO.....$....OO..O.....O..OO.............OOO.......OOO......$....OO..O.....O..OO.............OO.........OO......$................................O...........O......$........O.O.O.O................OO...........OO.....$........OO...OO................OO...........OO.....$...................................................$...................................OO...OO.........$...................O..........O....OO...OO.........$...O..............OOO........OOO..............O....$..OOO...OO...O.O.OO.O.......OO.O.............OOO...$.OO..O..OO.........O........OOO.............OO.O...$.OOOO.O......O...O.O........OOO.............OO.....$OO.....O.......OO..OO.......OOOO..............OO...$.O................O..O......O..O...........O..OO...$.O.OOO..O....O.O..OO.......OO..............O....O..$.O.O...OO....O.O..OO...O....O.O...........O..O.O...$.OO......O..O.......O..O....OOO..........OO...OO...$O.....O.O....O.O....O.OO................O..........$.OO..O..O....O......O.OO............O....OO........$.OO...OO.......OO...OO.OO..OO......OOOOOO..........$........................O....O....O.O.O.O.......OOO$..............................O...O..O.........O...$..............................O....O..........O....$.............................O.................O.O.$"
>.......O.......O..................O.......O........
......OOO.....OOO................OOO.....OOO.......
.....O..OO...OO..O..............OO.O.....O.OO......
.....O...O...O...O...............OO.O...O.OO.......
......OO.OO.OO.OO..............O.OO.......OO.O.....
......OO.O...O.OO.............O.O..O.O.O.O..O.O....
........O.....O...............O.O...OO.OO...O.O....
.........OO.OO.................OOO.O.....O.OOO.....
....OO..O.....O..OO.............OOO.......OOO......
....OO..O.....O..OO.............OO.........OO......
................................O...........O......
........O.O.O.O................OO...........OO.....
........OO...OO................OO...........OO.....
...................................................
...................................OO...OO.........
...................O..........O....OO...OO.........
...O..............OOO........OOO..............O....
..OOO...OO...O.O.OO.O.......OO.O.............OOO...
.OO..O..OO.........O........OOO.............OO.O...
.OOOO.O......O...O.O........OOO.............OO.....
OO.....O.......OO..OO.......OOOO..............OO...
.O................O..O......O..O...........O..OO...
.O.OOO..O....O.O..OO.......OO..............O....O..
.O.O...OO....O.O..OO...O....O.O...........O..O.O...
.OO......O..O.......O..O....OOO..........OO...OO...
O.....O.O....O.O....O.OO................O..........
.OO..O..O....O......O.OO............O....OO........
.OO...OO.......OO...OO.OO..OO......OOOOOO..........
........................O....O....O.O.O.O.......OOO
..............................O...O..O.........O...
..............................O....O..........O....
.............................O.................O.O.
</a></pre></td></tr></table></center>
<p><a name=puffertrain>:</a><b>puffer train</b> The full name for a <a href="#puffer">puffer</a>, coined by Conway before
any examples were known. The term was also applied specifically to
the classic puffer train found by Bill Gosper and shown below. This
is very <a href="lex_d.htm#dirty">dirty</a>, and the tail does not stabilize until generation
5533. It consists of a <a href="lex_b.htm#bheptomino">B-heptomino</a> (shown here one generation
before the standard form) escorted by two <a href="lex_l.htm#lwss">LWSS</a>. (This was the
second known puffer. The first is shown under <a href="#puffer">puffer</a>.)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO...........OOO$O..O..........O..O$...O....OOO......O$...O....O..O.....O$..O....O........O.$"
>.OOO...........OOO
O..O..........O..O
...O....OOO......O
...O....O..O.....O
..O....O........O.
</a></pre></td></tr></table></center>
In April 2006, Jason Summers found a way to make the classic puffer
train into a p20 <a href="lex_s.htm#spaceship">spaceship</a> by adding a <a href="lex_g.htm#glider">glider</a> at the back:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO...........OOO.$O..O..........O..O$O......OOO....O...$O.....O..O....O...$.O.O..O...O....O.O$.......OOOO.......$.........O........$..................$..................$..................$.......OOO........$.......O..........$........O.........$"
>OOO...........OOO.
O..O..........O..O
O......OOO....O...
O.....O..O....O...
.O.O..O...O....O.O
.......OOOO.......
.........O........
..................
..................
..................
.......OOO........
.......O..........
........O.........
</a></pre></td></tr></table></center>
<p><a name=puffsuppressor>:</a><b>puff suppressor</b> An attachment at the back of a <a href="lex_l.htm#linepuffer">line puffer</a> that
suppresses all or some of its puffing action. The example below (by
Hartmut Holzwart) has a 3-cell puff suppressor at the back which
suppresses the entire puff, making a p2 <a href="lex_s.htm#spaceship">spaceship</a>. If you delete
this puff suppressor then you get a p60 double <a href="lex_b.htm#beehive">beehive</a> <a href="#puffer">puffer</a>.
Puff suppressors were first recognised by Alan Hensel in April 1994.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:............O....................$..........OO.O...................$..........OO...O.................$........O...OO.O.....O...........$........OOOO.OO...OOOO.......O.O.$......O......O....OOO.....O.O..O.$......OOOOOOO...O...O....O..O....$...O.O......OO..O...O.O.OO....O..$..OOOOOOOOO.....O..OO........O...$.OO..............O.OO.OOOO...O..O$OO....OO.O..........O...O..O.O...$.OO....O........OOO......O.O.O..O$.........O......OO......O....OO..$.OO....O........OOO......O.O.O..O$OO....OO.O..........O...O..O.O...$.OO..............O.OO.OOOO...O..O$..OOOOOOOOO.....O..OO........O...$...O.O......OO..O...O.O.OO....O..$......OOOOOOO...O...O....O..O....$......O......O....OOO.....O.O..O.$........OOOO.OO...OOOO.......O.O.$........O...OO.O.....O...........$..........OO...O.................$..........OO.O...................$............O....................$"
>............O....................
..........OO.O...................
..........OO...O.................
........O...OO.O.....O...........
........OOOO.OO...OOOO.......O.O.
......O......O....OOO.....O.O..O.
......OOOOOOO...O...O....O..O....
...O.O......OO..O...O.O.OO....O..
..OOOOOOOOO.....O..OO........O...
.OO..............O.OO.OOOO...O..O
OO....OO.O..........O...O..O.O...
.OO....O........OOO......O.O.O..O
.........O......OO......O....OO..
.OO....O........OOO......O.O.O..O
OO....OO.O..........O...O..O.O...
.OO..............O.OO.OOOO...O..O
..OOOOOOOOO.....O..OO........O...
...O.O......OO..O...O.O.OO....O..
......OOOOOOO...O...O....O..O....
......O......O....OOO.....O.O..O.
........OOOO.OO...OOOO.......O.O.
........O...OO.O.....O...........
..........OO...O.................
..........OO.O...................
............O....................
</a></pre></td></tr></table></center>
<p><a name=pull>:</a><b>pull</b> A reaction, most often mediated by gliders, that moves an object
closer to the source of the reaction. See <a href="lex_b.htm#blockpull">block pull</a>,
<a href="lex_b.htm#blinkerpull">blinker pull</a>, <a href="lex_l.htm#loafpull">loaf pull</a>; also <a href="lex_e.htm#elbow">elbow</a>.
<p><a name=pulsar>:</a><b>pulsar</b> (p3) Despite its size, this is the fourth most common
<a href="lex_o.htm#oscillator">oscillator</a> (and by far the most common of period greater than 2)
and was found very early on by Conway. See also <a href="#prepulsar">pre-pulsar</a>,
<a href="#pulsarquadrant">pulsar quadrant</a>, and <a href="lex_q.htm#quasar">quasar</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OOO...OOO..$.............$O....O.O....O$O....O.O....O$O....O.O....O$..OOO...OOO..$.............$..OOO...OOO..$O....O.O....O$O....O.O....O$O....O.O....O$.............$..OOO...OOO..$"
>..OOO...OOO..
.............
O....O.O....O
O....O.O....O
O....O.O....O
..OOO...OOO..
.............
..OOO...OOO..
O....O.O....O
O....O.O....O
O....O.O....O
.............
..OOO...OOO..
</a></pre></td></tr></table></center>
<p><a name=pulsar182220>:</a><b>pulsar 18-22-20</b> = <a href="lex_t.htm#twopulsarquadrants">two pulsar quadrants</a>
<p><a name=pulsarcp485672>:</a><b>pulsar CP 48-56-72</b> = <a href="#pulsar">pulsar</a> (The numbers refer to the populations
of the three <a href="#phase">phases</a>.)
<p><a name=pulsarpixeldisplay>:</a><b>Pulsar Pixel Display</b> (p30 circuitry) A large-scale raster line
display device constructed by Mark Walsh in August 2010, where
<a href="#pulsar">pulsars</a> form the individual pixels in an otherwise empty grid. The
published sample pattern displays and erases eight 7x5-pixel
characters on each of two lines of text.
<p><a name=pulsarquadrant>:</a><b>pulsar quadrant</b> (p3) This consists of a quarter of the outer part of
a <a href="#pulsar">pulsar</a> stabilized by a <a href="lex_c.htm#cisfusewithtwotails">cis fuse with two tails</a>. This is
reminiscent of <a href="lex_m.htm#mold">mold</a> and <a href="lex_j.htm#jam">jam</a>. Found by Dave Buckingham in July
1973. See also <a href="lex_t.htm#twopulsarquadrants">two pulsar quadrants</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O..$...OOO..$..O...OO$O..O..O.$O...O.O.$O....O..$........$..OOO...$"
>.....O..
...OOO..
..O...OO
O..O..O.
O...O.O.
O....O..
........
..OOO...
</a></pre></td></tr></table></center>
<p><a name=pulse>:</a><b>pulse</b> A moving object, such as a <a href="lex_s.htm#spaceship">spaceship</a> or <a href="lex_h.htm#herschel">Herschel</a>, which can
be used to transmit information. See <a href="#pulsedivider">pulse divider</a>.
<p>Also another name for a <a href="#pulsarquadrant">pulsar quadrant</a>.
<p><a name=pulsedivider>:</a><b>pulse divider</b> A mechanism that lets every <i>n</i>-th object that reaches it
pass through, and deletes all the rest, where <i>n</i> &gt; 1 and the objects
are typically <a href="lex_g.htm#glider">gliders</a>, <a href="lex_s.htm#spaceship">spaceships</a> or <a href="lex_h.htm#herschel">Herschels</a>. A common
synonym is <a href="#periodmultiplier">period multiplier</a>. For <i>n</i>=2, the simplest known stable
pulse dividers are the <a href="lex_s.htm#semisnark">semi-Snarks</a>.
<p>The following diagram shows a p5 glider pulse divider by Dieter
Leithner (February 1998). The first glider moves the centre block
and is reflected at 90 degrees. The next glider to come along will
not be reflected, but will move the block back to its original
position. The relatively small size and low period of this example
made it useful for constructing compact glider <a href="lex_g.htm#gun">guns</a> of certain
periods, but it became largely obsolete with the discovery of the
<a href="lex_s.htm#stable">stable</a> <a href="lex_c.htm#ccsemisnark">CC semi-Snark</a>, which uses the same basic mechanism.
Period 7, 22, 36 and 46 versions of this pulse divider are also
known.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO...................$.....OO...................$..........................$..................OO......$.................O..O.....$.................O.O..O..O$O...............OO.O.OOOOO$.OO...........O...OO......$OO...............OO..OOO..$.............O...O.O..O.O.$........OO.......OO..OO.O.$........OO....O...OO...O..$................OO.O.OO...$.................O.O.O....$.................O.O..O...$..................O..OO...$..OO......................$...O......................$OOO.......................$O.........................$..........................$............OO............$............O.............$.............OOO..........$...............O..........$"
>.....OO...................
.....OO...................
..........................
..................OO......
.................O..O.....
.................O.O..O..O
O...............OO.O.OOOOO
.OO...........O...OO......
OO...............OO..OOO..
.............O...O.O..O.O.
........OO.......OO..OO.O.
........OO....O...OO...O..
................OO.O.OO...
.................O.O.O....
.................O.O..O...
..................O..OO...
..OO......................
...O......................
OOO.......................
O.........................
..........................
............OO............
............O.............
.............OOO..........
...............O..........
</a></pre></td></tr></table></center>
<p><a name=pulshuttlev>:</a><b>pulshuttle V</b> (p30) Found by Robert Wainwright, May 1985. Compare
<a href="lex_e.htm#eureka">Eureka</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.............O..............O.............$............O.O.......O....O.O............$.............O......OO.OO...O.............$......................O...................$..OO......OO..................OO......OO..$O....O..O....O..............O....O..O....O$O....O..O....O..............O....O..O....O$O....O..O....O........O.....O....O..O....O$..OO......OO........OO.OO.....OO......OO..$......................O...................$..........................................$..........................................$..OO......OO..................OO......OO..$O....O..O....O........O.....O....O..O....O$O....O..O....O......OO.OO...O....O..O....O$O....O..O....O........O.....O....O..O....O$..OO......OO..................OO......OO..$..........................................$..........................................$......................O...................$..OO......OO........OO.OO.....OO......OO..$O....O..O....O........O.....O....O..O....O$O....O..O....O..............O....O..O....O$O....O..O....O..............O....O..O....O$..OO......OO..................OO......OO..$......................O...................$.............O......OO.OO...O.............$............O.O.......O....O.O............$.............O..............O.............$"
>.............O..............O.............
............O.O.......O....O.O............
.............O......OO.OO...O.............
......................O...................
..OO......OO..................OO......OO..
O....O..O....O..............O....O..O....O
O....O..O....O..............O....O..O....O
O....O..O....O........O.....O....O..O....O
..OO......OO........OO.OO.....OO......OO..
......................O...................
..........................................
..........................................
..OO......OO..................OO......OO..
O....O..O....O........O.....O....O..O....O
O....O..O....O......OO.OO...O....O..O....O
O....O..O....O........O.....O....O..O....O
..OO......OO..................OO......OO..
..........................................
..........................................
......................O...................
..OO......OO........OO.OO.....OO......OO..
O....O..O....O........O.....O....O..O....O
O....O..O....O..............O....O..O....O
O....O..O....O..............O....O..O....O
..OO......OO..................OO......OO..
......................O...................
.............O......OO.OO...O.............
............O.O.......O....O.O............
.............O..............O.............
</a></pre></td></tr></table></center>
<p><a name=pureglidergenerator>:</a><b>pure glider generator</b> A pattern that evolves into one or more
<a href="lex_g.htm#glider">gliders</a>, and nothing else. There was some interest in these early
on, but they are no longer considered important. Here's a neat
example:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O............$..O............$OOO............$...............$......OOO......$.......O.......$............OOO$............O..$............O..$"
>..O............
..O............
OOO............
...............
......OOO......
.......O.......
............OOO
............O..
............O..
</a></pre></td></tr></table></center>
<p><a name=push>:</a><b>push</b> A reaction that moves an object farther away from the source of
the reaction. See <a href="lex_s.htm#slidingblockmemory">sliding block memory</a>, <a href="#picalculator">pi calculator</a>, <a href="lex_e.htm#elbow">elbow</a>,
<a href="lex_u.htm#universalconstructor">universal constructor</a>. See also <a href="#pull">pull</a>, <a href="lex_f.htm#fire">fire</a>.
<p><a name=pushalong>:</a><b>pushalong</b> Any <a href="lex_t.htm#tagalong">tagalong</a> at the front of a spaceship. The following
is an example found by David Bell in 1992, attached to the front of a
<a href="lex_m.htm#mwss">MWSS</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OOO.O.....$.OOOO.O.....$OO..........$.O.O........$..OOOO.O....$...OOO......$............$............$......OOOOO.$......O....O$......O.....$.......O...O$.........O..$"
>..OOO.O.....
.OOOO.O.....
OO..........
.O.O........
..OOOO.O....
...OOO......
............
............
......OOOOO.
......O....O
......O.....
.......O...O
.........O..
</a></pre></td></tr></table></center>
<p><a name=pyrotechnecium>:</a><b>pyrotechnecium</b> (p8) Found by Dave Buckingham in 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O........$.....OOOOO......$....O.....O.....$.O..O.O.OO.O....$O.O.O.O....O..O.$.O..O....O.O.O.O$....O.OO.O.O..O.$.....O.....O....$......OOOOO.....$........O.......$"
>.......O........
.....OOOOO......
....O.....O.....
.O..O.O.OO.O....
O.O.O.O....O..O.
.O..O....O.O.O.O
....O.OO.O.O..O.
.....O.....O....
......OOOOO.....
........O.......
</a></pre></td></tr></table></center>
<p><a name=pyrotechneczum>:</a><b>pyrotechneczum</b> A common mistaken spelling of <a href="#pyrotechnecium">pyrotechnecium</a>, caused
by a copying error in the early 1990s.
<p><a name=python>:</a><b>python</b> = <a href="lex_l.htm#longsnake">long snake</a>
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
</body>