File: lex_r.htm

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (923 lines) | stat: -rwxr-xr-x 64,798 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (R)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">

<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
<p><a name=r>:</a><b>R</b> = <a href="#rpentomino">R-pentomino</a>
<p><a name=r190>:</a><b>R190</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in July 1996. It
is made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HRx131B + <a href="lex_b.htm#bfx59h">BFx59H</a>. After
190 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> turned 90 degrees clockwise at
(24, 16) relative to the input. Its <a href="#recoverytime">recovery time</a> is 107 ticks. A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OO.........................$.......OO..O.........................$.....OOO.OO..........................$....O................................$.O..OOOO.OO..........................$.OOO...O.OO..........................$....O................................$...OO..........................OO....$...............................O.....$.............................O.O.....$.............................OO......$.....................................$.....................................$.....................................$.....................................$.................................OO.O$.................................O.OO$.....................................$O.........................OO.........$O.O.......................OO.........$OOO..................................$..O..................................$.....................................$.....................................$.........OO...OO.....................$..........O...O......................$.......OOO.....OOO...................$.......O.........O...................$.................O.O.................$..................OO.................$.....................................$.....................................$.....................................$.....................................$.....................................$.........................OOO.........$.........................O...........$........................OO...........$"
>..........OO.........................
.......OO..O.........................
.....OOO.OO..........................
....O................................
.O..OOOO.OO..........................
.OOO...O.OO..........................
....O................................
...OO..........................OO....
...............................O.....
.............................O.O.....
.............................OO......
.....................................
.....................................
.....................................
.....................................
.................................OO.O
.................................O.OO
.....................................
O.........................OO.........
O.O.......................OO.........
OOO..................................
..O..................................
.....................................
.....................................
.........OO...OO.....................
..........O...O......................
.......OOO.....OOO...................
.......O.........O...................
.................O.O.................
..................OO.................
.....................................
.....................................
.....................................
.....................................
.....................................
.........................OOO.........
.........................O...........
........................OO...........
</a></pre></td></tr></table></center>
<p><a name=r2d2>:</a><b>R2D2</b> (p8) This was found, in the form shown below, by Peter Raynham
in the early 1970s. The name derives from a form with a larger and
less symmetric <a href="lex_s.htm#stator">stator</a> found by Noam Elkies in August 1994. Compare
with <a href="lex_g.htm#graycounter">Gray counter</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$....O.O....$...O.O.O...$...O.O.O...$OO.O...O.OO$OO.O...O.OO$...O...O...$...O.O.O...$....O.O....$.....O.....$"
>.....O.....
....O.O....
...O.O.O...
...O.O.O...
OO.O...O.OO
OO.O...O.OO
...O...O...
...O.O.O...
....O.O....
.....O.....
</a></pre></td></tr></table></center>
<p><a name=r5>:</a><b>r5</b> = <a href="#rpentomino">R-pentomino</a>
<p><a name=r64>:</a><b>R64</b> An <a href="lex_e.htm#elementaryconduit">elementary conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in September 1995.
After 64 ticks, it produces a <a href="lex_h.htm#herschel">Herschel</a> rotated 90 degrees clockwise
at (11, 9) relative to the input. Its <a href="#recoverytime">recovery time</a> is 153 ticks,
though this can be improved to 61 ticks by adding a from-the-side
eater inside the turn to avoid interference from the output
Herschel's <a href="lex_f.htm#firstnaturalglider">first natural glider</a>, as shown below. A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OO...........$..........OO.....OO....$.................OO....$.......................$.......................$...............OO......$...............OO......$.....................OO$.....................OO$.......................$.......................$.......................$.O.....................$.O.O...................$.OOO...................$...O...................$.......................$.......................$.......................$...OO.OO...............$..O.O.O.O..............$..O.O..O...............$.OO.O........OOO.......$O...OO.......O.........$.O.O..O.O...OO.........$OO.OO..OO..............$"
>..........OO...........
..........OO.....OO....
.................OO....
.......................
.......................
...............OO......
...............OO......
.....................OO
.....................OO
.......................
.......................
.......................
.O.....................
.O.O...................
.OOO...................
...O...................
.......................
.......................
.......................
...OO.OO...............
..O.O.O.O..............
..O.O..O...............
.OO.O........OOO.......
O...OO.......O.........
.O.O..O.O...OO.........
OO.OO..OO..............
</a></pre></td></tr></table></center>
R64 is one of the simplest known <a href="lex_s.htm#spartan">Spartan</a> conduits, one of the two
known <a href="lex_b.htm#blockic">Blockic</a> conduits, and one of the few <a href="lex_e.htm#elementaryconduit">elementary conduits</a> in
the original set of sixteen. See also <a href="lex_p.htm#p256gun">p256 gun</a>.
<p><a name=rabbits>:</a><b>rabbits</b> (stabilizes at time 17331) A 9-cell <a href="lex_m.htm#methuselah">methuselah</a> found by
Andrew Trevorrow in 1986.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O...OOO$OOO..O.$.O.....$"
>O...OOO
OOO..O.
.O.....
</a></pre></td></tr></table></center>
The following <a href="lex_p.htm#predecessor">predecessor</a>, found by Trevorrow in October 1995, has
the same number of cells and lasts two generations longer.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O....O$OO......$.OO.OOO.$"
>..O....O
OO......
.OO.OOO.
</a></pre></td></tr></table></center>
<p><a name=racetrack>:</a><b>racetrack</b> A pattern in which a <a href="lex_s.htm#signal">signal</a> makes its way in a loop
through an "obstacle course" of reactions in order to demonstrate
various ways that the signal can be reflected, temporarily stored,
and converted. The more different reactions that are used the better
the racetrack. David Goodenough built racetracks for p30 and p46
<a href="lex_t.htm#technology">technology</a> in 1995. Racetracks are also known for
<a href="lex_h.htm#herschelconduit">Herschel conduit</a> <a href="lex_t.htm#technology">technology</a>, and simple ones are useful for
building <a href="lex_o.htm#oscillator">oscillators</a> and <a href="lex_g.htm#glidergun">glider guns</a>.
<p><a name=rake>:</a><b>rake</b> Any <a href="lex_p.htm#puffer">puffer</a> whose debris consists of <a href="lex_s.htm#spaceship">spaceships</a>. A rake is
said to be forwards, backwards or sideways according to the direction
of the spaceships relative to the direction of the rake. Originally
the term "rake" was applied only to forwards <i>c</i>/2 glider puffers (see
<a href="lex_s.htm#spacerake">space rake</a>). Many people prefer not to use the term in the case
where the puffed spaceships travel parallel or anti-parallel to the
puffer, as in this case they do not rake out any significant region
of the Life plane (and, in contrast to true rakes, these puffers
cannot travel in a stream, and so could never be produced by a
<a href="lex_g.htm#gun">gun</a>).
<p>Although the first rakes (circa 1971) were <i>c</i>/2, rakes of other
velocities have since been built. Dean Hickerson's construction of
<a href="lex_c.htm#cordership">Corderships</a> in 1991 made it easy for <i>c</i>/12 diagonal rakes to be
built, although no one actually did this until 1998, by which time
David Bell had constructed <i>c</i>/3 and <i>c</i>/5 rakes (May 1996 and September
1997, respectively). Jason Summers constructed a 2<i>c</i>/5 rake in June
2000 (building on work by Paul Tooke and David Bell) and a <i>c</i>/4
orthogonal rake in October 2000 (based largely on reactions found by
David Bell).
<p>The smallest possible period for a rake is probably 7, as this
could be achieved by a 3<i>c</i>/7 orthogonal backwards glider puffer. The
smallest period attained to date is 8 (Jason Summers' <a href="lex_b.htm#backrake">backrake</a>,
March 2001).
<p><a name=rats>:</a><b>$rats</b> (p6) Found by Dave Buckingham, 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO.....$......O.....$....O.......$OO.O.OOOO...$OO.O.....O.O$...O..OOO.OO$...O....O...$....OOO.O...$.......O....$......O.....$......OO....$"
>.....OO.....
......O.....
....O.......
OO.O.OOOO...
OO.O.....O.O
...O..OOO.OO
...O....O...
....OOO.O...
.......O....
......O.....
......OO....
</a></pre></td></tr></table></center>
<p><a name=rattlesnake>:</a><b>rattlesnake</b> (p11) Found by Dean Hickerson in January 2016 and named
by Jeremy Tan.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........OO...$........O....$.........O...$........OO...$.............$.............$.............$.....O.......$.....OO......$OO.O.O.OOO...$O.OO.O.O.O...$......O..OOO.$.......OO...O$.........OOO.$.........O...$"
>........OO...
........O....
.........O...
........OO...
.............
.............
.............
.....O.......
.....OO......
OO.O.O.OOO...
O.OO.O.O.O...
......O..OOO.
.......OO...O
.........OOO.
.........O...
</a></pre></td></tr></table></center>
<p><a name=rbee>:</a><b>R-bee</b> = <a href="lex_b.htm#bun">bun</a>. This name is due to the fact that the pattern is a
single-cell modification of a <a href="lex_b.htm#beehive">beehive</a>.
<p><a name=reactionenvelope>:</a><b>reaction envelope</b> The collection of <a href="lex_c.htm#cell">cells</a> that are alive during
some part of a given active reaction. This term is used for
<a href="lex_h.htm#herschel">Herschel</a> <a href="lex_c.htm#circuit">circuits</a> and other stable circuitry, whereas
<a href="lex_c.htm#constructionenvelope">construction envelope</a> is specific to recipes in <a href="lex_s.htm#selfconstructing">self-constructing</a>
circuitry.
<p>There are some subtleties at the edges of the envelope.
Specifically, two reactions that have the exact same set of cells
defining their envelopes may have different behavior when placed next
to a single-cell protrusion like the tail of an <a href="lex_e.htm#eater1">eater1</a>, or one side
of a <a href="lex_t.htm#tub">tub</a>. The difference depends on whether two orthogonally
adjacent cells at the edge of the envelope are ever simultaneously
alive, within the protruding cell's <a href="lex_z.htm#zoneofinfluence">zone of influence</a>.
<p><a name=reanimation>:</a><b>reanimation</b> A reaction performed by a <a href="lex_c.htm#convoy">convoy</a> of <a href="lex_s.htm#spaceship">spaceships</a> (or
other moving objects) which converts a common stationary object into
a glider without harming the convoy. This provides one way for
<a href="lex_s.htm#signal">signals</a> that have been frozen in place by some previous reaction to
be released for use.
<p>Simple reactions using period 4 <i>c</i>/2 spaceships have been found for
reanimating a <a href="lex_b.htm#block">block</a>, <a href="lex_b.htm#boat">boat</a>, <a href="lex_b.htm#beehive">beehive</a>, <a href="lex_s.htm#ship">ship</a>, <a href="lex_l.htm#loaf">loaf</a>, <a href="lex_b.htm#biblock">bi-block</a>,
or <a href="lex_t.htm#toad">toad</a>. The most interesting of these is for a <a href="lex_b.htm#beehive">beehive</a> since it
seems to require an unusual p4 spaceship:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........O.......................$.........O.O......................$.........O.O......................$..........O.......................$..................................$...............OOO.............OOO$..............O..O.....OOO....O..O$.................O....O..O.......O$.............O...O....O...O..O...O$.................O..O...O.O......O$..OOO............O.O........OO..O.$.O..O..............O........OOOOO.$....O..........OOO...O......OO....$O...O..........................OO.$O...O.............................$....O.............................$.O.O...............O..............$..................OOO.............$.................OO.O.............$....O............OOO..............$...OOO...........OOO..............$...O.OO..........OOO..............$....OOO...........OO..............$....OOO...........................$....OO............................$"
>..........O.......................
.........O.O......................
.........O.O......................
..........O.......................
..................................
...............OOO.............OOO
..............O..O.....OOO....O..O
.................O....O..O.......O
.............O...O....O...O..O...O
.................O..O...O.O......O
..OOO............O.O........OO..O.
.O..O..............O........OOOOO.
....O..........OOO...O......OO....
O...O..........................OO.
O...O.............................
....O.............................
.O.O...............O..............
..................OOO.............
.................OO.O.............
....O............OOO..............
...OOO...........OOO..............
...O.OO..........OOO..............
....OOO...........OO..............
....OOO...........................
....OO............................
</a></pre></td></tr></table></center>
<p>Reanimation of a <a href="lex_l.htm#loaf">loaf</a> is used many times in the <a href="lex_c.htm#caterloopillar">Caterloopillar</a>.
It is also used in the <a href="lex_c.htm#caterpillar">Caterpillar</a> as part of its <a href="lex_c.htm#catchandthrow">catch and throw</a>
mechanism. Finally, reanimation can produce <a href="#rake">rakes</a> from some
<a href="lex_p.htm#puffer">puffers</a>. See <a href="lex_s.htm#stopandrestart">stop and restart</a> for a similar idea that applies to
<a href="lex_h.htm#herschelconduit">Herschel conduits</a> and other <a href="lex_s.htm#signal">signal</a> <a href="lex_c.htm#circuit">circuitry</a>.
<p>There are small objects which have no known reanimation reactions
using <i>c</i>/2 ships other than the brute force method of hitting them
with the output of <a href="#rake">rakes</a>.
<p><a name=reburnablefuse>:</a><b>reburnable fuse</b> A very rare type of <a href="lex_f.htm#fuse">fuse</a> whose output is identical
to its input, possibly with some spatial and/or temporal offset. See
<a href="lex_l.htm#lightspeedwire">lightspeed wire</a> for an example. Reburnable fuses are used
primarily in the construction of fixed-speed <a href="lex_s.htm#selfsupporting">self-supporting</a>
<a href="lex_m.htm#macrospaceship">macro-spaceships</a>, where the speed of the fuse's burning reaction
becomes the speed of the spaceship. Examples include the
<a href="lex_c.htm#caterpillar">Caterpillar</a>, <a href="lex_c.htm#centipede">Centipede</a>, and <a href="lex_w.htm#waterbear">waterbear</a>.
<p><a name=receiver>:</a><b>receiver</b> See <a href="lex_h.htm#herschelreceiver">Herschel receiver</a>.
<p><a name=recipe>:</a><b>recipe</b> = <a href="lex_g.htm#glidersynthesis">glider synthesis</a> or <a href="lex_c.htm#constructionrecipe">construction recipe</a>.
<p><a name=recoverytime>:</a><b>recovery time</b> The number of <a href="lex_t.htm#tick">ticks</a> that must elapse after a <a href="lex_s.htm#signal">signal</a>
is sent through a <a href="lex_c.htm#conduit">conduit</a>, before another signal can be safely sent
on the same path. In general, a lower recovery time means a more
useful conduit. For example, the <a href="lex_s.htm#snark">Snark</a>'s very low recovery time
allowed for the creation of <a href="lex_o.htm#oscillator">oscillators</a> with previously unknown
<a href="lex_p.htm#period">periods</a>, 43 and 53.
<p>For the most part this is a synonym for <a href="#repeattime">repeat time</a>. However,
<a href="lex_o.htm#overclocking">overclocking</a> a complex circuit can often allow it to be used at a
<a href="#repeattime">repeat time</a> much lower than its safe recovery time.
<p><a name=rectifier>:</a><b>rectifier</b> The smallest known 180-degree <a href="#reflector">reflector</a>, discovered by
Adam P. Goucher in 2009. It was the smallest and fastest stable
reflector of any kind until the discovery of the <a href="lex_s.htm#snark">Snark</a> in 2013. The
rectifier has the same output glider as the <a href="lex_b.htm#boojumreflector">boojum reflector</a> but a
much shorter <a href="#repeattime">repeat time</a> of only 106 ticks.
<p>Another advantage of the rectifier is that the output glider is on
a <a href="lex_t.htm#transparentlane">transparent lane</a>, so it can be used in logic circuitry to merge
two signal paths.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O.........................................$O.O.........................................$.OO.........................................$............................................$..............O.............................$.............O.O............................$.............O.O............................$..............O.............................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$.......................OO...................$.......................OO...................$............................................$.....OO.....................................$....O.O.....................................$....O.......................................$...OO.......................................$..................................OO........$.................................O..O..OO...$.................................O.O....O...$..............OO..................O.....O.OO$.............O.O.....................OO.O.O.$.............O.......................O..O..O$............OO....................O....O..OO$..................................OOOOO.....$............................................$....................................OO.O....$....................................O.OO....$............................OOO.............$............................O...............$.............................O..............$"
>..O.........................................
O.O.........................................
.OO.........................................
............................................
..............O.............................
.............O.O............................
.............O.O............................
..............O.............................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
.......................OO...................
.......................OO...................
............................................
.....OO.....................................
....O.O.....................................
....O.......................................
...OO.......................................
..................................OO........
.................................O..O..OO...
.................................O.O....O...
..............OO..................O.....O.OO
.............O.O.....................OO.O.O.
.............O.......................O..O..O
............OO....................O....O..OO
..................................OOOOO.....
............................................
....................................OO.O....
....................................O.OO....
............................OOO.............
............................O...............
.............................O..............
</a></pre></td></tr></table></center>
<p><a name=recursivefilter>:</a><b>recursive filter</b> A <a href="lex_t.htm#toolkit">toolkit</a> developed by Alexey Nigin in July 2015,
which enables the construction of patterns with population growth
that asymptotically matches an infinite number of different
superlinear functions. Toolkits enabling other, sublinear infinite
series had been completed by Dean Hickerson and Gabriel Nivasch in
2006. See <a href="lex_q.htm#quadraticfilter">quadratic filter</a> and <a href="lex_e.htm#exponentialfilter">exponential filter</a>.
<p>Sublinear functions are possible using the recursive-filter toolkit
as well. It can be used to construct a glider-emitting pattern with
a slowness rate <i>S</i>(<i>t</i>) = O(log***...*(<i>t</i>)), the nth-level iterated
logarithm of <i>t</i>, which asymptotically dominates any
primitive-recursive function f(<i>t</i>).
<p><a name=reflector>:</a><b>reflector</b> Any <a href="lex_s.htm#stable">stable</a> or oscillating pattern that can reflect some
type of <a href="lex_s.htm#spaceship">spaceship</a> (usually a <a href="lex_g.htm#glider">glider</a>) without suffering permanent
damage. A pattern that is damaged or destroyed during the reflection
process is generally called a <a href="lex_o.htm#onetime">one-time</a> <a href="lex_t.htm#turner">turner</a> instead.
<p>The first known reflector was the <a href="lex_p.htm#pentadecathlon">pentadecathlon</a>, which functions
as a 180-degree glider reflector (see <a href="#relay">relay</a>). Other examples
include the <a href="lex_b.htm#buckaroo">buckaroo</a>, the <a href="lex_t.htm#twinbeesshuttle">twin bees shuttle</a> and some oscillators
based on the <a href="lex_t.htm#trafficjam">traffic jam</a> reaction. Glider <a href="lex_g.htm#gun">guns</a> can also be made
into reflectors, although these are mostly rather large.
<p>In September 1998 Noam Elkies found some fast small-period glider
reflectors, with <a href="lex_o.htm#oscillator">oscillators</a> supplying the required <a href="lex_d.htm#domino">domino</a>
<a href="lex_s.htm#spark">sparks</a> at different periods. A <a href="lex_f.htm#figure8">figure-8</a> produced a <a href="lex_p.htm#p8bouncer">p8 bouncer</a>,
and a <a href="lex_p.htm#p6pipsquirter">p6 pipsquirter</a> produced an equivalent <a href="lex_p.htm#p6bouncer">p6 bouncer</a>. A more
complicated construction allows a <a href="lex_p.htm#p5bouncer">p5 bouncer</a> (which, as had been
anticipated, soon led to a <a href="lex_t.htm#true">true</a> p55 <a href="lex_q.htm#quetzal">Quetzal</a> gun). And in August
1999 Elkies found a suitable <a href="lex_s.htm#sparker">sparker</a> to produce a <a href="lex_p.htm#p7bouncer">p7 bouncer</a>,
allowing the first p49 oscillator to be constructed.
<p>These were all called simply "p5 reflector", "p6 reflector", etc.,
until 6 April 2016 when Tanner Jacobi discovered an equally small and
simple reaction, the <a href="lex_b.htm#bumper">bumper</a>, starting with a <a href="lex_l.htm#loaf">loaf</a> as <a href="lex_b.htm#bait">bait</a>
instead of a <a href="lex_b.htm#boat">boat</a>. This resulted in a series of periodic
<a href="lex_c.htm#colourpreserving">colour-preserving</a> reflectors, whereas Elkies' <a href="lex_b.htm#bouncer">bouncer</a> reflectors
are all <a href="lex_c.htm#colourchanging">colour-changing</a>. A useful mnemonic is that "bouncer"
contains a C and is colour-changing, whereas "bumper" contains a P
and is colour-preserving.
<p>Stable reflectors are special in that if they satisfy certain
conditions they can be used to construct <a href="lex_o.htm#oscillator">oscillators</a> of all
sufficiently large periods. It was known for some time that stable
reflectors were possible (see <a href="lex_u.htm#universalconstructor">universal constructor</a>), but no one
was able to construct an explicit example until Paul Callahan did so
in October 1996.
<p>Callahan's original reflector has a <a href="#repeattime">repeat time</a> of 4840, soon
improved to 1686, then 894, and then 850. In November 1996 Dean
Hickerson found a variant in which this is reduced to 747. Dave
Buckingham reduced it to 672 in May 1997 using a somewhat different
method, and in October 1997 Stephen Silver reduced it to 623 by a
method closer to the original. In November 1998 Callahan reduced
this to 575 with a new initial reaction. A small modification by
Silver a few days later brought this down to 497.
<p>In April 2001 Dave Greene found a 180-degree stable reflector with
a repeat time of only 202 (see <a href="lex_b.htm#boojumreflector">boojum reflector</a>). This reflector
won bounties offered by Dieter Leithner and Alan Hensel. Half of the
prize money was recycled into a new prize for a small 90-degree
reflector, which in turn was won by Mike Playle's <a href="lex_c.htm#colourpreserving">colour-preserving</a>
<a href="lex_s.htm#snark">Snark</a> reflector. The Snark is currently the smallest known stable
reflector, with a recovery time of 43. Playle has offered a $100
prize for a <a href="lex_c.htm#colourchanging">colour-changing</a> stable reflector contained within a 25
by 25 <a href="lex_b.htm#boundingbox">bounding box</a>, with a recovery time of 50 generations or less.
<p>As of June 2018, the following <a href="lex_s.htm#splitter">splitter</a> is among the smallest
known 90-degree <a href="lex_c.htm#colourchanging">colour-changing</a> <a href="#reflector">reflectors</a>. The top output can
be blocked off by an <a href="lex_e.htm#eater">eater</a> if needed. For small 180-degree
colour-changing reflectors see <a href="#rectifier">rectifier</a>, and also the sample
pattern in <a href="lex_s.htm#splitter">splitter</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................OO...........O......OO..................$................OO..........O.O....O..O.................$............................O.O...O.OOO..OO.............$...........................OO.OO.O.O......O.............$...............................O.O...OO...O.O...........$...........................OO.O..OOOO.O....OO...........$...........................OO.O.O...O...................$...............................O.O...O..................$................................O.O...O.................$.................................O...OO..............O..$....................................................O.O.$.....................................................O..$........................................................$........................OO..............................$........................OO..............................$.........OO.............................................$........O..O............................................$.......O.OO..........................................OO.$.......O.............................................OO.$......OO................................................$.....................OO.................................$.....................O..................................$......................OOO...............................$........................O.....OO........................$.............................O.O........................$.............................O..........................$............................OO..........................$........................................................$........................................................$....................................O...............OO..$...................................O.O..............O.O.$...................................O.O................O.$....................................O.................OO$OOO.....................................OO..............$..O.....................................O.O.............$.O........................................O.............$..........................................OO............$"
>................OO...........O......OO..................
................OO..........O.O....O..O.................
............................O.O...O.OOO..OO.............
...........................OO.OO.O.O......O.............
...............................O.O...OO...O.O...........
...........................OO.O..OOOO.O....OO...........
...........................OO.O.O...O...................
...............................O.O...O..................
................................O.O...O.................
.................................O...OO..............O..
....................................................O.O.
.....................................................O..
........................................................
........................OO..............................
........................OO..............................
.........OO.............................................
........O..O............................................
.......O.OO..........................................OO.
.......O.............................................OO.
......OO................................................
.....................OO.................................
.....................O..................................
......................OOO...............................
........................O.....OO........................
.............................O.O........................
.............................O..........................
............................OO..........................
........................................................
........................................................
....................................O...............OO..
...................................O.O..............O.O.
...................................O.O................O.
....................................O.................OO
OOO.....................................OO..............
..O.....................................O.O.............
.O........................................O.............
..........................................OO............
</a></pre></td></tr></table></center>
<p><a name=reflectorlessrotatingoscillator>:</a><b>reflectorless rotating oscillator</b> A pattern that rotates itself 90 or
180 degrees after some number of <a href="lex_g.htm#generation">generations</a>, with the additional
constraint that multiple non-interacting copies of the pattern can be
combined into a new oscillator with a period equal to the appropriate
fraction of the component oscillators' period. The second constraint
disqualifies small time-symmetric <a href="lex_o.htm#oscillator">oscillators</a> such as the <a href="lex_b.htm#blinker">blinker</a>
and <a href="lex_m.htm#monogram">monogram</a>.
<p>A working RRO might look something like a <a href="lex_p.htm#piorbital">pi orbital</a> or
<a href="lex_p.htm#p256gun">p256 gun</a> loop containing one or more <a href="lex_p.htm#pi">pis</a> or <a href="lex_h.htm#herschel">Herschels</a> in the
same loop, but without any external stabilisation mechanism. Such
patterns can be proven to exist (see <a href="lex_u.htm#universalconstructor">universal constructor</a>), but as
of June 2018 none have been explicitly constructed in Life. There is
no upper limit on <a href="lex_m.htm#multiplicity">multiplicity</a> for a constructor-based RRO.
<p><a name=regulator>:</a><b>regulator</b> An object which converts input <a href="lex_g.htm#glider">gliders</a> aligned to some
period to output gliders aligned to a different period. The most
interesting case is a <a href="lex_u.htm#universalregulator">universal regulator</a>, of which several have
been constructed by Paul Chapman and others.
<p><a name=relay>:</a><b>relay</b> Any <a href="lex_o.htm#oscillator">oscillator</a> in which <a href="lex_s.htm#spaceship">spaceships</a> (typically <a href="lex_g.htm#glider">gliders</a>)
travel in a loop. The simplest example is the p60 one shown below
using two <a href="lex_p.htm#pentadecathlon">pentadecathlons</a>. Pulling the pentadecathlons further
apart allows any period of the form 60+120<i>n</i> to be achieved. This is
the simplest proof of the existence of oscillators of arbitrarily
large period.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........................O....O..$................OO.......OO.OOOO.OO$.................OO........O....O..$................O..................$..O....O...........................$OO.OOOO.OO.........................$..O....O...........................$"
>...........................O....O..
................OO.......OO.OOOO.OO
.................OO........O....O..
................O..................
..O....O...........................
OO.OOOO.OO.........................
..O....O...........................
</a></pre></td></tr></table></center>
<p><a name=repeater>:</a><b>repeater</b> Any <a href="lex_o.htm#oscillator">oscillator</a> or <a href="lex_s.htm#spaceship">spaceship</a>.
<p><a name=repeattime>:</a><b>repeat time</b> The minimum number of generations that is possible
between the arrival of one object and the arrival of the next. This
term is used for things such as <a href="#reflector">reflectors</a> or <a href="lex_c.htm#conduit">conduits</a> where the
<a href="lex_s.htm#signal">signal</a> objects (<a href="lex_g.htm#glider">gliders</a> or <a href="lex_h.htm#herschel">Herschels</a>, for example) will
interact fatally with each other if they are too close together, or
one will interact fatally with a disturbance caused by the other.
For example, the repeat time of Dave Buckingham's 59-step B-heptomino
to Herschel conduit (shown under <a href="lex_c.htm#conduit">conduit</a>) is 58.
<p><a name=rephaser>:</a><b>rephaser</b> The following reaction that shifts the phase and path of a
pair of gliders. There is another form of this reaction,
<a href="lex_g.htm#gliderblockcycle">glider-block cycle</a>, that reflects the gliders 180 degrees.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O..O..$O.O..O.O$.OO..OO.$........$........$...OO...$...OO...$"
>..O..O..
O.O..O.O
.OO..OO.
........
........
...OO...
...OO...
</a></pre></td></tr></table></center>
<p><a name=replicator>:</a><b>replicator</b> A finite pattern which repeatedly creates copies of
itself. Such objects are known to exist (see
<a href="lex_u.htm#universalconstructor">universal constructor</a>), but no concrete example is known. The
<a href="lex_l.htm#linearpropagator">linear propagator</a> may be considered to be the first example of a
replicator built in Life, but this is debatable as each of its copies
replicates itself only once, allowing no possibility of
<a href="lex_s.htm#superlineargrowth">superlinear growth</a>.
<p><a name=reversecabertosser>:</a><b>reverse caber tosser</b> A storage mechanism for data feeding a
<a href="lex_u.htm#universalconstructor">universal constructor</a> designed by Adam P. Goucher in 2018. A very
large integer can be encoded in the position of a very faraway
object. If the distance to that object is measured using <a href="lex_c.htm#circuit">circuitry</a>
designed to be as simple as possible, a complete decoder and
universal constructor can be created by colliding a small number of
gliders - no more than 329 according to a June 2018
<a href="lex_g.htm#glidersynthesis">glider synthesis</a>, and exactly 43 according to a July 1 redesign by
Chris Cain using eight far-distant <a href="lex_g.htm#gpse">GPSEs</a> and, amazingly, no
stationary circuitry except for a single <a href="lex_c.htm#catalyst">catalyst</a> <a href="lex_b.htm#block">block</a>. Some
intermediate designs with 50+ gliders need no stationary circuitry at
all.
<p>With the correct placement of the faraway object, the complete
pattern is theoretically capable of building any glider-constructible
object. This means that 43 is the maximum number of gliders required
to build any constructible object, no matter what size. However, it
is not possible to determine in practice what the locations of these
43 gliders should be, even for a relatively simple construction.
<p><a name=reversefuse>:</a><b>reverse fuse</b> A <a href="lex_f.htm#fuse">fuse</a> that produces some initial debris, but then
burns <a href="lex_c.htm#clean">cleanly</a>. The following is a simple example.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.............OO$............O.O$...........O...$..........O....$.........O.....$........O......$.......O.......$......O........$.....O.........$....O..........$...O...........$..O............$OO.............$"
>.............OO
............O.O
...........O...
..........O....
.........O.....
........O......
.......O.......
......O........
.....O.........
....O..........
...O...........
..O............
OO.............
</a></pre></td></tr></table></center>
<p><a name=revolver>:</a><b>revolver</b> (p2)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O............O$OOO....O...OOO$...O.O.O..O...$..O......O.O..$..O.O......O..$...O..O.O.O...$OOO...O....OOO$O............O$"
>O............O
OOO....O...OOO
...O.O.O..O...
..O......O.O..
..O.O......O..
...O..O.O.O...
OOO...O....OOO
O............O
</a></pre></td></tr></table></center>
<p><a name=rf28b>:</a><b>RF28B</b> A <a href="lex_c.htm#converter">converter</a> with several known forms, many of which found by
Dave Buckingham in 1972 and in the early 1980s. It accepts an
<a href="#rpentomino">R-pentomino</a> as input and produces an output <a href="lex_b.htm#bheptomino">B-heptomino</a> 28 ticks
later. Of nine major variants known as of July 2018, four versions
are shown below. For each version, the R-pentomino inputs are shown
near the left and right edges, along with the B-heptomino output
locations near the center.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O..........................O........$.......O.O.......O................O.O......O$........O......OOO.................O.....OOO$..............O.........................O...$..............OO........................OO..$............................................$............................................$......O..........O........O..........O......$......OO..........O......O..........OO......$.....OO...........OO....OO...........OO.....$.................OO......OO.................$.................O........O.................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$............................................$......O..........O........O..........O......$......OO..........O......O..........OO......$.....OO...........OO....OO...........OO.....$.................OO......OO.................$.................O........O.................$............................................$..O.........................................$.O.O.............................O..........$O..O............................O.O.........$.OO..............................OO.........$"
>........O..........................O........
.......O.O.......O................O.O......O
........O......OOO.................O.....OOO
..............O.........................O...
..............OO........................OO..
............................................
............................................
......O..........O........O..........O......
......OO..........O......O..........OO......
.....OO...........OO....OO...........OO.....
.................OO......OO.................
.................O........O.................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
............................................
......O..........O........O..........O......
......OO..........O......O..........OO......
.....OO...........OO....OO...........OO.....
.................OO......OO.................
.................O........O.................
............................................
..O.........................................
.O.O.............................O..........
O..O............................O.O.........
.OO..............................OO.........
</a></pre></td></tr></table></center>
<p>The version in the southeast is used in Paul Callahan's
<a href="lex_h.htm#herschelreceiver">Herschel receiver</a>. The one in the northwest is part of <a href="lex_l.htm#l156">L156</a>, but
can be replaced by the variant in the northeast which produces a
forward glider output.
<p><a name=rf48h>:</a><b>RF48H</b> Stephen Silver's alternate completion of Paul Callahan's
<a href="lex_h.htm#herschelreceiver">Herschel receiver</a>. As of June 2018 there are four known variants.
The original version consists of a single <a href="lex_l.htm#loaf">loaf</a>. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a>
marks the output location.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......O..................O..$......OO.................O..$.....OO..................OOO$...........................O$............................$.OO.........................$O..O........................$O.O.........................$.O..........................$"
>......O..................O..
......OO.................O..
.....OO..................OOO
...........................O
............................
.OO.........................
O..O........................
O.O.........................
.O..........................
</a></pre></td></tr></table></center>
<p><a name=richsp16>:</a><b>Rich's p16</b> A period 16 oscillator found by Rich Holmes in July 2016,
using <a href="lex_a.htm#apgsearch">apgsearch</a>. For its use as a <a href="lex_f.htm#filter">filter</a> see for example
<a href="lex_p.htm#p48gun">p48 gun</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O...O....$..OO.O.O.OO..$.O...O.O...O.$O...OO.OO...O$O.O.......O.O$.O.........O.$.............$....OO.OO....$...O.O.O.O...$....O...O....$"
>....O...O....
..OO.O.O.OO..
.O...O.O...O.
O...OO.OO...O
O.O.......O.O
.O.........O.
.............
....OO.OO....
...O.O.O.O...
....O...O....
</a></pre></td></tr></table></center>
<p><a name=ringoffire>:</a><b>ring of fire</b> (p2) The following <a href="lex_m.htm#mutteringmoat">muttering moat</a> found by Dean
Hickerson in September 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................O.................$..............O.O.O...............$............O.O.O.O.O.............$..........O.O.O.O.O.O.O...........$........O.O.O..OO.O.O.O.O.........$......O.O.O.O......O..O.O.O.......$....O.O.O..O..........O.O.O.O.....$.....OO.O..............O..O.O.O...$...O...O..................O.OO....$....OOO....................O...O..$..O.........................OOO...$...OO...........................O.$.O...O........................OO..$..OOOO.......................O...O$O.............................OOO.$.OOO.............................O$O...O.......................OOOO..$..OO........................O...O.$.O...........................OO...$...OOO.........................O..$..O...O....................OOO....$....OO.O..................O...O...$...O.O.O..O..............O.OO.....$.....O.O.O.O..........O..O.O.O....$.......O.O.O..O......O.O.O.O......$.........O.O.O.O.OO..O.O.O........$...........O.O.O.O.O.O.O..........$.............O.O.O.O.O............$...............O.O.O..............$.................O................$"
>................O.................
..............O.O.O...............
............O.O.O.O.O.............
..........O.O.O.O.O.O.O...........
........O.O.O..OO.O.O.O.O.........
......O.O.O.O......O..O.O.O.......
....O.O.O..O..........O.O.O.O.....
.....OO.O..............O..O.O.O...
...O...O..................O.OO....
....OOO....................O...O..
..O.........................OOO...
...OO...........................O.
.O...O........................OO..
..OOOO.......................O...O
O.............................OOO.
.OOO.............................O
O...O.......................OOOO..
..OO........................O...O.
.O...........................OO...
...OOO.........................O..
..O...O....................OOO....
....OO.O..................O...O...
...O.O.O..O..............O.OO.....
.....O.O.O.O..........O..O.O.O....
.......O.O.O..O......O.O.O.O......
.........O.O.O.O.OO..O.O.O........
...........O.O.O.O.O.O.O..........
.............O.O.O.O.O............
...............O.O.O..............
.................O................
</a></pre></td></tr></table></center>
<p><a name=rle>:</a><b>rle</b> Run-length encoded. Run-length encoding is a simple (but not
very efficient) method of file compression. In Life the term refers
to a specific ASCII encoding used for patterns in Conway's Life and
other similar cellular automata. This encoding was introduced by
Dave Buckingham and is now the usual means of exchanging relatively
small patterns by email or in online forum discussions.
<p>As an example of the rle format, here is a representation of the
<a href="lex_g.htm#gosperglidergun">Gosper glider gun</a>. The "run lengths" are the numbers, b's are dead
cells, o's are live cells, and dollar signs signal new lines:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:x = 36, y = 9, rule = B3/S23$24bo$22bobo$12boo6boo12boo$11bo3bo4boo12boo$oo8bo$5bo3boo$oo8bo3boboo4bobo$10bo5bo7bo$11bo3bo$12boo!$"
>x = 36, y = 9, rule = B3/S23
24bo$22bobo$12boo6boo12boo$11bo3bo4boo12boo$oo8bo
5bo3boo$oo8bo3boboo4bobo$10bo5bo7bo$11bo3bo$12boo!
</a></pre></td></tr></table></center>
<p>Over the years RLE format has been extended to handle patterns with
multiple states, neighborhoods, rules, and universe sizes. A
completely different encoding, <a href="lex_m.htm#macrocell">macrocell</a> format, is used for
repetitive patterns that may have very large <a href="lex_p.htm#population">populations</a>.
<p><a name=rmango>:</a><b>R-mango</b> A small active reaction, so named because it is a single-cell
modification of a <a href="lex_m.htm#mango">mango</a>, but now more commonly known as <a href="lex_d.htm#dove">dove</a>.
<p><a name=rne19t84>:</a><b>RNE-19T84</b> The following <a href="lex_e.htm#edgeshooter">edge shooter</a> <a href="lex_c.htm#converter">converter</a>, accepting an
input <a href="#rpentomino">R-pentomino</a> and producing a glider heading northeast (if the
R-pentomino is in standard orientation).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................O.........$...............OOO.........$..............O............$...O..........OO...........$..O.O......................$..O.O......................$.OO.OO....................O$.O......................OOO$..O.OO.................O...$O.O.OO.................OO..$OO.........................$.............O.............$............OOO.....OO.....$............O......O..O....$....................OO.....$"
>.................O.........
...............OOO.........
..............O............
...O..........OO...........
..O.O......................
..O.O......................
.OO.OO....................O
.O......................OOO
..O.OO.................O...
O.O.OO.................OO..
OO.........................
.............O.............
............OOO.....OO.....
............O......O..O....
....................OO.....
</a></pre></td></tr></table></center>
This converter has several common uses. It can be attached to the
<a href="lex_l.htm#l156">L156</a> <a href="lex_h.htm#herschelconduit">Herschel conduit</a> to change it into a useful
<a href="lex_p.htm#perioddoubler">period doubler</a>. Connecting it to the initial stage of the L156
produces a composite <a href="lex_h.htm#herscheltoglider">Herschel-to-glider</a> converter often used as a
<a href="lex_s.htm#splitter">splitter</a>, or as a quasi-<a href="lex_e.htm#edgeshooter">edge shooter</a> after suppressing the
additional glider output:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:................................O.........$..............................OOO.........$.............................O............$..................O..........OO...........$.................O.O......................$.................O.O......................$...............OOO.OO....................O$..............O........................OOO$........O......OOO.OO.................O...$........OOO......O.OO.................OO..$...........O..............................$..........OO..............................$...................................OO.....$..................................O..O....$...................................OO.....$..........................................$..........................................$..........................................$.........O................................$.........O.O..............................$.........OOO..............................$...........O...........OO.................$.......................O..................$........................OOO...............$..........................O...............$..........................................$..OO......................................$...O......................................$OOO.......................................$O.........................................$"
>................................O.........
..............................OOO.........
.............................O............
..................O..........OO...........
.................O.O......................
.................O.O......................
...............OOO.OO....................O
..............O........................OOO
........O......OOO.OO.................O...
........OOO......O.OO.................OO..
...........O..............................
..........OO..............................
...................................OO.....
..................................O..O....
...................................OO.....
..........................................
..........................................
..........................................
.........O................................
.........O.O..............................
.........OOO..............................
...........O...........OO.................
.......................O..................
........................OOO...............
..........................O...............
..........................................
..OO......................................
...O......................................
OOO.......................................
O.........................................
</a></pre></td></tr></table></center>
The above H-to-2G mechanism appears in many places in the glider gun
collection, for example, mainly for periods below 78 where <a href="lex_s.htm#syringe">syringes</a>
can't be used to build small true-period guns. The insertion
reaction allows a glider to be placed 19 ticks in front of another
glider on the same lane, or 30 ticks behind it (28 if the
perpendicular glider output is suppressed.)
<p><a name=rock>:</a><b>rock</b> Dean Hickerson's term for an <a href="lex_e.htm#eater">eater</a> which remains intact
throughout the eating process. The <a href="lex_s.htm#snake">snake</a> in Dave Buckingham's
59-step B-to-Herschel conduit (shown under <a href="lex_c.htm#conduit">conduit</a>) is an example.
Other still lifes that sometimes act as rocks include the <a href="lex_t.htm#tub">tub</a>, the
<a href="lex_h.htm#hookwithtail">hook with tail</a>, the <a href="lex_e.htm#eater1">eater1</a> (eating with its tail) and the <a href="lex_h.htm#hat">hat</a>
(in Heinrich Koenig's stabilization of the <a href="lex_t.htm#twinbeesshuttle">twin bees shuttle</a>).
<p><a name=roteightor>:</a><b>roteightor</b> (p8) Found by Robert Wainwright in 1972. See also
<a href="lex_m.htm#multipleroteightors">multiple roteightors</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O............$.OOO........OO$....O.......O.$...OO.....O.O.$..........OO..$..............$.....OOO......$.....O..O.....$.....O........$..OO..O...O...$.O.O......O...$.O.......O....$OO........OOO.$............O.$"
>.O............
.OOO........OO
....O.......O.
...OO.....O.O.
..........OO..
..............
.....OOO......
.....O..O.....
.....O........
..OO..O...O...
.O.O......O...
.O.......O....
OO........OOO.
............O.
</a></pre></td></tr></table></center>
<p><a name=rotor>:</a><b>rotor</b> The cells of an <a href="lex_o.htm#oscillator">oscillator</a> that change state. Compare
<a href="lex_s.htm#stator">stator</a>. It is easy to see that any rotor cell must be adjacent to
another rotor cell.
<p><a name=rpentomino>:</a><b>R-pentomino</b> This is by far the most active <a href="lex_p.htm#polyomino">polyomino</a> with less than
six cells: all the others stabilize in at most 10 generations, but
the R-pentomino does not do so until generation 1103, by which time
it has a <a href="lex_p.htm#population">population</a> of 116, including six <a href="lex_g.htm#glider">gliders</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO$OO.$.O.$"
>.OO
OO.
.O.
</a></pre></td></tr></table></center>
At generation 774, an R-pentomino produces a <a href="lex_q.htm#queenbee">queen bee</a> which lasts
17 more generations before being destroyed, enough time for it to
flip over. This observation led to the discovery of the
<a href="lex_g.htm#gosperglidergun">Gosper glider gun</a>.
<p><a name=rro>:</a><b>RRO</b> = <a href="#reflectorlessrotatingoscillator">reflectorless rotating oscillator</a>
<p><a name=rule22>:</a><b>rule 22</b> Wolfram's rule 22 is the 2-state 1-D <a href="lex_c.htm#cellularautomaton">cellular automaton</a> in
which a cell is ON in the next generation if and only if exactly one
of its three neighbours is ON in the current generation (a cell being
counted as a neighbour of itself). This is the behaviour of Life on
a cylinder of width 1.
<p><a name=ruler>:</a><b>ruler</b> A pattern constructed by Dean Hickerson in April 2005 that
produces a stream of <a href="lex_l.htm#lwss">LWSS</a> with gaps in it, such that the number of
LWSS between successive gaps follows the "ruler function" (sequence
A001511 in The On-Line Encyclopedia of Integer Sequences).
<p><a name=rumblingriver>:</a><b>rumbling river</b> Any <a href="lex_o.htm#oscillator">oscillator</a> in which the <a href="#rotor">rotor</a> is connected and
contained in a strip of width 2. The following p3 example is by Dean
Hickerson, November 1994.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OO......OO......OO...O.OO..........$....O........O..O....O..O....O..O..OO.O..........$O..O.O....O...OO..O...OO..O...O.O.....O.OO.......$OOOO.O..OOOOOO..OOOOOO..OOOOOO..OOOOOO.O.O.......$.....O.O.....O.O.....O.O.....O.O.....O.O......OO.$..OO.O.O.O.O...O.O.O...O.O.O...O.O.O...O.O.....O.$.O.....O.O...O.O.O...O.O.O...O.O.O...O.O.O.O.OO..$.OO......O.O.....O.O.....O.O.....O.O.....O.O.....$.......O.O.OOOOOO..OOOOOO..OOOOOO..OOOOOO..O.OOOO$.......OO.O.....O.O...O..OO...O..OO...O....O.O..O$..........O.OO..O..O....O..O....O..O........O....$..........OO.O...OO......OO......OO..............$"
>..............OO......OO......OO...O.OO..........
....O........O..O....O..O....O..O..OO.O..........
O..O.O....O...OO..O...OO..O...O.O.....O.OO.......
OOOO.O..OOOOOO..OOOOOO..OOOOOO..OOOOOO.O.O.......
.....O.O.....O.O.....O.O.....O.O.....O.O......OO.
..OO.O.O.O.O...O.O.O...O.O.O...O.O.O...O.O.....O.
.O.....O.O...O.O.O...O.O.O...O.O.O...O.O.O.O.OO..
.OO......O.O.....O.O.....O.O.....O.O.....O.O.....
.......O.O.OOOOOO..OOOOOO..OOOOOO..OOOOOO..O.OOOO
.......OO.O.....O.O...O..OO...O..OO...O....O.O..O
..........O.OO..O..O....O..O....O..O........O....
..........OO.O...OO......OO......OO..............
</a></pre></td></tr></table></center>
<p><a name=rx202>:</a><b>Rx202</b> A <a href="lex_c.htm#compositeconduit">composite conduit</a>, one of the original sixteen
<a href="lex_h.htm#herschelconduit">Herschel conduits</a>, discovered by Dave Buckingham in May 1997. It
is made up of two <a href="lex_e.htm#elementaryconduit">elementary conduits</a>, HR143B + <a href="lex_b.htm#bfx59h">BFx59H</a>. After
202 ticks, it produces an inverted <a href="lex_h.htm#herschel">Herschel</a> turned 90 degrees
clockwise at (7, 32) relative to the input. Its <a href="#recoverytime">recovery time</a> is
201 ticks. A <a href="lex_g.htm#ghostherschel">ghost Herschel</a> in the pattern below marks the output
location:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OO...............$...........OO..O...............$.........OOO.OO......O.........$........O..........OOO.........$.........OOO.OO...O............$...........O.OO...OO...........$...............................$...............................$...............................$...............................$.......................OO......$.......................O.......$.....................O.O.......$.....................OO........$...............................$...............................$...............................$...............................$...............................$...O...........................$...O.O.........................$...OOO.........................$.....O.........................$......................OO.......$......................OO.......$...............................$...............................$...............................$...............................$...............................$...............................$...............................$O.OO...........................$OO.O...........................$.....................OO........$.........OO.........O..O..OO...$.........OO.........O.O....O...$.....................O.....O.OO$........................OO.O.O.$........................O..O..O$.....................O....O..OO$.....................OOOOO.....$...............................$...................OOOOOOO.....$...................O..O..O.....$.................O.O...........$.................OO............$...............................$...............................$...............................$...............................$...............................$.........OOO...................$...........O...................$...........OO..................$"
>..............OO...............
...........OO..O...............
.........OOO.OO......O.........
........O..........OOO.........
.........OOO.OO...O............
...........O.OO...OO...........
...............................
...............................
...............................
...............................
.......................OO......
.......................O.......
.....................O.O.......
.....................OO........
...............................
...............................
...............................
...............................
...............................
...O...........................
...O.O.........................
...OOO.........................
.....O.........................
......................OO.......
......................OO.......
...............................
...............................
...............................
...............................
...............................
...............................
...............................
O.OO...........................
OO.O...........................
.....................OO........
.........OO.........O..O..OO...
.........OO.........O.O....O...
.....................O.....O.OO
........................OO.O.O.
........................O..O..O
.....................O....O..OO
.....................OOOOO.....
...............................
...................OOOOOOO.....
...................O..O..O.....
.................O.O...........
.................OO............
...............................
...............................
...............................
...............................
...............................
.........OOO...................
...........O...................
...........OO..................
</a></pre></td></tr></table></center>
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
</body>