1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (S)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">
<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
<p><a name=s>:</a><b>S</b> Usually means <a href="lex_b.htm#bigs">big S</a>, but may sometimes mean <a href="lex_p.htm#paperclip">paperclip</a>.
<p><a name=sailboat>:</a><b>sailboat</b> (p16) A <a href="lex_b.htm#boat">boat</a> <a href="lex_h.htm#hassle">hassled</a> by a <a href="lex_k.htm#koksgalaxy">Kok's galaxy</a>, a <a href="lex_f.htm#figure8">figure-8</a>
and two <a href="lex_e.htm#eater3">eater3s</a>. Found by Robert Wainwright in June 1984.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O...........O........$.......O.O.........O.O.......$........O...........O........$.............................$......OOOOO.......OOOOO......$.....O....O.......O....O.....$....O..O.............O..O....$.O..O.OO.............OO.O..O.$O.O.O.....O.......O.....O.O.O$.O..O....O.O.....O.O....O..O.$....OO..O..O.....O..O..OO....$.........OO.......OO.........$.............OO..............$.............O.O.............$........O..O..O..............$.......O.....................$.....OO..........OOO.........$..O......OO.O....OOO.........$.....O...O..O....OOO.........$.....OOO.O...O......OOO......$..O...........O.....OOO......$...O...O.OOO........OOO......$....O..O...O.................$....O.OO......O..............$..........OO.................$.........O...................$.....O..O....................$"
>........O...........O........
.......O.O.........O.O.......
........O...........O........
.............................
......OOOOO.......OOOOO......
.....O....O.......O....O.....
....O..O.............O..O....
.O..O.OO.............OO.O..O.
O.O.O.....O.......O.....O.O.O
.O..O....O.O.....O.O....O..O.
....OO..O..O.....O..O..OO....
.........OO.......OO.........
.............OO..............
.............O.O.............
........O..O..O..............
.......O.....................
.....OO..........OOO.........
..O......OO.O....OOO.........
.....O...O..O....OOO.........
.....OOO.O...O......OOO......
..O...........O.....OOO......
...O...O.OOO........OOO......
....O..O...O.................
....O.OO......O..............
..........OO.................
.........O...................
.....O..O....................
</a></pre></td></tr></table></center>
<p><a name=salvo>:</a><b>salvo</b> A collection of spaceships, usually gliders, all travelling in
the same direction. Any valid glider construction <a href="lex_r.htm#recipe">recipe</a> can be
partitioned into no more than four salvos. Compare <a href="lex_f.htm#flotilla">flotilla</a>. In
contrast with a <a href="lex_c.htm#convoy">convoy</a>, the spaceships in a salvo are usually
consumed by the reactions that they cause. Simple examples include
<a href="lex_b.htm#blockpusher">block pusher</a> and <a href="lex_b.htm#blockpull">block pull</a>.
<p>Salvos may be <a href="#slow">slow</a> or <a href="#synchronized">synchronized</a>. The following partially
<a href="#synchronized">synchronized</a> three-glider salvo produces an <a href="lex_l.htm#lwss">LWSS</a> from a block.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO........$OO........$..........$..........$OOO.......$O.........$.O........$..........$.......OOO$.......O..$........O.$..........$..........$..........$..........$..........$..........$.......OOO$.......O..$........O.$"
>OO........
OO........
..........
..........
OOO.......
O.........
.O........
..........
.......OOO
.......O..
........O.
..........
..........
..........
..........
..........
..........
.......OOO
.......O..
........O.
</a></pre></td></tr></table></center>
The above is a synchronized salvo and not a slow salvo, because the
second glider must follow the first with the exact separation shown.
The third glider can be considered to be a slow glider, because it
will still delete the temporary loaf no matter how many <a href="lex_t.htm#tick">ticks</a> it is
delayed. The <a href="#slowgliderconstruction">slow glider construction</a> entry includes an example of
a true slow salvo.
<p><a name=sawtooth>:</a><b>sawtooth</b> Any finite pattern whose <a href="lex_p.htm#population">population</a> grows without bound
but does not tend to infinity. (In other words, the population
reaches new heights infinitely often, but also infinitely often
returns to some fixed value.) Conway's preferred plural is
"sawteeth".
<p>The first sawtooth was constructed by Dean Hickerson in April 1991.
The current smallest known sawtooth was found by a conwaylife.com
forum user with the online handle 'thunk'. It has a bounding box of
74x60, and is the smallest known sawtooth in terms of its minimum
repeating population of 177 cells. The following variant has a higher
repeating population of 194 and an optimized bounding box of 62x56:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................................................OO.O.....$.....................................................O.OO.....$..............................................................$...........OO.................................................$...........OO.................................................$..............................................................$..............................................................$..............OO............................OO.......OO.....OO$....OO........OO.....................................OO.....OO$.....O.....................................O.O................$....O......OO............................O..............OO....$....OO.....OO........................OO.O.OO............OO....$......................................O.OO....................$.......................................O......................$..............................................................$.................................OO...........................$.................................OO...........................$..............................................................$.............................OO.....OO........................$.............................OO.....OO........................$..............................................................$..............................................................$..............................................................$.....................OOO......................................$.....................O..O.....................................$.....................O.OO.....................................$..............................................................$..............................................................$..............................................................$....................OO............O.........O.................$....................O..O..........O.O.....OOO.................$..OOOO...............OOO..........OO.....O....................$OO....OO.................................OO...................$OO.....O......................................................$..OO.O.O..............OO......................................$.......O..............OO......................................$...O...O..........................O....O......................$...O....O.......................OO.....O......................$.....OOO...O.....................OO...O.O.....................$.....OO....O.........................OO.OO....................$...........OO.......................O.....O...................$.............O.........................O......................$.............OOO....................OO...OO...................$..............................................................$..............................................................$................O.....................O.......................$...............O.OOOOO................O.......................$..............OO.....O...............O........................$..............OO...O..O.......................................$......................O.......................................$................OO.O..O................OO.....................$...................O..O................OO.....................$....................OO........................................$....................OO.....O....O.............................$.........................OO.OOOO.OO...........................$...........................O....O.............................$"
>.....................................................OO.O.....
.....................................................O.OO.....
..............................................................
...........OO.................................................
...........OO.................................................
..............................................................
..............................................................
..............OO............................OO.......OO.....OO
....OO........OO.....................................OO.....OO
.....O.....................................O.O................
....O......OO............................O..............OO....
....OO.....OO........................OO.O.OO............OO....
......................................O.OO....................
.......................................O......................
..............................................................
.................................OO...........................
.................................OO...........................
..............................................................
.............................OO.....OO........................
.............................OO.....OO........................
..............................................................
..............................................................
..............................................................
.....................OOO......................................
.....................O..O.....................................
.....................O.OO.....................................
..............................................................
..............................................................
..............................................................
....................OO............O.........O.................
....................O..O..........O.O.....OOO.................
..OOOO...............OOO..........OO.....O....................
OO....OO.................................OO...................
OO.....O......................................................
..OO.O.O..............OO......................................
.......O..............OO......................................
...O...O..........................O....O......................
...O....O.......................OO.....O......................
.....OOO...O.....................OO...O.O.....................
.....OO....O.........................OO.OO....................
...........OO.......................O.....O...................
.............O.........................O......................
.............OOO....................OO...OO...................
..............................................................
..............................................................
................O.....................O.......................
...............O.OOOOO................O.......................
..............OO.....O...............O........................
..............OO...O..O.......................................
......................O.......................................
................OO.O..O................OO.....................
...................O..O................OO.....................
....................OO........................................
....................OO.....O....O.............................
.........................OO.OOOO.OO...........................
...........................O....O.............................
</a></pre></td></tr></table></center>
Patterns combining a fast <a href="lex_p.htm#puffer">puffer</a> with a slower <a href="#spaceship">spaceship</a> have
also been constructed (see <a href="lex_m.htm#movingsawtooth">moving sawtooth</a>). See also
<a href="lex_t.htm#tractorbeam">tractor beam</a>.
<p><a name=sbm>:</a><b>SBM</b> = <a href="#slidingblockmemory">sliding block memory</a>
<p><a name=schickengine>:</a><b>Schick engine</b> (<i>c</i>/2 orthogonally, p12) This <a href="#spaceship">spaceship</a>, found by Paul
Schick in 1972, produces a large <a href="#spark">spark</a> (the 15 live cells at the
rear in the <a href="lex_p.htm#phase">phase</a> shown below) which can be <a href="lex_p.htm#perturb">perturbed</a> by other
<i>c</i>/2 spaceships to form a variety of <a href="lex_p.htm#puffer">puffers</a>. See <a href="lex_b.htm#blinkership">blinker ship</a>
for an example perturbation of the spark. The diagram below shows
the smallest form of the Schick engine, using two <a href="lex_l.htm#lwss">LWSS</a>. It is also
possible to use two <a href="lex_m.htm#mwss">MWSSes</a> or two <a href="lex_h.htm#hwss">HWSSes</a>, or even an LWSS and an
HWSS.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOOO..............$O...O.........O...$O...........OO....$.O..O..OO.....OOO.$......OOO......OOO$.O..O..OO.....OOO.$O...........OO....$O...O.........O...$OOOO..............$"
>OOOO..............
O...O.........O...
O...........OO....
.O..O..OO.....OOO.
......OOO......OOO
.O..O..OO.....OOO.
O...........OO....
O...O.........O...
OOOO..............
</a></pre></td></tr></table></center>
<p><a name=schickship>:</a><b>Schick ship</b> = <a href="#schickengine">Schick engine</a>
<p><a name=scorpion>:</a><b>scorpion</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O...$.OOO...$O...OO.$O.O.O.O$.OO.O.O$.....O.$"
>...O...
.OOO...
O...OO.
O.O.O.O
.OO.O.O
.....O.
</a></pre></td></tr></table></center>
<p><a name=scrubber>:</a><b>scrubber</b> (p2) Found in 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O......$..OOO......$.O.........$.O..OOO....$OO.O...O...$...O...O...$...O...O.OO$....OOO..O.$.........O.$......OOO..$......O....$"
>....O......
..OOO......
.O.........
.O..OOO....
OO.O...O...
...O...O...
...O...O.OO
....OOO..O.
.........O.
......OOO..
......O....
</a></pre></td></tr></table></center>
<p><a name=se>:</a><b>SE</b> = <a href="#switchengine">switch engine</a>
<p><a name=seal>:</a><b>seal</b> (<i>c</i>/6 diagonally, p6) The first diagonal <a href="lex_c.htm#c6spaceship">c/6 spaceship</a>, found
by Nicolay Beluchenko in September 2005.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O..OO..........................$.OOO.O.O.O........................$.O..OOO..OO.......................$O..OOOOOO.O.OOO...................$.O..OOO.O.OOOOO...................$......O.O.O.O.....................$O.O...O.O.OOOOO...................$O..O.O..O.OO...O..................$...O..OO.......OOO................$.O...OOOOO.OOO..OO................$....O.........O...................$..O.O.........O...................$....OO.OOOOO...O..................$......O.OOO..O.....OO.............$......O..O...O.OOO.OO.............$........OO...OOO.O..O...O.........$........OO....OO.OOOO...OOO.......$...................O.O..O.........$.............O.O.....OO..OO.......$.............O..O.....O.OOO.....O.$.............O...O....OO..O...O..O$...............OOO.....OO........O$...............O.O..O..O.....OO..O$.................O..OO.OO.O..O....$................O.......O.O.......$.................O...OOOO.........$..................O...O...........$..................................$.......................O..........$......................O.O.........$.....................OO...........$.....................O.O..........$.....................OO...........$.......................O..........$......................O...........$"
>...O..OO..........................
.OOO.O.O.O........................
.O..OOO..OO.......................
O..OOOOOO.O.OOO...................
.O..OOO.O.OOOOO...................
......O.O.O.O.....................
O.O...O.O.OOOOO...................
O..O.O..O.OO...O..................
...O..OO.......OOO................
.O...OOOOO.OOO..OO................
....O.........O...................
..O.O.........O...................
....OO.OOOOO...O..................
......O.OOO..O.....OO.............
......O..O...O.OOO.OO.............
........OO...OOO.O..O...O.........
........OO....OO.OOOO...OOO.......
...................O.O..O.........
.............O.O.....OO..OO.......
.............O..O.....O.OOO.....O.
.............O...O....OO..O...O..O
...............OOO.....OO........O
...............O.O..O..O.....OO..O
.................O..OO.OO.O..O....
................O.......O.O.......
.................O...OOOO.........
..................O...O...........
..................................
.......................O..........
......................O.O.........
.....................OO...........
.....................O.O..........
.....................OO...........
.......................O..........
......................O...........
</a></pre></td></tr></table></center>
<p><a name=searchprogram>:</a><b>search program</b> A computer program or script that automates the search
for Life objects having certain desired properties. These are used
because the difficulty of finding previously unknown Life objects now
commonly exceeds the patience, speed, and accuracy of humans.
Various types of search programs are used for finding objects such as
<a href="#spaceship">spaceships</a>, <a href="lex_o.htm#oscillator">oscillators</a>, <a href="lex_d.htm#drifter">drifters</a>, <a href="lex_c.htm#catalyst">catalysts</a>, <a href="#soup">soups</a>,
<a href="lex_g.htm#gardenofeden">Gardens of Eden</a>, and <a href="#slowsalvo">slow salvos</a>.
<p>Some search programs generate <a href="lex_p.htm#partialresult">partial results</a> as they are
running, so even if they don't complete successfully, something of
use might still be salvaged from the run.
<p>Example search programs are <a href="lex_d.htm#dr">dr</a>, <a href="lex_l.htm#lifesrc">lifesrc</a>, <a href="lex_g.htm#gfind">gfind</a>, and
<a href="lex_b.htm#bellman">Bellman</a>.
<p>There are other types of programs which don't perform searches as
such, but instead perform large constructions. These are used to
correctly complete very complicated objects such as the
<a href="lex_c.htm#caterpillar">Caterpillar</a>, <a href="lex_g.htm#gemini">Gemini</a>, <a href="lex_c.htm#caterloopillar">Caterloopillar</a>, and
<a href="lex_u.htm#universalconstructor">universal constructor</a>-based spaceships such as the <a href="lex_d.htm#demonoid">Demonoids</a> and
<a href="lex_o.htm#orthogonoid">Orthogonoids</a>.
<p><a name=secondgliderdomain>:</a><b>second glider domain</b> The second glider domain of an <a href="lex_e.htm#edgeshooter">edge shooter</a> is
the set of spacetime offsets, relative to the <a href="lex_g.htm#glider">glider</a> <a href="#stream">stream</a>
emitted by the edge shooter, where a second independent glider stream
may be present without interfering with the edge shooter. This is
useful to know, because edge shooters are often used to generate
glider streams very close to other glider streams, to make for
example a <a href="#spaceship">spaceship</a> <a href="lex_g.htm#gun">gun</a> or <a href="lex_c.htm#converter">converter</a>.
<p><a name=secondnaturalglider>:</a><b>second natural glider</b> The glider produced at T=72 during the
<a href="lex_e.htm#evolution">evolution</a> of a <a href="lex_h.htm#herschel">Herschel</a>. This is the common edge-shooting glider
output used in the <a href="lex_n.htm#nw31">NW31</a> converter and several other converter
variants.
<p><a name=seed>:</a><b>seed</b> A <a href="lex_c.htm#constellation">constellation</a> of still lifes and/or oscillators, which can
be converted into another Life object when it is struck by one or
more gliders. Usually the resulting object is a rare still life or
spaceship, more complex than the original constellation. <a href="#spartan">Spartan</a>
single-glider (1G) seeds are more commonly seen than multi-glider
seeds, because a Spartan 1G seed can be readily constructed and
<a href="lex_t.htm#trigger">triggered</a> using a <a href="#slowsalvo">slow salvo</a>. See also <a href="lex_f.htm#freezedried">freeze-dried</a>. For
example, the following is a 14<a href="#sl">sL</a> 1G seed for a <i>c</i>/7 loafer
spaceship.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...................................O..........$..................................O...........$..................................OOO.........$.............OO...............................$..............O...............................$..............O.O.............................$...............OO.............................$..............................................$...O..........................................$..O.O.........................................$.O.O..........................................$.OO...........................................$..............OO..............................$.............O.O..............................$.............OO...............................$..............................................$..............................................$..............................................$....................OO........................$...................O.O........................$..........O.........O.........................$.........O.O....O.............................$..........OO...O.O............................$..............O.O.............................$..............OO..............................$..............................................$.............................................O$.........................OO................OOO$....................OO...OO...............O...$...................O..O...................OO..$.O.................O..O.......................$O.O.................OO........................$.OO...........................................$..............................................$..............................................$..............................................$.....................OO.......................$.....................O.O....OO................$......................O.....O.O...............$.............................OO...............$.................................OO...........$.................................OO...........$..............................................$..............................................$......................OO......................$.....................O..O.....................$.....................O..O.....................$......................OO......................$"
>...................................O..........
..................................O...........
..................................OOO.........
.............OO...............................
..............O...............................
..............O.O.............................
...............OO.............................
..............................................
...O..........................................
..O.O.........................................
.O.O..........................................
.OO...........................................
..............OO..............................
.............O.O..............................
.............OO...............................
..............................................
..............................................
..............................................
....................OO........................
...................O.O........................
..........O.........O.........................
.........O.O....O.............................
..........OO...O.O............................
..............O.O.............................
..............OO..............................
..............................................
.............................................O
.........................OO................OOO
....................OO...OO...............O...
...................O..O...................OO..
.O.................O..O.......................
O.O.................OO........................
.OO...........................................
..............................................
..............................................
..............................................
.....................OO.......................
.....................O.O....OO................
......................O.....O.O...............
.............................OO...............
.................................OO...........
.................................OO...........
..............................................
..............................................
......................OO......................
.....................O..O.....................
.....................O..O.....................
......................OO......................
</a></pre></td></tr></table></center>
<p><a name=seedsofdestructiongame>:</a><b>Seeds of Destruction Game</b> An interactive search application written
by Paul Chapman in 2013. Its primary purpose was to assist in the
design of self-destruct circuits in self-constructing circuitry. It
has also regularly been helpful in completing glider syntheses, and
was used to find the <a href="lex_1.htm#a-31c240">31c/240</a> base reaction for the <a href="#shieldbug">shield bug</a> and
<a href="lex_c.htm#centipede">Centipede</a> spaceships.
<p><a name=selfconstructing>:</a><b>self-constructing</b> A type of pattern, generally a <a href="lex_m.htm#macrospaceship">macro-spaceship</a>,
that contains encoded construction information about itself, and
makes a complete copy of itself using those instructions. The
<a href="lex_g.htm#gemini">Gemini</a>, <a href="lex_l.htm#linearpropagator">linear propagator</a>, <a href="#spiralgrowth">spiral growth</a> patterns, <a href="lex_d.htm#demonoid">Demonoids</a>
and <a href="lex_o.htm#orthogonoid">Orthogonoid</a> are examples of self-constructing patterns.
Self-constructing spaceships often have trivially adjustable speeds.
In many cases, the direction of travel can also be altered, less
easily, by changing the encoded <a href="lex_c.htm#constructionrecipe">construction recipe</a>. Compare
<a href="#selfsupporting">self-supporting</a>, <a href="lex_e.htm#elementary">elementary</a>.
<p><a name=selfsupporting>:</a><b>self-supporting</b> A type of pattern, specifically a <a href="lex_m.htm#macrospaceship">macro-spaceship</a>,
that constructs <a href="#signal">signals</a> or <a href="lex_t.htm#track">tracks</a> or other scaffolding to assist
its movement, but does not contain complete information about its own
structure. Examples include the Caterpillar, <a href="lex_c.htm#centipede">Centipede</a>,
<a href="lex_h.htm#halfbakedknightship">half-baked knightship</a>, <a href="lex_w.htm#waterbear">waterbear</a>, and the <a href="lex_c.htm#caterloopillar">Caterloopillars</a>.
<a href="lex_c.htm#caterpillar">Caterpillar</a> has been used as a general term for self-supporting
spaceships, but it is not very appropriate for the HBKs.
<p>In general a self-supporting pattern cannot be trivially adjusted
to alter its speed or direction. The variable speeds of the HBKs and
the Caterloopillars are exceptions, but their direction of travel is
fixed, and a specific Caterloopillar can't be made to change its
speed without completely rebuilding it. Compare <a href="#selfconstructing">self-constructing</a>,
<a href="lex_e.htm#elementary">elementary</a>.
<p><a name=semicenark>:</a><b>semi-cenark</b> Either of two <a href="#semisnark">semi-Snark</a> variants discovered by Tanner
Jacobi in November 2017. The name is due to the initial <a href="lex_c.htm#converter">converter</a>,
which produces a <a href="lex_c.htm#century">century</a> output for every two input <a href="lex_g.htm#glider">gliders</a>. The
minimum safe repeat time is 43 ticks for the smaller initial
<a href="lex_c.htm#catalyst">catalyst</a> shown in <a href="lex_c.htm#ccsemicenark">CC semi-cenark</a> and <a href="lex_c.htm#cpsemicenark">CP semi-cenark</a>, or 42
ticks with the slightly larger catalyst variant shown below. There
is also <a href="lex_o.htm#overclocking">overclocking</a> possible at period 36, 38, or 39. The reset
glider can be followed immediately by a new trigger glider, as shown
below, so the minimum repeat time for an <a href="lex_i.htm#intermittentstream">intermittent stream</a> of
gliders is only 50 ticks.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.O.................................$.OO.................................$.O..................................$....................................$....................................$....................................$....................................$....................................$....................................$.........O.O........................$..........OO........................$..........O.........................$.............O......................$..............OO....................$.............OO.....................$.............................O......$...........................OOO......$..........................O.........$..........................OO........$....................................$....................................$......................O.............$..............OO.......OO..O........$..............O..O....OO..O.O.......$............OO..OO........OO........$...........O..OO....................$...........OO...OO..................$................O.O.................$.................O..................$..................................OO$................................O..O$.....................OO.........OOO.$......................O......O......$...................OOO.......OOOO...$...................O............O...$...............................O....$...............................OO...$"
>O.O.................................
.OO.................................
.O..................................
....................................
....................................
....................................
....................................
....................................
....................................
.........O.O........................
..........OO........................
..........O.........................
.............O......................
..............OO....................
.............OO.....................
.............................O......
...........................OOO......
..........................O.........
..........................OO........
....................................
....................................
......................O.............
..............OO.......OO..O........
..............O..O....OO..O.O.......
............OO..OO........OO........
...........O..OO....................
...........OO...OO..................
................O.O.................
.................O..................
..................................OO
................................O..O
.....................OO.........OOO.
......................O......O......
...................OOO.......OOOO...
...................O............O...
...............................O....
...............................OO...
</a></pre></td></tr></table></center>
<p><a name=semisnark>:</a><b>semi-Snark</b> Any small <a href="#stable">stable</a> <a href="#signal">signal</a> <a href="lex_c.htm#conduit">conduit</a> that produces one
output glider for every two input gliders, with a 90 degree
reflection. These can act as period-doublers for any glider stream
whose period is at least equal to their repeat time, and so adding
one of these to a single glider <a href="lex_g.htm#gun">gun</a> often results in a pattern much
smaller than the older <a href="lex_t.htm#technology">technology</a> of crossing the output of two
guns.
<p>The available semi-Snarks differ in their complexity, size, repeat
time, and the colour of their output gliders. The <a href="lex_c.htm#ccsemisnark">CC semi-Snark</a>
was the first one found, and the term "semi-Snark" is often used
specifically for this object. The "CC" prefix stands for
<a href="lex_c.htm#colourchanging">colour-changing</a>, by contrast with the more recently discovered
<a href="lex_c.htm#colourpreserving">colour-preserving</a> <a href="lex_c.htm#cpsemisnark">CP semi-Snark</a>.
<p>There are also CC and CP variants of a semi-Snark based on a
two-<a href="lex_g.htm#glider">glider</a> to <a href="lex_c.htm#century">century</a> <a href="lex_c.htm#converter">converter</a> discovered by Tanner Jacobi in
November 2017. These <a href="#semicenark">semi-cenarks</a> are the fastest semi-Snarks
known as of July 2018, with a <a href="lex_r.htm#repeattime">repeat time</a> as low as 50 ticks, or a
periodic input rate as low as 36 ticks.
<p><a name=sesquihat>:</a><b>sesquihat</b> (p1) Halfway between a <a href="lex_h.htm#hat">hat</a> and a <a href="lex_t.htm#twinhat">twinhat</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O..$OO.O.O.$.O.O.O.$.O.O.OO$..O....$"
>....O..
OO.O.O.
.O.O.O.
.O.O.OO
..O....
</a></pre></td></tr></table></center>
<p><a name=sgr>:</a><b>SGR</b> Abbreviation for <a href="#stable">stable</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a>. This term is no
longer in use.
<p><a name=shieldbug>:</a><b>shield bug</b> (31<i>c</i>/240 orthogonally, p240) The first 31<i>c</i>/240
<a href="lex_m.htm#macrospaceship">macro-spaceship</a>, constructed by Dave Greene on September 9, 2014.
<p><a name=shillelagh>:</a><b>shillelagh</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...$O..OO$.OO.O$"
>OO...
O..OO
.OO.O
</a></pre></td></tr></table></center>
<p><a name=ship>:</a><b>ship</b> (p1) The term is also used as a synonym of <a href="#spaceship">spaceship</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.$O.O$.OO$"
>OO.
O.O
.OO
</a></pre></td></tr></table></center>
<p>A ship can be used as a <a href="lex_c.htm#catalyst">catalyst</a> in some situations. For
example, it can suppress two of the <a href="lex_b.htm#blinker">blinkers</a> from an evolving
<a href="lex_t.htm#trafficlight">traffic light</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO.$...O.O$....OO$......$O.....$OO....$O.....$"
>...OO.
...O.O
....OO
......
O.....
OO....
O.....
</a></pre></td></tr></table></center>
It is also a one-glider <a href="#seed">seed</a> for the <a href="lex_e.htm#engine">engine</a> of the
<a href="lex_q.htm#queenbeeshuttle">queen bee shuttle</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO..OO.$..O..O.O$.O....OO$"
>OOO..OO.
..O..O.O
.O....OO
</a></pre></td></tr></table></center>
<p><a name=shipinabottle>:</a><b>ship in a bottle</b> (p16) Found by Bill Gosper in August 1994. See also
<a href="lex_b.htm#bottle">bottle</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO......OO....$...O..O....O..O...$...O.O......O.O...$.OO..OOO..OOO..OO.$O......O..O......O$O.OO..........OO.O$.O.O..........O.O.$...OO...OO...OO...$.......O.O........$.......OO.........$...OO........OO...$.O.O..........O.O.$O.OO..........OO.O$O......O..O......O$.OO..OOO..OOO..OO.$...O.O......O.O...$...O..O....O..O...$....OO......OO....$"
>....OO......OO....
...O..O....O..O...
...O.O......O.O...
.OO..OOO..OOO..OO.
O......O..O......O
O.OO..........OO.O
.O.O..........O.O.
...OO...OO...OO...
.......O.O........
.......OO.........
...OO........OO...
.O.O..........O.O.
O.OO..........OO.O
O......O..O......O
.OO..OOO..OOO..OO.
...O.O......O.O...
...O..O....O..O...
....OO......OO....
</a></pre></td></tr></table></center>
<p><a name=shiponboat>:</a><b>ship on boat</b> = <a href="#shiptieboat">ship tie boat</a>
<p><a name=shiponship>:</a><b>ship on ship</b> = <a href="#shiptie">ship-tie</a>
<p><a name=shiptie>:</a><b>ship-tie</b> (p1) The name is by analogy with <a href="lex_b.htm#boattie">boat-tie</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....$O.O...$.OO...$...OO.$...O.O$....OO$"
>OO....
O.O...
.OO...
...OO.
...O.O
....OO
</a></pre></td></tr></table></center>
<p><a name=shiptieboat>:</a><b>ship tie boat</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....$O.O...$.OO...$...OO.$...O.O$....O.$"
>OO....
O.O...
.OO...
...OO.
...O.O
....O.
</a></pre></td></tr></table></center>
<p><a name=shortkeys>:</a><b>short keys</b> (p3) Found by Dean Hickerson, August 1989. See also
<a href="lex_b.htm#bentkeys">bent keys</a> and <a href="lex_o.htm#oddkeys">odd keys</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O........O.$O.OOO..OOO.O$.O..O..O..O.$....O..O....$"
>.O........O.
O.OOO..OOO.O
.O..O..O..O.
....O..O....
</a></pre></td></tr></table></center>
<p><a name=shotgun>:</a><b>shotgun</b> A <a href="lex_g.htm#gun">gun</a> that fires a <a href="#salvo">salvo</a> of multiple <a href="#spaceship">spaceships</a>, almost
always <a href="lex_g.htm#glider">gliders</a>, on parallel <a href="lex_l.htm#lane">lanes</a>. Two to four shotguns are
often combined to turn a <a href="lex_g.htm#glidersynthesis">glider synthesis</a> into a gun or <a href="lex_f.htm#factory">factory</a>
for that synthesis.
<p><a name=shoulder>:</a><b>shoulder</b> The fixed upper end of a <a href="lex_c.htm#constructionarm">construction arm</a>, generally
consisting of one or more glider <a href="lex_g.htm#gun">guns</a> or <a href="lex_e.htm#edgeshooter">edge shooters</a> aimed at
an <a href="lex_e.htm#elbow">elbow</a> object.
<p><a name=shuttle>:</a><b>shuttle</b> Any <a href="lex_o.htm#oscillator">oscillator</a> which consists of an active region moving
back and forth between stabilizing objects. The most well-known
examples are the <a href="lex_q.htm#queenbeeshuttle">queen bee shuttle</a> (which has often been called
simply "the shuttle") and the <a href="lex_t.htm#twinbeesshuttle">twin bees shuttle</a>. See also
<a href="lex_p.htm#p54shuttle">p54 shuttle</a>, <a href="lex_p.htm#p130shuttle">p130 shuttle</a> and <a href="lex_e.htm#eureka">Eureka</a>. Another example is the
p72 <a href="lex_r.htm#rpentomino">R-pentomino</a> shuttle that forms part of the pattern given under
<a href="lex_f.htm#factory">factory</a>.
<p><a name=siamese>:</a><b>siamese</b> A term used in naming certain <a href="#stilllife">still lifes</a> (and the <a href="#stator">stator</a>
part of certain <a href="lex_o.htm#oscillator">oscillators</a>). It indicates that the object
consists of two smaller objects sharing two or more cells. See
<a href="#snakesiamesesnake">snake siamese snake</a> and <a href="lex_l.htm#loafsiamesebarge">loaf siamese barge</a> for examples.
<p><a name=side>:</a><b>side</b> Half a <a href="#sidewalk">sidewalk</a>. In itself this is unstable and requires an
<a href="lex_i.htm#inductioncoil">induction coil</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...$O.OOO$....O$"
>OO...
O.OOO
....O
</a></pre></td></tr></table></center>
<p><a name=sidecar>:</a><b>sidecar</b> A small <a href="lex_t.htm#tagalong">tagalong</a> for an <a href="lex_h.htm#hwss">HWSS</a> that was found by Hartmut
Holzwart in 1992. The resulting <a href="#spaceship">spaceship</a> (shown below) has a
<a href="lex_p.htm#phase">phase</a> with only 24 cells, making it in this respect the smallest
known spaceship other than the <a href="#standardspaceship">standard spaceships</a> and some trivial
two-spaceship <a href="lex_f.htm#flotilla">flotillas</a> derived from them. Note also that an HWSS
can support two sidecars at once.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O......$O.....O.$O.....O.$OOOOO.O.$........$....OO..$..O....O$.O......$.O.....O$.OOOOOO.$"
>.O......
O.....O.
O.....O.
OOOOO.O.
........
....OO..
..O....O
.O......
.O.....O
.OOOOOO.
</a></pre></td></tr></table></center>
<p><a name=sideshootinggun>:</a><b>side-shooting gun</b> = <a href="#slidegun">slide gun</a>
<p><a name=sidesnagger>:</a><b>sidesnagger</b> A <a href="#spartan">Spartan</a> eater found by Chris Cain in May 2015 with
functionality similar to the <a href="lex_e.htm#eater5">eater5</a>, as shown below. It has one
<a href="lex_l.htm#lane">lane</a> less diagonal <a href="lex_c.htm#clearance">clearance</a> on the high-clearance side than
other eater5 variants, due to the presence of the boat. A good use
of the sidesnagger can be seen in <a href="lex_p.htm#p130shuttle">p130 shuttle</a>. See also
<a href="lex_h.htm#highwayrobber">highway robber</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O.............$O.O.............$.OO.............$................$................$................$.........O......$........O.......$........OOO.....$................$................$.........O......$........O.O.....$.......O..O...OO$........OO....OO$....O...........$...O.O..........$...OO...........$.........OO.....$.........OO.....$"
>..O.............
O.O.............
.OO.............
................
................
................
.........O......
........O.......
........OOO.....
................
................
.........O......
........O.O.....
.......O..O...OO
........OO....OO
....O...........
...O.O..........
...OO...........
.........OO.....
.........OO.....
</a></pre></td></tr></table></center>
<p><a name=sidetracking>:</a><b>side-tracking</b> See <a href="lex_u.htm#universalconstructor">universal constructor</a>.
<p><a name=sidewalk>:</a><b>sidewalk</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO.OO$..O.O.$.O..O.$.O.O..$OO.OO.$"
>.OO.OO
..O.O.
.O..O.
.O.O..
OO.OO.
</a></pre></td></tr></table></center>
<p><a name=siesta>:</a><b>siesta</b> (p5) Found by Dave Buckingham in 1973. Compare <a href="#sombreros">sombreros</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO...$...OO.....O.O...$...O.O....O.....$.....O...OO.O...$...O.OO.....OOO.$.OOO.....O.O...O$O...O.O.....OOO.$.OOO.....OO.O...$...O.OO...O.....$.....O....O.O...$...O.O.....OO...$...OO...........$"
>...........OO...
...OO.....O.O...
...O.O....O.....
.....O...OO.O...
...O.OO.....OOO.
.OOO.....O.O...O
O...O.O.....OOO.
.OOO.....OO.O...
...O.OO...O.....
.....O....O.O...
...O.O.....OO...
...OO...........
</a></pre></td></tr></table></center>
<p><a name=signal>:</a><b>signal</b> Movement of information through the Life universe. Signals
can be carried by <a href="#spaceship">spaceships</a>, <a href="lex_f.htm#fuse">fuses</a>, <a href="lex_d.htm#drifter">drifters</a>, or <a href="lex_c.htm#conduit">conduits</a>.
Spaceships can only transfer a signal at the speed of the spaceship,
while fuses can transfer a signal at speeds up to the
<a href="#speedoflight">speed of light</a>.
<p>In practice, many signals are encoded as the presence or absence of
a <a href="lex_g.htm#glider">glider</a> or other spaceship at a particular point at a particular
time. Such signals can be combined by the collision of gliders to
form logic operations such as AND, OR, and NOT gates. Signals can be
duplicated using <a href="lex_g.htm#gliderduplicator">glider duplicators</a> or other <a href="lex_f.htm#fanout">fanout</a> devices, and
can be used up by causing <a href="lex_p.htm#perturbation">perturbations</a> on other parts of the Life
object.
<p>Signals are used in <a href="lex_h.htm#herschelconduit">Herschel conduit</a> circuitry,
<a href="lex_u.htm#universalconstructor">universal constructors</a>, <a href="lex_m.htm#macrospaceship">macro-spaceships</a>, and other computational
patterns such as the <a href="lex_p.htm#picalculator">pi calculator</a> and <a href="lex_o.htm#osqrtlogt">Osqrtlogt</a> patterns.
<p><a name=signalelbow>:</a><b>signal elbow</b> A <a href="lex_c.htm#conduit">conduit</a> with <a href="#signal">signal</a> output 90 degrees from its
input. This term is commonly used only for signal <a href="lex_w.htm#wire">wires</a>,
particularly <a href="lex_1.htm#a-2c3">2c/3</a> signals. A <a href="#snark">Snark</a> could reasonably be called a
"glider elbow", but <a href="lex_g.htm#gliderreflector">glider reflector</a> is the standard term. A
signal elbow with a <a href="lex_r.htm#recoverytime">recovery time</a> less than 20 ticks would enable a
trivial proof that Conway's Life is <a href="lex_o.htm#omniperiodic">omniperiodic</a>.
<p>A near miss is the following elbow-like <a href="lex_c.htm#converter">converter</a> found by Dean
Hickerson. It successfully turns a 2<i>c</i>/3 signal by 90 degrees, but
unfortunately changes it to a double-length signal in the process.
This means that further copies of the converter can not be appended
(e.g., to make a closed loop).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........................O..O......$........................OOOOOO....$..............................O.OO$......................OOOOO.O.O.OO$.....................O......O.O...$.....................OOOOO..O.O...$..................O.......O.OO....$..................OOOOOO..O.......$........................O.O.......$................OOOOOO..O.OO......$..........OO...O......O.O.........$.........O..O..OOOOO..O.O.........$........O.OOO.......O.OO..........$....OO.O.O...OOOOO..O.............$.....O.O...O......O.O.............$.....O.O..OOOOOO..O.OO............$...O.O.O.O......O.O...............$..O.OO..O.OOOO..O.O...............$..O...O.O.O...O.OO................$OO.OO.O.O...O.O...................$.O.O..O.OOOO.O.OOO................$O..O.O.......O...O................$.OOO..OOOOOOOO....................$....O.O...........................$...OO.O..OOOOOOO..................$..O..OO.O.......O.................$..OO....O..OOOOOO.................$........O.O.......................$.......OO.O..OOOOOO...............$..........O.O......O..............$..........O.O..OOOOO..............$...........OO.O.......O...........$..............O..OOOOOO...........$..............O.O.................$.............OO.O..OOOOOO.........$................O.O......O.OO.....$................O.O..OOOOO.OO.....$.................OO.O.............$....................O..OOOOOO.....$....................O.O.....O.....$...................OO.O..OOO......$......................O.O.....OO..$......................O..O....OO..$.......................OO.........$"
>........................O..O......
........................OOOOOO....
..............................O.OO
......................OOOOO.O.O.OO
.....................O......O.O...
.....................OOOOO..O.O...
..................O.......O.OO....
..................OOOOOO..O.......
........................O.O.......
................OOOOOO..O.OO......
..........OO...O......O.O.........
.........O..O..OOOOO..O.O.........
........O.OOO.......O.OO..........
....OO.O.O...OOOOO..O.............
.....O.O...O......O.O.............
.....O.O..OOOOOO..O.OO............
...O.O.O.O......O.O...............
..O.OO..O.OOOO..O.O...............
..O...O.O.O...O.OO................
OO.OO.O.O...O.O...................
.O.O..O.OOOO.O.OOO................
O..O.O.......O...O................
.OOO..OOOOOOOO....................
....O.O...........................
...OO.O..OOOOOOO..................
..O..OO.O.......O.................
..OO....O..OOOOOO.................
........O.O.......................
.......OO.O..OOOOOO...............
..........O.O......O..............
..........O.O..OOOOO..............
...........OO.O.......O...........
..............O..OOOOOO...........
..............O.O.................
.............OO.O..OOOOOO.........
................O.O......O.OO.....
................O.O..OOOOO.OO.....
.................OO.O.............
....................O..OOOOOO.....
....................O.O.....O.....
...................OO.O..OOO......
......................O.O.....OO..
......................O..O....OO..
.......................OO.........
</a></pre></td></tr></table></center>
<p>Relatively small <a href="lex_c.htm#composite">composite</a> <a href="lex_m.htm#mwss">MWSS</a> elbows can now be constructed,
using Tanner Jacobi's 2015 discovery of a small <a href="lex_h.htm#htomwss">H-to-MWSS</a>
component. For example, the <a href="lex_o.htm#orthogonoid">Orthogonoid</a> includes a
constructor/reflector that reflects an MWSS stream by 180 degrees,
but it can be trivially reconfigured to make a 90-degree MWSS elbow.
<p><a name=silvergtoh>:</a><b>Silver G-to-H</b> A variant of the <a href="#silverreflector">Silver reflector</a> made by
substituting an <a href="lex_f.htm#fx119">Fx119</a> conduit for the final <a href="lex_n.htm#nw31">NW31</a>, allowing a
Herschel output as well as the beehive-annihilating reset glider. It
is still <a href="#spartan">Spartan</a>, and as long as the Fx119 is followed by a
<a href="lex_d.htm#dependentconduit">dependent conduit</a>, it retains the faster 497-tick <a href="lex_r.htm#recoverytime">recovery time</a>.
<p><a name=silverreflector>:</a><b>Silver reflector</b> A <a href="#stable">stable</a> <a href="lex_g.htm#gliderreflector">glider reflector</a> found by Stephen
Silver in November 1998, by substituting an <a href="lex_n.htm#nw31">NW31</a> converter for the
second <a href="lex_f.htm#fx77">Fx77</a> conduit in the <a href="lex_c.htm#callahangtoh">Callahan G-to-H</a> found a few days
previous. The repeat time is 497 ticks:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O.............O.......................................$......O.O...........OOO.......................................$.......OO..........O..........................................$...................OO.........................................$....OO........................................................$.....O........................................................$.....O.O......................................................$......OO..........O...........................................$.................O.O..........................................$.................O.O..........................................$..................O....OO.....................................$......OO...............O.O....................................$.....O.O.................O....................................$.....O...................OO...................................$....OO........................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$...............OO.............................................$...............OO.............................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$...OO.........................................................$....O.........................................................$....O.O.......................................................$.....OO.......................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$......OO...............OO.....................................$......OO...............O.O....................................$.........................O....................................$.........................OO...................................$..............................................................$..............................................................$..............................................................$..............................................................$..............................................................$...................O..........................................$.................OOO..........................................$................O.............................................$................OO...................OO.......................$....................OO................O.......................$.....................O................O.O.....................$...................O...................OO.....................$...................OO.........................................$..............................................................$..............................................................$............................................................OO$............................................................OO$..............................................................$......................OO......................................$...OO.................OO......................................$...OO.........................................................$..............................................................$..............................................................$..OO..........................................................$...O..........................................................$OOO............OO.............................................$O..............O..............................................$................OOO...........................................$..................O...........................................$..............................................................$..................................................OO..........$..................................................OO..........$"
>........O.............O.......................................
......O.O...........OOO.......................................
.......OO..........O..........................................
...................OO.........................................
....OO........................................................
.....O........................................................
.....O.O......................................................
......OO..........O...........................................
.................O.O..........................................
.................O.O..........................................
..................O....OO.....................................
......OO...............O.O....................................
.....O.O.................O....................................
.....O...................OO...................................
....OO........................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
...............OO.............................................
...............OO.............................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
...OO.........................................................
....O.........................................................
....O.O.......................................................
.....OO.......................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
......OO...............OO.....................................
......OO...............O.O....................................
.........................O....................................
.........................OO...................................
..............................................................
..............................................................
..............................................................
..............................................................
..............................................................
...................O..........................................
.................OOO..........................................
................O.............................................
................OO...................OO.......................
....................OO................O.......................
.....................O................O.O.....................
...................O...................OO.....................
...................OO.........................................
..............................................................
..............................................................
............................................................OO
............................................................OO
..............................................................
......................OO......................................
...OO.................OO......................................
...OO.........................................................
..............................................................
..............................................................
..OO..........................................................
...O..........................................................
OOO............OO.............................................
O..............O..............................................
................OOO...........................................
..................O...........................................
..............................................................
..................................................OO..........
..................................................OO..........
</a></pre></td></tr></table></center>
<p><a name=silversp5>:</a><b>Silver's p5</b> (p5) The following oscillator found by Stephen Silver in
February 2000:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.........$O..........$.O..O......$...OO......$...O...O.OO$..O....OO.O$..OO.......$"
>OO.........
O..........
.O..O......
...OO......
...O...O.OO
..O....OO.O
..OO.......
</a></pre></td></tr></table></center>
<p>As this has no <a href="#spark">spark</a>, it appears useless. Nonetheless, in March
2000, David Eppstein found a way to use it to reduce the size of Noam
Elkies' p5 <a href="lex_r.htm#reflector">reflector</a>.
<p><a name=simkinglidergun>:</a><b>Simkin glider gun</b> (p120) A <a href="lex_h.htm#herschel">Herschel</a>-based glider gun discovered by
Michael Simkin in April 2015. It consists of a Herschel running
through two <a href="lex_b.htm#b60">B60</a> conduits. In terms of its 36-cell minimum
population, it is one of the smallest known guns, sharing the record
with the <a href="lex_g.htm#gosperglidergun">Gosper glider gun</a>. In the double-barreled form, as well as
the <a href="lex_p.htm#pseudo">pseudo</a>-period, <a href="#snake">snake</a>-stabilized form shown below, it is the
absolute record holder.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.....OO........................$OO.....OO........................$.................................$....OO...........................$....OO...........................$.................................$.................................$.................................$.................................$......................OO.OO......$.....................O.....O.....$.....................O......O..OO$.....................OOO...O...OO$..........................O......$.................................$.................................$.................................$.................................$........................O.OO.....$........................OO.O.....$"
>OO.....OO........................
OO.....OO........................
.................................
....OO...........................
....OO...........................
.................................
.................................
.................................
.................................
......................OO.OO......
.....................O.....O.....
.....................O......O..OO
.....................OOO...O...OO
..........................O......
.................................
.................................
.................................
.................................
........................O.OO.....
........................OO.O.....
</a></pre></td></tr></table></center>
<p><a name=singlearm>:</a><b>single-arm</b> A type of <a href="lex_u.htm#universalconstructor">universal constructor</a> using just one
construction arm and <a href="#slowsalvo">slow salvo</a> techniques to construct, usually,
<a href="#spartan">Spartan</a> or near-Spartan circuitry. Compare <a href="lex_t.htm#twoarm">two-arm</a>.
<p><a name=singlechannel>:</a><b>single-channel</b> A type of <a href="lex_u.htm#universalconstructor">universal constructor</a> discovered and
developed by Simon Ekström and others starting in December 2015. The
initial <a href="lex_e.htm#elbowoperation">elbow operation</a> toolkit was near-minimal, with just one
<a href="lex_p.htm#push">push</a>, one <a href="lex_p.htm#pull">pull</a>, and one output glider of each colour (see
<a href="lex_c.htm#colourofaglider">colour of a glider</a>). Later searches produced a much larger and
more efficient library.
<p>Single-channel <a href="lex_r.htm#recipe">recipes</a> consist of a <a href="#stream">stream</a> of <a href="lex_g.htm#glider">gliders</a> on a
single <a href="lex_l.htm#lane">lane</a> and aimed at a <a href="lex_c.htm#constructionelbow">construction elbow</a>, usually separated
from each other by at least 90 <a href="lex_t.htm#tick">ticks</a>. In spite of these strict
limitations, single-channel recipes can be made to do surprising
things. For example, it is possible to build a <a href="#snark">Snark</a> directly on
the <a href="lex_c.htm#constructionlane">construction lane</a> of an active construction arm, starting from
a single <a href="lex_e.htm#elbow">elbow</a> <a href="lex_b.htm#block">block</a>. This can allow the arm to reach
efficiently around complex obstructions by bending itself through
multiple <a href="lex_l.htm#losslesselbow">lossless elbows</a>. Known recipes can also remove an elbow
when it is no longer needed, by controlled demolition of the Snark.
<p>As of June 2018, almost all single-channel recipes are made up of
<a href="#singleton">singletons</a> and <a href="#synchronized">synchronized</a> pairs of gliders, but no synchronized
triplets or larger groups. This is not an inherent limitation of
single-channel construction, but rather a limitation in the
<a href="#searchprogram">search program</a> used to find currently known single-channel
<a href="lex_t.htm#toolkit">toolkits</a>.
<p>A useful byproduct of this limitation is that single-channel
recipes can be trivially adjusted to allow them to safely cross
perpendicular data streams, including other single-channel recipes
(or earlier parts of the same recipe). To avoid collisions with a
crossing stream, each singleton glider or glider pair can safely be
delayed by any even number of ticks, or technically by any multiple
of the period of the current <a href="lex_i.htm#intermediatetarget">intermediate target</a>. The final result
of the construction will not be affected.
<p><a name=singlechanneldemonoid>:</a><b>single-channel Demonoid</b> See <a href="lex_d.htm#demonoid">Demonoid</a>.
<p><a name=singlelane>:</a><b>single-lane</b> = <a href="#singlechannel">single-channel</a>.
<p><a name=singleton>:</a><b>singleton</b> In <a href="#singlechannel">single-channel</a> <a href="lex_r.htm#recipe">recipes</a>, a glider that is not
<a href="#synchronized">synchronized</a> with a neighboring glider in its <a href="#stream">stream</a>. Compare
<a href="lex_g.htm#gliderpair">glider pair</a>.
<p><a name=singularflipflop>:</a><b>singular flip flop</b> (p2) Found by Robert Wainwright, July 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O...$..O.O.$O....O$OOOOOO$......$..OO..$..OO..$"
>..O...
..O.O.
O....O
OOOOOO
......
..OO..
..OO..
</a></pre></td></tr></table></center>
<p><a name=sinkingship>:</a><b>sinking ship</b> = <a href="lex_c.htm#canoe">canoe</a>
<p><a name=sirrobin>:</a><b>Sir Robin</b> ((2,1)<i>c</i>/6, p6) The first elementary <a href="lex_k.htm#knightship">knightship</a> in
Conway's Game of Life, found by Adam P. Goucher on March 6, 2018,
based on a partial by Tomas Rokicki.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO.........................$....O..O.......................$....O...O......................$......OOO......................$..OO......OOOO.................$..O.OO....OOOO.................$.O....O......OOO...............$..OOOO....OO...O...............$O.........OO...................$.O...O.........................$......OOO..OO..O...............$..OO.......O....O..............$.............O.OO..............$..........OO......O............$...........OO.OOO.O............$..........OO...O..O............$..........O.O..OO..............$..........O..O.O.O.............$..........OOO......O...........$...........O.O.O...O...........$..............OO.O.O...........$...........O......OOO..........$...............................$...........O.........O.........$...........O...O......O........$............O.....OOOOO........$............OOO................$................OO.............$.............OOO..O............$...........O.OOO.O.............$..........O...O..O.............$...........O....OO.OOO.........$.............OOOO.O....OO......$.............O.OOOO....OO......$...................O...........$....................O..OO......$....................OO.........$.....................OOOOO.....$.........................OO....$...................OOO......O..$....................O.O...O.O..$...................O...O...O...$...................O...OO......$..................O......O.OOO.$...................OO...O...OO.$....................OOOO..O..O.$......................OO...O...$.....................O.........$.....................OO.O......$....................O..........$...................OOOOO.......$...................O....O......$..................OOO.OOO......$..................O.OOOOO......$..................O............$....................O..........$................O....OOOO......$....................OOOO.OO....$.................OOO....O......$........................O.O....$............................O..$........................O..OO..$.........................OOO...$......................OO.......$.....................OOO.....O.$........................OO..O.O$.....................O..OOO.O.O$......................OO.O..O..$........................O.O..OO$..........................OO...$......................OOO....O.$......................OOO....O.$.......................OO...OOO$........................OO.OO..$.........................OO....$.........................O.....$...............................$........................OO.....$..........................O....$"
>....OO.........................
....O..O.......................
....O...O......................
......OOO......................
..OO......OOOO.................
..O.OO....OOOO.................
.O....O......OOO...............
..OOOO....OO...O...............
O.........OO...................
.O...O.........................
......OOO..OO..O...............
..OO.......O....O..............
.............O.OO..............
..........OO......O............
...........OO.OOO.O............
..........OO...O..O............
..........O.O..OO..............
..........O..O.O.O.............
..........OOO......O...........
...........O.O.O...O...........
..............OO.O.O...........
...........O......OOO..........
...............................
...........O.........O.........
...........O...O......O........
............O.....OOOOO........
............OOO................
................OO.............
.............OOO..O............
...........O.OOO.O.............
..........O...O..O.............
...........O....OO.OOO.........
.............OOOO.O....OO......
.............O.OOOO....OO......
...................O...........
....................O..OO......
....................OO.........
.....................OOOOO.....
.........................OO....
...................OOO......O..
....................O.O...O.O..
...................O...O...O...
...................O...OO......
..................O......O.OOO.
...................OO...O...OO.
....................OOOO..O..O.
......................OO...O...
.....................O.........
.....................OO.O......
....................O..........
...................OOOOO.......
...................O....O......
..................OOO.OOO......
..................O.OOOOO......
..................O............
....................O..........
................O....OOOO......
....................OOOO.OO....
.................OOO....O......
........................O.O....
............................O..
........................O..OO..
.........................OOO...
......................OO.......
.....................OOO.....O.
........................OO..O.O
.....................O..OOO.O.O
......................OO.O..O..
........................O.O..OO
..........................OO...
......................OOO....O.
......................OOO....O.
.......................OO...OOO
........................OO.OO..
.........................OO....
.........................O.....
...............................
........................OO.....
..........................O....
</a></pre></td></tr></table></center>
<p><a name=sixls>:</a><b>six Ls</b> (p3) This is a compact form of <a href="lex_l.htm#loadingdock">loading dock</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O...$.OOO..O$O...OOO$OOO....$....OOO$OOO...O$O..OOO.$...O...$"
>...O...
.OOO..O
O...OOO
OOO....
....OOO
OOO...O
O..OOO.
...O...
</a></pre></td></tr></table></center>
<p><a name=sixtynine>:</a><b>sixty-nine</b> (p4) Found by Robert Wainwright, October 1978.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........O...........$........O.O..........$.....................$......O...OO.........$.....O.....O.........$......O.O............$........OO......O....$................O....$..O.....OO....OOO....$..O...........OO.....$OOO.......OO..OO..OOO$OO......O.OO....OOO..$OO..OOO.O.O.....OOO..$..OOO................$..OOO......O.........$..........O.O........$.....................$........O...OO.......$.......O.....O.......$........O.O..........$..........OO.........$"
>.........O...........
........O.O..........
.....................
......O...OO.........
.....O.....O.........
......O.O............
........OO......O....
................O....
..O.....OO....OOO....
..O...........OO.....
OOO.......OO..OO..OOO
OO......O.OO....OOO..
OO..OOO.O.O.....OOO..
..OOO................
..OOO......O.........
..........O.O........
.....................
........O...OO.......
.......O.....O.......
........O.O..........
..........OO.........
</a></pre></td></tr></table></center>
<p><a name=skewedquad>:</a><b>skewed quad</b> (p2)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO....$.O...OO$..O.O.O$.......$O.O.O..$OO...O.$....OO.$"
>.OO....
.O...OO
..O.O.O
.......
O.O.O..
OO...O.
....OO.
</a></pre></td></tr></table></center>
<p><a name=skewedtrafficlight>:</a><b>skewed traffic light</b> (p3) Found by Robert Wainwright, August 1989.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.............OO.........$............O..O........$.............O.O........$.........OO...O.........$..........O.OO..........$............O...........$............O...........$........................$OO........OOO......O....$OOOO.O........O...OO....$O.O..OOO.O....O.........$.........O....O.OOO..O.O$....OO...O........O.OOOO$....O......OOO........OO$........................$...........O............$...........O............$..........OO.O..........$.........O...OO.........$........O.O.............$........O..O............$.........OO.............$"
>.............OO.........
............O..O........
.............O.O........
.........OO...O.........
..........O.OO..........
............O...........
............O...........
........................
OO........OOO......O....
OOOO.O........O...OO....
O.O..OOO.O....O.........
.........O....O.OOO..O.O
....OO...O........O.OOOO
....O......OOO........OO
........................
...........O............
...........O............
..........OO.O..........
.........O...OO.........
........O.O.............
........O..O............
.........OO.............
</a></pre></td></tr></table></center>
<p><a name=sl>:</a><b>sL</b> Abbreviation for <a href="#stilllife">still life</a>, used most often in rough
measurements of the complexity of a <a href="#spartan">Spartan</a> constellation.
<p><a name=slidegun>:</a><b>slide gun</b> A <a href="lex_g.htm#gun">gun</a> which fires sideways from an extending arm. The
arm consists of streams of <a href="#spaceship">spaceships</a> which are pushing a pattern
away from the body of the gun and releasing an output spaceship every
time they do so. Each output spaceship therefore travels along a
different path.
<p>Dieter Leithner constructed the first slide gun in July 1994
(although he used the term "side shooting gun"). The following
pattern shows the key reaction of this slide gun. The three gliders
shown will push the block one cell diagonally, thereby extending the
length of the arm by one cell, and at the same time they release an
output glider sideways. (In 1999, Jason Summers constructed slide
guns using other reactions.)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OO.$..............OO.$........OOO......$..........O......$.........O.....OO$..............O.O$................O$.................$.................$.................$.................$.................$.................$.................$.................$.................$.................$.O...............$.OO..............$O.O..............$"
>..............OO.
..............OO.
........OOO......
..........O......
.........O.....OO
..............O.O
................O
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.O...............
.OO..............
O.O..............
</a></pre></td></tr></table></center>
<p><a name=slidingblockmemory>:</a><b>sliding block memory</b> A memory register whose value is stored as the
position of a <a href="lex_b.htm#block">block</a>. The block can be moved by means of <a href="lex_g.htm#glider">glider</a>
collisions. See <a href="lex_b.htm#blockpusher">block pusher</a> for an example.
<p>In Conway's original formulation (as part of his proof of the
existence of a <a href="lex_u.htm#universalcomputer">universal computer</a> in Life) two gliders were used to
pull the block inwards by three diagonal spaces, as shown below, and
thirty gliders were used to push it out by the same amount.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..........$OO..........$............$............$............$.........OOO$OOO......O..$O.........O.$.O..........$"
>OO..........
OO..........
............
............
............
.........OOO
OOO......O..
O.........O.
.O..........
</a></pre></td></tr></table></center>
<p>Dean Hickerson later greatly improved on this, finding a way to
pull a block inwards by one diagonal space using 2 gliders, and push
it out the same distance using 3 gliders. In order for the memory to
be of any use there also has to be a way to read the value held. It
suffices to be able to check whether the value is zero (as Conway
did), or to be able to detect the transition from one to zero (as
Hickerson did).
<p>Dean Hickerson's sliding block memory is used in Paul Chapman's
<a href="lex_u.htm#urm">URM</a>, and the key salvos from it are used in several other complex
constructions, such as David Bell's <a href="lex_c.htm#collatz5n1simulator">Collatz 5N+1 simulator</a> and Adam
P. Goucher's <a href="lex_p.htm#picalculator">pi calculator</a> and <a href="#spartan">Spartan</a>
<a href="lex_u.htm#universalcomputer">universal computer</a>-constructor.
<p><a name=slmake>:</a><b>slmake</b> A <a href="#searchprogram">search program</a> published by Adam P. Goucher in May 2017.
It accepts as input a <a href="lex_c.htm#constellation">constellation</a> of sufficiently widely
separated <a href="#stilllife">still lifes</a>, and produces a <a href="lex_g.htm#glider">glider</a> <a href="#stream">stream</a> that will
perform a complete <a href="#slowgliderconstruction">slow glider construction</a> of that constellation,
starting from a single block.
<p>One of slmake's primary uses is to make <a href="#selfconstructing">self-constructing</a>
patterns much easier to design and build. It is capable of finding
<a href="lex_r.htm#recipe">recipes</a> not only for <a href="#spartan">Spartan</a> <a href="#stable">stable</a> <a href="lex_c.htm#circuit">circuitry</a>, but also for
other useful non-Spartan circuits such as <a href="#snark">Snarks</a>, <a href="#syringe">syringes</a>, and
<a href="lex_h.htm#htomwss">H-to-MWSS</a> <a href="lex_c.htm#converter">converters</a>, provided that they are separated from other
nearby objects by a sufficient amount of empty space.
<p><a name=slow>:</a><b>slow</b> See <a href="#slowgliderconstruction">slow glider construction</a>.
<p><a name=slowelbow>:</a><b>slow elbow</b> A movable <a href="lex_c.htm#constructionelbow">construction elbow</a> that is controlled by a
<a href="#slowsalvo">slow salvo</a>, which most likely comes from a previous elbow in a
multi-elbow <a href="lex_c.htm#constructionarm">construction arm</a>. Unlike a standard elbow which is
generally fixed on a single <a href="lex_c.htm#constructionlane">construction lane</a> or at least within a
narrow range, a slow elbow can move freely in two dimensions as long
as there is room for it. Each slow elbow added to a construction arm
results in an exponential increase in the cost (in gliders) of the
final construction. Compare <a href="lex_l.htm#losslesselbow">lossless elbow</a>.
<p><a name=slowgliderconstruction>:</a><b>slow glider construction</b> Construction an object by a "slow salvo" of
<a href="lex_g.htm#glider">gliders</a> all coming from the same direction, in such a way that
timing of the gliders does not matter as long as they are not too
close behind one another. This type of construction requires an
initial seed object, such as a <a href="lex_b.htm#block">block</a>, which is modified by each
glider in turn until the desired object is produced.
<p>In May 1997, Nick Gotts produced a slow glider construction of a
block-laying switch engine from a block, using a slow salvo of 53
gliders. Constructions like this are important in the study of
<a href="#sparselife">sparse Life</a>, as they will occur naturally as gliders created in the
first few generations collide with <a href="lex_b.htm#blonk">blonks</a> and other debris.
<p>Slow glider constructions are also useful in some designs for
<a href="lex_u.htm#universalconstructor">universal constructors</a>. However, in this case the above definition
is usually too restrictive, and it is desirable to allow
constructions in which some gliders in the salvo are required to have
a particular timing modulo 2 (a "p2 slow salvo"). This gives much
greater flexibility, as <a href="lex_b.htm#blinker">blinkers</a> can now be freely used in the
intermediate construction steps. The <a href="#snarkmaker">Snarkmaker</a> is a very large p2
slow salvo. A much smaller example is the following <a href="lex_e.htm#edgy">edgy</a>
construction of an <a href="lex_e.htm#eater1">eater1</a> starting from a block.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO..OOO...............................................$OO..O.................................................$.....O................................................$......................................................$......................................................$......................................................$......................................................$......................................................$......................................................$......................................................$................OOO...................................$................O.....................................$.................O....................................$......................................................$......................................................$......................................................$......................................................$.......................OOO............................$.......................O..............................$........................O.............................$......................................................$......................................................$......................................................$......................................................$......................................................$......................................................$......................................................$..............................O.......................$........................O....OO.......................$.......................OO....O.O......................$.......................O.O............................$......................................................$......................................................$..........................O...........................$.........................OO...........................$.........................O.O..........................$......................................................$.............................OOO....................OO$.............................O.....................OO.$..............................O......................O$"
>OO..OOO...............................................
OO..O.................................................
.....O................................................
......................................................
......................................................
......................................................
......................................................
......................................................
......................................................
......................................................
................OOO...................................
................O.....................................
.................O....................................
......................................................
......................................................
......................................................
......................................................
.......................OOO............................
.......................O..............................
........................O.............................
......................................................
......................................................
......................................................
......................................................
......................................................
......................................................
......................................................
..............................O.......................
........................O....OO.......................
.......................OO....O.O......................
.......................O.O............................
......................................................
......................................................
..........................O...........................
.........................OO...........................
.........................O.O..........................
......................................................
.............................OOO....................OO
.............................O.....................OO.
..............................O......................O
</a></pre></td></tr></table></center>
<p>Adam P. Goucher's <a href="#slmake">slmake</a> <a href="#searchprogram">search program</a>, made available in May
2017, makes it much easier to find a slow glider construction for a
wide variety of <a href="#stable">stable</a> <a href="lex_c.htm#circuit">circuitry</a>.
<p><a name=slowsalvo>:</a><b>slow salvo</b> See <a href="#slowgliderconstruction">slow glider construction</a>.
<p><a name=smallfish>:</a><b>small fish</b> = <a href="lex_l.htm#lwss">LWSS</a>
<p><a name=smalllake>:</a><b>small lake</b> (p1) A 20-cell <a href="#stilllife">still life</a>, but technically not actually
a <a href="lex_l.htm#lake">lake</a> because it is not constructed entirely out of <a href="lex_d.htm#domino">dominoes</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O....$...O.O...$...O.O...$.OO...OO.$O.......O$.OO...OO.$...O.O...$...O.O...$....O....$"
>....O....
...O.O...
...O.O...
.OO...OO.
O.......O
.OO...OO.
...O.O...
...O.O...
....O....
</a></pre></td></tr></table></center>
<p><a name=smiley>:</a><b>smiley</b> (p8) Found by Achim Flammenkamp in July 1994 and named by Alan
Hensel.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.O.OO$...O...$O.....O$.OOOOO.$.......$.......$OOO.OOO$"
>OO.O.OO
...O...
O.....O
.OOOOO.
.......
.......
OOO.OOO
</a></pre></td></tr></table></center>
<p><a name=smmbreeder>:</a><b>SMM breeder</b> See <a href="lex_b.htm#breeder">breeder</a>.
<p><a name=smoke>:</a><b>smoke</b> Debris that is fairly long-lived but eventually dies
completely. Basically, a large <a href="#spark">spark</a>. This term is used
especially when talking about the output from a <a href="#smokingship">smoking ship</a>. Some
<a href="lex_h.htm#herschelconduit">Herschel conduits</a> such as <a href="lex_f.htm#fx119">Fx119</a> also create large amounts of
smoke.
<p><a name=smokingship>:</a><b>smoking ship</b> A <a href="#spaceship">spaceship</a> which produces <a href="#smoke">smoke</a>. If the smoke
extends past the edge of the rest of the spaceship, then it can be
used to perturb other objects as the spaceship passes by. Running
gliders into the smoke is often a good way to turn or duplicate them,
or convert them into other objects. Sometimes the smoke from a
smoking ship may itself be perturbed by accompanying spaceships in
order to form a <a href="lex_p.htm#puffer">puffer</a>. A simple example of a smoking ship is the
<a href="#schickengine">Schick engine</a>.
<p><a name=snacker>:</a><b>snacker</b> (p9) Found by Mark Niemiec in 1972. This is a
<a href="lex_p.htm#pentadecathlon">pentadecathlon</a> with stabilizers which force it into a lower period.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO................OO$.O................O.$.O.O............O.O.$..OO............OO..$.......O....O.......$.....OO.OOOO.OO.....$.......O....O.......$..OO............OO..$.O.O............O.O.$.O................O.$OO................OO$"
>OO................OO
.O................O.
.O.O............O.O.
..OO............OO..
.......O....O.......
.....OO.OOOO.OO.....
.......O....O.......
..OO............OO..
.O.O............O.O.
.O................O.
OO................OO
</a></pre></td></tr></table></center>
The stabilizers make the <a href="lex_d.htm#domino">domino</a> spark largely inaccessible, but the
snacker is <a href="lex_e.htm#extensible">extensible</a>, as shown in the next diagram, and so a more
accessible p9 domino spark can be obtained. In April 1998 Dean
Hickerson found an alternative stabilizer that is less obtrusive than
the original one, and this is also shown in this diagram.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO................................$.O................................$.O.O.........................OO...$..OO.......................O..O...$.......O....O..............OOO....$.....OO.OOOO.OO...O....O......OOO.$.......O....O...OO.OOOO.OO...O...O$..OO..............O....O......OOO.$.O.O.......................OOO....$.O.........................O..O...$OO...........................OO...$"
>OO................................
.O................................
.O.O.........................OO...
..OO.......................O..O...
.......O....O..............OOO....
.....OO.OOOO.OO...O....O......OOO.
.......O....O...OO.OOOO.OO...O...O
..OO..............O....O......OOO.
.O.O.......................OOO....
.O.........................O..O...
OO...........................OO...
</a></pre></td></tr></table></center>
An end can also be stabilized by killer <a href="lex_c.htm#candlefrobra">candlefrobras</a>.
<p><a name=snail>:</a><b>snail</b> (<i>c</i>/5 orthogonally, p5) The first known <a href="lex_c.htm#c5spaceship">c/5 spaceship</a>,
discovered by Tim Coe in January 1996. For some time it was the
slowest known orthogonal spaceship.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O....................................$.O....................................$O.....................................$.OOO.................OOO...OOO........$.OO.O.........O...O.O......OOO........$..O...........OO.O.......O....OOOO....$......O......O...O.O...OO.O.....OO....$...O..O.OOO...OO.........O........OO.O$...OO.O.....O.....O.................O.$.........O.OOOOOOO....................$......................................$.........O.OOOOOOO....................$...OO.O.....O.....O.................O.$...O..O.OOO...OO.........O........OO.O$......O......O...O.O...OO.O.....OO....$..O...........OO.O.......O....OOOO....$.OO.O.........O...O.O......OOO........$.OOO.................OOO...OOO........$O.....................................$.O....................................$.O....................................$"
>.O....................................
.O....................................
O.....................................
.OOO.................OOO...OOO........
.OO.O.........O...O.O......OOO........
..O...........OO.O.......O....OOOO....
......O......O...O.O...OO.O.....OO....
...O..O.OOO...OO.........O........OO.O
...OO.O.....O.....O.................O.
.........O.OOOOOOO....................
......................................
.........O.OOOOOOO....................
...OO.O.....O.....O.................O.
...O..O.OOO...OO.........O........OO.O
......O......O...O.O...OO.O.....OO....
..O...........OO.O.......O....OOOO....
.OO.O.........O...O.O......OOO........
.OOO.................OOO...OOO........
O.....................................
.O....................................
.O....................................
</a></pre></td></tr></table></center>
<p><a name=snake>:</a><b>snake</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.O$O.OO$"
>OO.O
O.OO
</a></pre></td></tr></table></center>
<p><a name=snakebit>:</a><b>snake bit</b> An alternative name for a <a href="lex_b.htm#boatbit">boat-bit</a>. Not a very sensible
name, because various other things can be used instead of a snake. A
snake, or alternatively an <a href="lex_a.htm#aircraftcarrier">aircraft carrier</a>, is the smallest object
that can consume a glider <a href="#stream">stream</a> by effectively acting as an
<a href="lex_e.htm#eater">eater</a> for every two incoming gliders. The one-cell reduction from
the smallest real eater, the seven-cell <a href="lex_e.htm#eater1">eater1</a>, has been important
when trying to construct recent <a href="#sawtooth">sawtooths</a> where the <a href="lex_p.htm#population">population</a>
must be minimized.
<p><a name=snakebridgesnake>:</a><b>snake bridge snake</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO$....O.$.....O$....OO$OO.O..$O.OO..$"
>....OO
....O.
.....O
....OO
OO.O..
O.OO..
</a></pre></td></tr></table></center>
<p><a name=snakedance>:</a><b>snake dance</b> (p3) Found by Robert Wainwright, May 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO.O..$...O.OO..$OO.O.....$.O..O.OOO$O..O.O..O$OOO.O..O.$.....O.OO$..OO.O...$..O.OO...$"
>...OO.O..
...O.OO..
OO.O.....
.O..O.OOO
O..O.O..O
OOO.O..O.
.....O.OO
..OO.O...
..O.OO...
</a></pre></td></tr></table></center>
<p><a name=snakepit>:</a><b>snake pit</b> This term has been used for two different <a href="lex_o.htm#oscillator">oscillators</a>:
the p2 snake pit (essentially the same as <a href="lex_f.htm#foreandback">fore and back</a>)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.OO.OO$OO.O.O.$......O$OOO.OOO$O......$.O.O.OO$OO.OO.O$"
>O.OO.OO
OO.O.O.
......O
OOO.OOO
O......
.O.O.OO
OO.OO.O
</a></pre></td></tr></table></center>
and the p3 snake pit.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO....$....O..O...$....O.OO...$.OO.O......$O.O.O.OOOO.$O.........O$.OOOO.O.O.O$......O.OO.$...OO.O....$...O..O....$....OO.....$"
>.....OO....
....O..O...
....O.OO...
.OO.O......
O.O.O.OOOO.
O.........O
.OOOO.O.O.O
......O.OO.
...OO.O....
...O..O....
....OO.....
</a></pre></td></tr></table></center>
<p><a name=snakesiamesesnake>:</a><b>snake siamese snake</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.OO.O$O.OO.OO$"
>OO.OO.O
O.OO.OO
</a></pre></td></tr></table></center>
<p><a name=snark>:</a><b>Snark</b> A small stable 90-degree glider reflector with a repeat time of
43 ticks, discovered by Mike Playle on 25 April 2013 using a search
utility he wrote called <a href="lex_b.htm#bellman">Bellman</a>. Compare <a href="lex_b.htm#boojumreflector">boojum reflector</a>. Four
common Snark variants are shown below: Playle's original at the top,
and variants by Heinrich Koenig, Simon Ekström, and Shannon Omick to
the left, bottom, and right, respectively. As of June 2018, only
Playle's variant has a known <a href="#slowgliderconstruction">slow glider construction</a> <a href="lex_r.htm#recipe">recipe</a> for
all orientations.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.............................OO....................$............................O.O....................$......................OO....O......................$....................O..O..OO.OOOO..................$....................OO.O.O.O.O..O..................$.......................O.O.O.O.....................$.......................O.O.OO......................$........................O..........................$...................................................$.....................................OO............$............................OO.......O.............$............................OO.....O.O.............$.........O.........................OO..............$.........OOO.......................................$............O........O.............................$...........OO.......O..............................$....................OOO............................$...................................................$...OO..............................................$...O.....................OO........................$OO.O......................O........................$O..OOO....OO...........OOO.........................$.OO...O...OO...........O......................O....$...OOOO.....................OO..............OOOOO..$...O...............OO........O.............O.....O.$....OOO............O.O.......O.O............OOO..O.$.......O.............O........OO...............O.OO$..OOOOO..............OO.....................OOOO..O$.O..O......................O...........OO...O...OO.$.OO......................OOO...........OO....OOO...$........................O......................O...$........................OO.....................O.OO$..............................................OO.OO$...................................................$...................................................$......................................OO...........$......................................O............$.......................................OOO.........$..............OO.........................O.........$.............O.O.....OO............................$.............O.......OO............................$............OO.....................................$...................................................$..........................O........................$................OO....OO.O.O.......................$...............O..O..O.O.O.O.......................$................OO...O.O.O.OO......................$..................OOOO.OO..O.......................$..................O...O....O.......................$...................O..O.OOO........................$....................O.O.O..........................$.....................O.............................$"
>.............................OO....................
............................O.O....................
......................OO....O......................
....................O..O..OO.OOOO..................
....................OO.O.O.O.O..O..................
.......................O.O.O.O.....................
.......................O.O.OO......................
........................O..........................
...................................................
.....................................OO............
............................OO.......O.............
............................OO.....O.O.............
.........O.........................OO..............
.........OOO.......................................
............O........O.............................
...........OO.......O..............................
....................OOO............................
...................................................
...OO..............................................
...O.....................OO........................
OO.O......................O........................
O..OOO....OO...........OOO.........................
.OO...O...OO...........O......................O....
...OOOO.....................OO..............OOOOO..
...O...............OO........O.............O.....O.
....OOO............O.O.......O.O............OOO..O.
.......O.............O........OO...............O.OO
..OOOOO..............OO.....................OOOO..O
.O..O......................O...........OO...O...OO.
.OO......................OOO...........OO....OOO...
........................O......................O...
........................OO.....................O.OO
..............................................OO.OO
...................................................
...................................................
......................................OO...........
......................................O............
.......................................OOO.........
..............OO.........................O.........
.............O.O.....OO............................
.............O.......OO............................
............OO.....................................
...................................................
..........................O........................
................OO....OO.O.O.......................
...............O..O..O.O.O.O.......................
................OO...O.O.O.OO......................
..................OOOO.OO..O.......................
..................O...O....O.......................
...................O..O.OOO........................
....................O.O.O..........................
.....................O.............................
</a></pre></td></tr></table></center>
<p><a name=snarkmaker>:</a><b>Snarkmaker</b> A <a href="#singlechannel">single-channel</a> <a href="#stream">stream</a> of <a href="lex_g.htm#glider">gliders</a> that, when aimed
to collide with an <a href="lex_e.htm#elbow">elbow</a> <a href="lex_b.htm#block">block</a> in a specific location, will
perform a <a href="#slowgliderconstruction">slow glider construction</a> of a <a href="#snark">Snark</a>, directly on the
same <a href="lex_l.htm#lane">lane</a> as the incoming gliders. This allows a
<a href="lex_c.htm#constructionarm">construction arm</a> to add one or more <a href="lex_l.htm#losslesselbow">lossless elbows</a>, so that it
can bend around multiple corners without an exponential increase in
construction cost.
<p>The Snarkmaker recipe used in the first single-channel <a href="lex_d.htm#demonoid">Demonoid</a>,
<a href="lex_o.htm#orthogonoid">Orthogonoid</a>, and <a href="#spiralgrowth">spiral growth</a> patterns contains 2,254 gliders.
This could be considerably reduced with a customized
<a href="#searchprogram">search program</a>.
<p><a name=sng>:</a><b>SNG</b> = <a href="#secondnaturalglider">second natural glider</a>.
<p><a name=sodgame>:</a><b>SODGame</b> = <a href="#seedsofdestructiongame">Seeds of Destruction Game</a>
<p><a name=sombrero>:</a><b>sombrero</b> One half of <a href="#sombreros">sombreros</a> or <a href="#siesta">siesta</a>.
<p><a name=sombreros>:</a><b>sombreros</b> (p6) Found by Dave Buckingham in 1972. If the two halves
are moved three spaces closer to one another then the period drops to
4, and the result is just a less compact form of <a href="lex_a.htm#achimsp4">Achim's p4</a>.
Compare also <a href="#siesta">siesta</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...OO........OO...$...O.O......O.O...$.....O......O.....$...O.OO....OO.O...$.OOO..........OOO.$O...O.O....O.O...O$.OOO..........OOO.$...O.OO....OO.O...$.....O......O.....$...O.O......O.O...$...OO........OO...$"
>...OO........OO...
...O.O......O.O...
.....O......O.....
...O.OO....OO.O...
.OOO..........OOO.
O...O.O....O.O...O
.OOO..........OOO.
...O.OO....OO.O...
.....O......O.....
...O.O......O.O...
...OO........OO...
</a></pre></td></tr></table></center>
<p><a name=soup>:</a><b>soup</b> A random initial pattern, either contained within a small area,
or alternatively filling the whole Life universe.
<p>Finite soups probably have behaviors very different than infinite
soups, but this is obviously unknown. Infinite soups may remain
chaotic indefinitely since any reaction, no matter how rare, is bound
to happen somewhere.
<p>Soups can have an average density, with results varying based on
that. See <a href="#sparselife">sparse Life</a> for a discussion of what can happen at a low
density.
<p>Finite soups for sizes such as 16x16 (asymmetric) have been
examined by the billions by scripts such as <a href="lex_a.htm#apgsearch">apgsearch</a> to find
interesting results. Many new <a href="lex_o.htm#oscillator">oscillators</a> and <a href="#synthesis">synthesis</a>
<a href="lex_r.htm#recipe">recipes</a> have been discovered, as well as previously known rare
patterns such as <a href="#stabilizedswitchengine">stabilized switch engines</a>. In addition, soups are
used to generate statistical <a href="lex_c.htm#census">census</a> data, and to decide whether
specific objects can be considered <a href="lex_n.htm#natural">natural</a>.
<p>Soups can be fully random, or they can be forced to be <a href="#symmetric">symmetric</a>.
The results for these two types of soups can differ since symmetric
soups tend to create large symmetrical objects at a much higher rate.
Shown below is an unusual mirror-symmetric soup that produces a
<a href="lex_p.htm#pufferfish">pufferfish</a> and nothing else.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOOO..OO.OOO.O...O.OOO.OO..OOOO$.O.O.OO.O.............O.OO.O.O.$..OOO..O.O.O.......O.O.O..OOO..$O.OO.OOO.O..O.....O..O.OOO.OO.O$.OOOO.O...OO.OOOOO.OO...O.OOOO.$.....OO...OO.O.O.O.OO...OO.....$..OOO...OO...O...O...OO...OOO..$O..O..O.OO...OO.OO...OO.O..O..O$OO.O..O...O.........O...O..O.OO$O.O.O...OOOO..OOO..OOOO...O.O.O$O.OOO.OO..OO...O...OO..OO.OOO.O$..O.....OO...O...O...OO.....O..$OOOOO.O.OOO..O...O..OOO.O.OOOOO$.O....O....O..OOO..O....O....O.$.OO.O...OOOOOOOOOOOOOOO...O.OO.$OOOO.OOO......O.O......OOO.OOOO$"
>OOOO..OO.OOO.O...O.OOO.OO..OOOO
.O.O.OO.O.............O.OO.O.O.
..OOO..O.O.O.......O.O.O..OOO..
O.OO.OOO.O..O.....O..O.OOO.OO.O
.OOOO.O...OO.OOOOO.OO...O.OOOO.
.....OO...OO.O.O.O.OO...OO.....
..OOO...OO...O...O...OO...OOO..
O..O..O.OO...OO.OO...OO.O..O..O
OO.O..O...O.........O...O..O.OO
O.O.O...OOOO..OOO..OOOO...O.O.O
O.OOO.OO..OO...O...OO..OO.OOO.O
..O.....OO...O...O...OO.....O..
OOOOO.O.OOO..O...O..OOO.O.OOOOO
.O....O....O..OOO..O....O....O.
.OO.O...OOOOOOOOOOOOOOO...O.OO.
OOOO.OOO......O.O......OOO.OOOO
</a></pre></td></tr></table></center>
<p><a name=spacedust>:</a><b>space dust</b> A part of a <a href="#spaceship">spaceship</a> or <a href="lex_o.htm#oscillator">oscillator</a> which looks like a
random mix of ON and OFF cells. It is usually very difficult to find
a <a href="lex_g.htm#glidersynthesis">glider synthesis</a> for an object that consists wholly or partly of
space dust. As examples, the <a href="lex_1.htm#a-295p5h1v1">295P5H1V1</a>, <a href="lex_f.htm#fly">fly</a>, and <a href="#seal">seal</a>
spaceships contain large amounts of space dust.
<p><a name=spacefiller>:</a><b>spacefiller</b> Any pattern that grows at a quadratic rate by filling
space with an <a href="lex_a.htm#agar">agar</a>. The first example was found in September 1993
by Hartmut Holzwart, following a suggestion by Alan Hensel. The
diagram below shows a smaller spacefiller found by Tim Coe. See also
<a href="lex_m.htm#max">Max</a>. Spacefillers can be considered as <a href="lex_b.htm#breeder">breeders</a> (more precisely,
MMS breeders), but they are very different from ordinary breeders.
The word "spacefiller" was suggested by Harold McIntosh and soon
became the accepted term.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..................O........$.................OOO.......$............OOO....OO......$...........O..OOO..O.OO....$..........O...O.O..O.O.....$..........O....O.O.O.O.OO..$............O....O.O...OO..$OOOO.....O.O....O...O.OOO..$O...OO.O.OOO.OO.........OO.$O.....OO.....O.............$.O..OO.O..O..O.OO..........$.......O.O.O.O.O.O.....OOOO$.O..OO.O..O..O..OO.O.OO...O$O.....OO...O.O.O...OO.....O$O...OO.O.OO..O..O..O.OO..O.$OOOO.....O.O.O.O.O.O.......$..........OO.O..O..O.OO..O.$.............O.....OO.....O$.OO.........OO.OOO.O.OO...O$..OOO.O...O....O.O.....OOOO$..OO...O.O....O............$..OO.O.O.O.O....O..........$.....O.O..O.O...O..........$....OO.O..OOO..O...........$......OO....OOO............$.......OOO.................$........O..................$"
>..................O........
.................OOO.......
............OOO....OO......
...........O..OOO..O.OO....
..........O...O.O..O.O.....
..........O....O.O.O.O.OO..
............O....O.O...OO..
OOOO.....O.O....O...O.OOO..
O...OO.O.OOO.OO.........OO.
O.....OO.....O.............
.O..OO.O..O..O.OO..........
.......O.O.O.O.O.O.....OOOO
.O..OO.O..O..O..OO.O.OO...O
O.....OO...O.O.O...OO.....O
O...OO.O.OO..O..O..O.OO..O.
OOOO.....O.O.O.O.O.O.......
..........OO.O..O..O.OO..O.
.............O.....OO.....O
.OO.........OO.OOO.O.OO...O
..OOO.O...O....O.O.....OOOO
..OO...O.O....O............
..OO.O.O.O.O....O..........
.....O.O..O.O...O..........
....OO.O..OOO..O...........
......OO....OOO............
.......OOO.................
........O..................
</a></pre></td></tr></table></center>
<p><a name=spacenonfiller>:</a><b>space nonfiller</b> Any pattern that expands indefinitely to affect every
cell in the Life plane, but leaves an expanding region of <a href="lex_v.htm#vacuum">vacuum</a> at
its center. Compare <a href="#spacefiller">spacefiller</a>; see also <a href="lex_a.htm#antstretcher">antstretcher</a>. The
first nonfiller was discovered by Jason Summers on 14 April 1999:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...................OOO...............$..................O..O...............$............OOO......O....OOO........$............O..O.O...O....O..O.......$............O..O.O...O....O..O.......$..........O..........O..O.O.OOO......$..........OO..OO..O.O....O.....O.....$........O................OO..OOO.....$........OOO.O.OO..........O......O...$......O........O.........O.O...OOO...$......OOO.....O..........O........O..$...O.O.........................O.OOO.$..OOOOO.O..........................O.$.OO......O.....................OOOOO.$OO....OO..................O.O........$.O.O...O..O...............O..O...O.O.$........O.O..................OO....OO$.OOOOO.....................O......OO.$.O..........................O.OOOOO..$.OOO.O.........................O.O...$..O........O..........O.....OOO......$...OOO...O.O.........O........O......$...O......O..........OO.O.OOO........$.....OOO..OO................O........$.....O.....O....O.O..OO..OO..........$......OOO.O.O..O..........O..........$.......O..O....O...O.O..O............$.......O..O....O...O.O..O............$........OOO....O......OOO............$...............O..O..................$...............OOO...................$"
>...................OOO...............
..................O..O...............
............OOO......O....OOO........
............O..O.O...O....O..O.......
............O..O.O...O....O..O.......
..........O..........O..O.O.OOO......
..........OO..OO..O.O....O.....O.....
........O................OO..OOO.....
........OOO.O.OO..........O......O...
......O........O.........O.O...OOO...
......OOO.....O..........O........O..
...O.O.........................O.OOO.
..OOOOO.O..........................O.
.OO......O.....................OOOOO.
OO....OO..................O.O........
.O.O...O..O...............O..O...O.O.
........O.O..................OO....OO
.OOOOO.....................O......OO.
.O..........................O.OOOOO..
.OOO.O.........................O.O...
..O........O..........O.....OOO......
...OOO...O.O.........O........O......
...O......O..........OO.O.OOO........
.....OOO..OO................O........
.....O.....O....O.O..OO..OO..........
......OOO.O.O..O..........O..........
.......O..O....O...O.O..O............
.......O..O....O...O.O..O............
........OOO....O......OOO............
...............O..O..................
...............OOO...................
</a></pre></td></tr></table></center>
<p><a name=spacerake>:</a><b>space rake</b> The following p20 forwards glider <a href="lex_r.htm#rake">rake</a>, which was the
first known rake. It consists of an <a href="lex_e.htm#ecologist">ecologist</a> with a <a href="lex_l.htm#lwss">LWSS</a> added
to turn the dying debris into <a href="lex_g.htm#glider">gliders</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO.....OOOO$.........OO.OO...O...O$.........OOOO........O$..........OO.....O..O.$......................$........O.............$.......OO........OO...$......O.........O..O..$.......OOOOO....O..O..$........OOOO...OO.OO..$...........O....OO....$......................$......................$......................$..................OOOO$O..O.............O...O$....O................O$O...O............O..O.$.OOOO.................$"
>...........OO.....OOOO
.........OO.OO...O...O
.........OOOO........O
..........OO.....O..O.
......................
........O.............
.......OO........OO...
......O.........O..O..
.......OOOOO....O..O..
........OOOO...OO.OO..
...........O....OO....
......................
......................
......................
..................OOOO
O..O.............O...O
....O................O
O...O............O..O.
.OOOO.................
</a></pre></td></tr></table></center>
<p><a name=spaceship>:</a><b>spaceship</b> Any finite pattern that reappears (without additions or
losses) after a number of generations and displaced by a non-zero
amount. By far the most <a href="lex_n.htm#natural">natural</a> spaceships are the <a href="lex_g.htm#glider">glider</a>,
<a href="lex_l.htm#lwss">LWSS</a>, <a href="lex_m.htm#mwss">MWSS</a> and <a href="lex_h.htm#hwss">HWSS</a>, followed by the <a href="lex_c.htm#coeship">Coe ship</a> which has also
evolved multiple times from random asymmetric <a href="#soup">soup</a> starting
conditions. See also the entries on individual spaceship speeds:
<a href="lex_c.htm#c2spaceship">c/2 spaceship</a>, <a href="lex_c.htm#c3spaceship">c/3 spaceship</a>, <a href="lex_c.htm#c4spaceship">c/4 spaceship</a>, <a href="lex_c.htm#c5spaceship">c/5 spaceship</a>,
<a href="lex_c.htm#c6spaceship">c/6 spaceship</a>, <a href="lex_c.htm#c7spaceship">c/7 spaceship</a>, <a href="lex_c.htm#c10spaceship">c/10 spaceship</a>, <a href="lex_c.htm#c12spaceship">c/12 spaceship</a>,
<a href="lex_1.htm#a-2c5spaceship">2c/5 spaceship</a>, <a href="lex_1.htm#a-2c7spaceship">2c/7 spaceship</a>, <a href="lex_1.htm#a-3c7spaceship">3c/7 spaceship</a>,
<a href="lex_1.htm#a-21c6spaceship">(2,1)c/6 spaceship</a>, and <a href="lex_1.htm#a-17c45spaceship">17c/45 spaceship</a>.
<p>It is known that there exist spaceships travelling in all rational
directions and at arbitrarily slow speeds (see
<a href="lex_u.htm#universalconstructor">universal constructor</a>). Before 1989, however, the only known
examples travelled at <i>c</i>/4 diagonally (gliders) or <i>c</i>/2 orthogonally
(everything else).
<p>In 1989 Dean Hickerson started to use automated searches to look
for new <a href="lex_e.htm#elementary">elementary</a> spaceships, and had considerable success. Other
people have continued these searches using tools such as <a href="lex_l.htm#lifesrc">lifesrc</a>
and <a href="lex_g.htm#gfind">gfind</a>, and as a result we now have a great variety of
elementary spaceships travelling at sixteen different velocities.
The following table details the discovery of elementary spaceships
with new velocities as of July 2018.
<pre>
-----------------------------------------------------------------
Speed Direction First Discovery Discoverer Date
-----------------------------------------------------------------
c/4 diagonal <a href="lex_g.htm#glider">glider</a> Richard Guy 1970
c/2 orthogonal <a href="lex_l.htm#lwss">LWSS</a> John Conway 1970
c/3 orthogonal <a href="lex_1.htm#a-25p3h1v01">25P3H1V0.1</a> Dean Hickerson Aug 1989
c/4 orthogonal <a href="lex_1.htm#a-119p4h1v0">119P4H1V0</a> Dean Hickerson Dec 1989
c/12 diagonal <a href="lex_c.htm#cordership">Cordership</a> Dean Hickerson Apr 1991
2c/5 orthogonal <a href="lex_1.htm#a-44p5h2v0">44P5H2V0</a> Dean Hickerson Jul 1991
c/5 orthogonal <a href="lex_s.htm#snail">snail</a> Tim Coe Jan 1996
2c/7 orthogonal <a href="lex_w.htm#weekender">weekender</a> David Eppstein Jan 2000
c/6 orthogonal <a href="lex_d.htm#dragon">dragon</a> Paul Tooke Apr 2000
c/5 diagonal <a href="lex_1.htm#a-295p5h1v1">295P5H1V1</a> Jason Summers Nov 2000
c/6 diagonal <a href="lex_s.htm#seal">seal</a> Nicolay Beluchenko Sep 2005
c/7 diagonal <a href="lex_l.htm#lobster">lobster</a> Matthias Merzenich Aug 2011
c/7 orthogonal <a href="lex_l.htm#loafer">loafer</a> Josh Ball Feb 2013
c/10 orthogonal <a href="lex_c.htm#copperhead">copperhead</a> zdr Mar 2016
3c/7 orthogonal <a href="lex_s.htm#spaghettimonster">spaghetti monster</a> Tim Coe Jun 2016
(2,1)c/7 oblique <a href="lex_s.htm#sirrobin">Sir Robin</a> Adam P. Goucher Mar 2018
-----------------------------------------------------------------
</pre>
<p>Several infinite families of adjustable-velocity <a href="lex_m.htm#macrospaceship">macro-spaceships</a>
have also been constructed, of which the first was Gabriel Nivasch's
<a href="lex_c.htm#caterpillar">Caterpillar</a> from December 2004. The macro-spaceship with the
widest range of possible speeds is Michael Simkin's <a href="lex_c.htm#caterloopillar">Caterloopillar</a>
from April 2016; in theory it supports any rational orthogonal speed
strictly less than <i>c</i><4. A somewhat similar design supporting any
rational speed strictly less than <i>c</i>/2 has been shown to be feasible,
but as of July 2018 no explicit examples have been constructed.
<p>A period <i>p</i> spaceship that displaces itself (<i>m</i>,<i>n</i>) during its period,
where <i>m</i>>=<i>n</i>, is said to be of type (<i>m</i>,<i>n</i>)/<i>p</i>. It was proved by Conway
in 1970 that <i>p</i>>=2<i>m</i>+2<i>n</i>. (This follows immediately from the
easily-proved fact that a pattern cannot advance diagonally at a rate
greater than one half diagonal step every other generation.)
<p><a name=spaceshipsinconwayslife>:</a><b>Spaceships in Conway's Life</b> A series of articles posted by David Bell
to the newsgroup comp.theory.cell-automata during the period
August-October 1992 that described many of the new <a href="#spaceship">spaceships</a> found
by himself, Dean Hickerson and Hartmut Holzwart. Bell produced an
addendum covering more recent developments in 1996.
<p><a name=spaghettimonster>:</a><b>spaghetti monster</b> The first <a href="lex_1.htm#a-3c7spaceship">3c/7 spaceship</a>, found by Tim Coe in
June 2016. The spaceship travels orthogonally, has a minimum of 702
live cells and fits in a 27x137 bounding box.
<p><a name=spark>:</a><b>spark</b> A pattern that dies. The term is typically used to describe a
collection of cells periodically thrown off by an <a href="lex_o.htm#oscillator">oscillator</a> or
<a href="#spaceship">spaceship</a>, but other dying patterns, particularly those consisting
or only one or two cells (such as produced by certain glider
collisions, for example), are also described as sparks. For examples
of small sparks see <a href="lex_u.htm#unix">unix</a> and <a href="lex_h.htm#hwss">HWSS</a>. Examples of much larger
sparks are seen in <a href="#schickengine">Schick engine</a> and <a href="lex_t.htm#twinbeesshuttlespark">twin bees shuttle spark</a>.
<p><a name=sparkcoil>:</a><b>spark coil</b> (p2) Found in 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....OO$O.O..O.O$..O..O..$O.O..O.O$OO....OO$"
>OO....OO
O.O..O.O
..O..O..
O.O..O.O
OO....OO
</a></pre></td></tr></table></center>
<p><a name=sparker>:</a><b>sparker</b> An <a href="lex_o.htm#oscillator">oscillator</a> or <a href="#spaceship">spaceship</a> that produces <a href="#spark">sparks</a>. These
can be used to <a href="lex_p.htm#perturb">perturb</a> other patterns without being themselves
affected.
<p><a name=sparkingeater>:</a><b>sparking eater</b> One of two <a href="lex_e.htm#eater">eaters</a> found in April 1997 and November
1998 by Dean Hickerson using his <a href="lex_d.htm#dr">dr</a> <a href="#searchprogram">search program</a>, shown below
to the left and right respectively. These both absorb <a href="lex_g.htm#glider">gliders</a> as a
standard eater does, but also produce separated single-bit <a href="#spark">sparks</a>
at the upper right, which can be used to delete antiparallel gliders
with different phases as shown.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O.........OO........O..........OO.$O.O........OO.......O.O..........O.O$.OO..........O.......OO..........O..$....OO..OO...............OO..OO.....$.O...O..OO............O...O..OO.....$.OOOO.............OO..OOOO..........$..................O.................$.OO................OOOOO............$.OO.....................O...........$.....................OOO............$.....................O..............$"
>..O.........OO........O..........OO.
O.O........OO.......O.O..........O.O
.OO..........O.......OO..........O..
....OO..OO...............OO..OO.....
.O...O..OO............O...O..OO.....
.OOOO.............OO..OOOO..........
..................O.................
.OO................OOOOO............
.OO.....................O...........
.....................OOO............
.....................O..............
</a></pre></td></tr></table></center>
The above mechanisms can be used to build <a href="lex_i.htm#intermittingglidergun">intermitting glider guns</a>.
The left-hand eater produces a spark nine ticks after a glider
impact, with the result that the period of the constituent guns can't
be a multiple of 4. The right-hand eater produces the same spark ten
ticks after impact, which allows p4<i>N</i> guns to be used.
<p>The separation of the spark also allows this reaction to perform
other <a href="lex_p.htm#perturbation">perturbations</a> "around the corner" of some objects. For
example, it was used by Jason Summers in 2004 to cap the ends of a
row of ten <a href="lex_a.htm#ak47reaction">AK47 reactions</a> to form a much smaller period 94 glider
gun than the original one. (This is now made obsolete by the
<a href="lex_a.htm#ak94gun">AK94 gun</a>.)
<p><a name=sparky>:</a><b>sparky</b> A certain <i>c</i>/4 <a href="lex_t.htm#tagalong">tagalong</a>, shown here attached to the back of a
<a href="#spaceship">spaceship</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........O....................$..........O...............OO...$......OO.O.OOO..........OO...O.$O.OO.OO.OO..O.O...OO.OOOO......$O...OO..O.OO..OOO..O.OO..OO...O$O.OO....OOO.O.OOO......OO..O...$........OO.O...............O..O$O.OO....OOO.O.OOO......OO..O...$O...OO..O.OO..OOO..O.OO..OO...O$O.OO.OO.OO..O.O...OO.OOOO......$......OO.O.OOO..........OO...O.$..........O...............OO...$..........O....................$"
>..........O....................
..........O...............OO...
......OO.O.OOO..........OO...O.
O.OO.OO.OO..O.O...OO.OOOO......
O...OO..O.OO..OOO..O.OO..OO...O
O.OO....OOO.O.OOO......OO..O...
........OO.O...............O..O
O.OO....OOO.O.OOO......OO..O...
O...OO..O.OO..OOO..O.OO..OO...O
O.OO.OO.OO..O.O...OO.OOOO......
......OO.O.OOO..........OO...O.
..........O...............OO...
..........O....................
</a></pre></td></tr></table></center>
<p><a name=sparselife>:</a><b>sparse Life</b> This refers to the study of the evolution of a Life
universe which starts off as a random <a href="#soup">soup</a> of extremely low
density. Such a universe is dominated at an early stage by <a href="lex_b.htm#block">blocks</a>
and <a href="lex_b.htm#blinker">blinkers</a> (often referred to collectively as <a href="lex_b.htm#blonk">blonks</a>) in a
ratio of about 2:1. Much later it will be dominated by simple
<a href="lex_i.htm#infinitegrowth">infinite growth</a> patterns (presumably mostly <a href="#switchengine">switch engines</a>). The
long-term fate of a sparse Life universe is less certain. It may
possibly become dominated by self-reproducing patterns (see
<a href="lex_u.htm#universalconstructor">universal constructor</a>), but it is not at all clear that there is
any mechanism for these to deal with all the junk produced by switch
engines.
<p><a name=spartan>:</a><b>Spartan</b> A pattern composed of subunits that can be easily constructed
in any orientation, usually with a <a href="#slowsalvo">slow salvo</a>. Generally this means
that the pattern is a <a href="lex_c.htm#constellation">constellation</a> of Spartan still lifes:
<a href="lex_b.htm#block">block</a>, <a href="lex_t.htm#tub">tub</a>, <a href="lex_b.htm#boat">boat</a>, <a href="lex_h.htm#hive">hive</a>, <a href="#ship">ship</a>, <a href="lex_l.htm#loaf">loaf</a>, <a href="lex_e.htm#eater1">eater1</a>, or <a href="lex_p.htm#pond">pond</a>.
Other small objects may sometimes be counted as Spartan, including
period-2 oscillators - mainly <a href="lex_b.htm#blinker">blinkers</a>, but also <a href="lex_b.htm#beacon">beacons</a> or
<a href="lex_t.htm#toad">toads</a>, which may occur as <a href="lex_i.htm#intermediatetarget">intermediate targets</a> in slow salvo
<a href="lex_r.htm#recipe">recipes</a>. Most <a href="#selfconstructing">self-constructing</a> patterns are Spartan or mostly
Spartan, to simplify the process of self-construction.
<p><a name=speedbooster>:</a><b>speed booster</b> Any mechanism which allows a <a href="#signal">signal</a> (indicated by the
presence or absence of a spaceship) to move faster than the spaceship
could travel through empty space. The original speed booster is
based on p30 <a href="lex_t.htm#technology">technology</a>, and is shown below:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................O........................$.....................O.......................$...................OOO.......................$.............................................$...........................O.O...............$.........................O...O...............$.................O.......O...................$................OOOO....O....O........OO.....$...............OO.O.O....O............OO.....$....OO........OOO.O..O...O...O...............$....OO.........OO.O.O......O.O...............$................OOOO.........................$.................O...........................$..........................OOO................$..........................O.O...OO...........$.........................OO.....O..O.........$..................O.O.....O.........O......OO$................O...O..OO...........O......OO$.........OO.....O..........O........O........$.O.......OO....O....O.......OO..O..O.........$..O.............O.......O.O..O..OO...........$OOO.............O...O.....OOO................$..................O.O........................$"
>....................O........................
.....................O.......................
...................OOO.......................
.............................................
...........................O.O...............
.........................O...O...............
.................O.......O...................
................OOOO....O....O........OO.....
...............OO.O.O....O............OO.....
....OO........OOO.O..O...O...O...............
....OO.........OO.O.O......O.O...............
................OOOO.........................
.................O...........................
..........................OOO................
..........................O.O...OO...........
.........................OO.....O..O.........
..................O.O.....O.........O......OO
................O...O..OO...........O......OO
.........OO.....O..........O........O........
.O.......OO....O....O.......OO..O..O.........
..O.............O.......O.O..O..OO...........
OOO.............O...O.....OOO................
..................O.O........................
</a></pre></td></tr></table></center>
Here the top glider is boosted by passing through two
<a href="lex_i.htm#inlineinverter">inline inverters</a>, emerging 5 cells further along than the unboosted
glider at the left.
<p>The fastest speed boosters are the <a href="lex_t.htm#telegraph">telegraph</a> and <a href="lex_p.htm#p1telegraph">p1 telegraph</a>,
which can transfer a orthogonal signal at the <a href="#speedoflight">speed of light</a>,
although their bit rate is rather slow.
<p>Diagonal speed boosters have also been built using <a href="lex_1.htm#a-2c3wire">2c/3 wires</a> or
other stable components. See <a href="#stablepseudoheisenburp">stable pseudo-Heisenburp</a>.
<p>The <a href="#stargate">star gate</a> seems like it can transfer a signal faster than the
<a href="#speedoflight">speed of light</a>. The illusion is explained in
<a href="lex_f.htm#fastforwardforcefield">Fast Forward Force Field</a>.
<p><a name=speedoflight>:</a><b>speed of light</b> The greatest speed at which any effect can propagate;
in <a href="lex_l.htm#life">Life</a>, a speed of one cell per <a href="lex_g.htm#generation">generation</a>. Usually denoted <i>c</i>.
<p><a name=spentomino>:</a><b>S-pentomino</b> Conway's name for the following <a href="lex_p.htm#pentomino">pentomino</a>, which
rapidly dies.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO$OOO.$"
>..OO
OOO.
</a></pre></td></tr></table></center>
<p><a name=spider>:</a><b>spider</b> (<i>c</i>/5 orthogonally, p5) This is the smallest known <i>c</i>/5
<a href="#spaceship">spaceship</a>, and was found by David Bell in April 1997. Its side
<a href="#spark">sparks</a> have proved very useful in constructing <i>c</i>/5 <a href="lex_p.htm#puffer">puffers</a>,
including <a href="lex_r.htm#rake">rakes</a>. See also <a href="lex_p.htm#pps">PPS</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......O...OOO.....OOO...O......$...OO.OOOOO.OO...OO.OOOOO.OO...$.O.OO.O.....O.O.O.O.....O.OO.O.$O...O.O...OOOOO.OOOOO...O.O...O$....OOO.....OO...OO.....OOO....$.O..O.OOO.............OOO.O..O.$...O.......................O...$"
>......O...OOO.....OOO...O......
...OO.OOOOO.OO...OO.OOOOO.OO...
.O.OO.O.....O.O.O.O.....O.OO.O.
O...O.O...OOOOO.OOOOO...O.O...O
....OOO.....OO...OO.....OOO....
.O..O.OOO.............OOO.O..O.
...O.......................O...
</a></pre></td></tr></table></center>
<p><a name=spiral>:</a><b>spiral</b> (p1) Found by Robert Wainwright in 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....O$.O..OOO$.O.O...$..O.O..$...O.O.$OOO..O.$O....OO$"
>OO....O
.O..OOO
.O.O...
..O.O..
...O.O.
OOO..O.
O....OO
</a></pre></td></tr></table></center>
<p><a name=spiralgrowth>:</a><b>spiral growth</b> A <a href="#selfconstructing">self-constructing</a> pattern built by Dave Greene in
August 2014 that uses four <a href="lex_u.htm#universalconstructor">universal constructors</a> (UCs) arranged in
a diamond to build four more UCs in a slightly larger diamond. This
was the first B3/S23 pattern that exhibited spiral growth. Much
smaller versions have now been constructed using the <a href="#singlechannel">single-channel</a>
construction toolkit.
<p><a name=splitter>:</a><b>splitter</b> A <a href="#signal">signal</a> <a href="lex_c.htm#converter">converter</a> that accepts a single input signal
and produces two or more output signals, usually of the same type as
the input. An older term for this is <a href="lex_f.htm#fanout">fanout</a>, or "fanout device".
<p>A sub-category is the <a href="lex_o.htm#onetime">one-time</a> splitter, which is not technically
a converter because it can only be used once. One-time splitters are
usually small <a href="lex_c.htm#constellation">constellations</a> that produce two or more <a href="lex_c.htm#clean">clean</a>
gliders when struck by a single glider. In other words, they are
multi-glider <a href="#seed">seeds</a>. These are important for constructing
self-destruct circuitry in <a href="#selfconstructing">self-constructing</a> spaceships.
<p>The following combination, a <a href="#syringe">syringe</a> attached to an SE7T14
<a href="lex_c.htm#converter">converter</a> combined with an <a href="lex_n.htm#nw31">NW31</a> converter, is one of the smallest
known glider splitters as of July 2018. Another small splitter with
a 90-degree <a href="lex_c.htm#colourchanging">colour-changing</a> output is shown under <a href="lex_r.htm#reflector">reflector</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..........OO...........O......OO....................$..........OO..........O.O....O..O...................$......................O.O...O.OOO...O...............$.....................OO.OO.O.O......OOO.............$.........................O.O...OO......O............$.....................OO.O..OOOO.O.....OO............$.....................OO.O.O...O.....................$.........................O.O...O....................$..........................O.O...O...................$...........................O...OO...................$....................................................$....................................................$....................................................$..................OO................................$..................OO................................$...OO...............................................$..O..O..............................................$.O.OO...............................................$.O................................................OO$OO................................................OO$...............OO...................................$...............O....................................$................OOO.................................$..................O..........OO.....................$............................O.O.....................$............................O.......................$...........................OO.......................$OOO.................................................$..O.................................................$.O..................................................$"
>..........OO...........O......OO....................
..........OO..........O.O....O..O...................
......................O.O...O.OOO...O...............
.....................OO.OO.O.O......OOO.............
.........................O.O...OO......O............
.....................OO.O..OOOO.O.....OO............
.....................OO.O.O...O.....................
.........................O.O...O....................
..........................O.O...O...................
...........................O...OO...................
....................................................
....................................................
....................................................
..................OO................................
..................OO................................
...OO...............................................
..O..O..............................................
.O.OO...............................................
.O................................................OO
OO................................................OO
...............OO...................................
...............O....................................
................OOO.................................
..................O..........OO.....................
............................O.O.....................
............................O.......................
...........................OO.......................
OOO.................................................
..O.................................................
.O..................................................
</a></pre></td></tr></table></center>
<p><a name=spps>:</a><b>SPPS</b> (<i>c</i>/5 orthogonally, p30) The symmetric <a href="lex_p.htm#pps">PPS</a>. The original PPS
found by David Bell in May 1998. Compare <a href="lex_a.htm#apps">APPS</a>.
<p><a name=sqrtgun>:</a><b>sqrtgun</b> Any glider-emitting pattern which emits its nth glider at a
time asymptotically proportional to <i>n</i><sup>2</sup>. The first examples were
constructed by Dean Hickerson around 1991. See also
<a href="lex_q.htm#quadraticfilter">quadratic filter</a>, <a href="lex_e.htm#exponentialfilter">exponential filter</a>, <a href="lex_r.htm#recursivefilter">recursive filter</a>.
<p><a name=squaredance>:</a><b>squaredance</b> The p2 <a href="lex_a.htm#agar">agar</a> formed by tiling the plane with the
following pattern. Found by Don Woods in 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO......$....OO..$..O....O$..O....O$....OO..$OO......$...O..O.$...O..O.$"
>OO......
....OO..
..O....O
..O....O
....OO..
OO......
...O..O.
...O..O.
</a></pre></td></tr></table></center>
<p><a name=squirter>:</a><b>squirter</b> = <a href="lex_p.htm#pipsquirter">pipsquirter</a>
<p><a name=sspiral>:</a><b>S-spiral</b> = <a href="lex_b.htm#bigs">big S</a>
<p><a name=stabilizedswitchengine>:</a><b>stabilized switch engine</b> A single <a href="#switchengine">switch engine</a> which survives
indefinitely by interacting with the appropriate <a href="lex_e.htm#exhaust">exhaust</a> such that
it prevents the engine from ever being destroyed.
<p>The only known types of stabilized switch engines were found by
Charles Corderman soon after he discovered the switch engine itself.
There is a p288 block-laying type (the more common of the two) and
the p384 glider-producing type. These two puffers are the most
<a href="lex_n.htm#natural">natural</a> infinite growth patterns in Life. As of June 2018 they are
the basis for every infinite growth pattern ever seen to occur from a
random asymmetric <a href="#soup">soup</a>, even after trillions of <a href="lex_c.htm#census">census</a> results by
<a href="lex_a.htm#apgsearch">apgsearch</a> and similar projects.
<p>Patterns giving rise to block-laying switch engines can be seen
under <a href="lex_i.htm#infinitegrowth">infinite growth</a>, and one giving rise to a glider-producing
switch engine is shown under <a href="lex_t.htm#timebomb">time bomb</a>.
<p>Here is the block-laying type showing its distinctive zig-zag trail
of blocks.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O.........................................................$.O.O........................................................$............................................................$.O..O.......................................................$...OO.......................................................$....O.......................................................$..................OO........................................$..................OO........................................$............................................................$............................................................$.OO.........................................................$...O........................................................$..OO........................................................$.OOO...............O........................................$.OO................OO.....OO................................$OOO.O..............OO.....OO................................$.O...O..........OO..........................................$...O..O..........O..........................................$...OOO............O.........................................$....OO........OO............................................$..............OO............................................$............................................................$..................................OO........................$..................................OO........................$............................................................$............................................................$......OO....................................................$......OO................OO..................................$........................OO..................................$............................................................$..........................................OO................$....................OO....................OO................$....................OO......................................$............................................................$..............OO............................................$..............OO............................................$.......................................OO...................$.......................................OO...................$............................................................$............................................................$...................................OO.......................$...................................OO.......................$............................................................$............................................................$............................................................$............................................................$..........................................................OO$..........................................................OO$............................................................$............................................................$..............................OO............................$..............................OO................OO..........$................................................OO..........$............................................................$............................................................$............................................OO..............$............................................OO..............$............................................................$......................................OO....................$......................................OO....................$"
>..O.........................................................
.O.O........................................................
............................................................
.O..O.......................................................
...OO.......................................................
....O.......................................................
..................OO........................................
..................OO........................................
............................................................
............................................................
.OO.........................................................
...O........................................................
..OO........................................................
.OOO...............O........................................
.OO................OO.....OO................................
OOO.O..............OO.....OO................................
.O...O..........OO..........................................
...O..O..........O..........................................
...OOO............O.........................................
....OO........OO............................................
..............OO............................................
............................................................
..................................OO........................
..................................OO........................
............................................................
............................................................
......OO....................................................
......OO................OO..................................
........................OO..................................
............................................................
..........................................OO................
....................OO....................OO................
....................OO......................................
............................................................
..............OO............................................
..............OO............................................
.......................................OO...................
.......................................OO...................
............................................................
............................................................
...................................OO.......................
...................................OO.......................
............................................................
............................................................
............................................................
............................................................
..........................................................OO
..........................................................OO
............................................................
............................................................
..............................OO............................
..............................OO................OO..........
................................................OO..........
............................................................
............................................................
............................................OO..............
............................................OO..............
............................................................
......................................OO....................
......................................OO....................
</a></pre></td></tr></table></center>
<p><a name=stable>:</a><b>stable</b> A pattern is said to be stable if it is a <a href="lex_p.htm#parent">parent</a> of itself.
Stable objects are oscillators with period 1 (p1), and are generally
called <a href="#stilllife">still lifes</a>.
<p><a name=stablepseudoheisenburp>:</a><b>stable pseudo-Heisenburp</b> A multi-stage <a href="lex_c.htm#converter">converter</a> constructed by
Dave Greene in January 2007, using a complex recipe found by Noam
Elkies to insert a signal into a <a href="lex_1.htm#a-2c3wire">2c/3 wire</a>. The wire's high
transmission speed allows a <a href="#signal">signal</a> from a <a href="lex_h.htm#highwayrobber">highway robber</a> to catch
up to a <a href="#salvo">salvo</a> of <a href="lex_g.htm#glider">gliders</a>. Ultimately the mechanism restores the
key glider, which was destroyed by the highway robber in the first
stage of the converter, to its exact original position in the salvo.
<p>Much smaller stable pseudo-Heisenburp devices have since been
designed that use simple 0-degree glider <a href="#seed">seed</a> <a href="lex_c.htm#constellation">constellations</a>
instead of a 2<i>c</i>/3 wire.
<p>These patterns are labeled "pseudo-Heisenburp", because a true
<a href="lex_h.htm#heisenburpdevice">Heisenburp device</a> does not even temporarily damage or affect a
passing glider, yet can still produce an output <a href="#signal">signal</a> in response.
However, it is impossible to construct a <a href="#stable">stable</a> device that can
accomplish this for gliders. True stable Heisenburp devices are
possible with many other types of <a href="#spaceship">spaceships</a>, but not with gliders
which have no usable side <a href="#spark">sparks</a> to initiate an output signal.
<p><a name=stagedrecovery>:</a><b>staged recovery</b> A type of signal-processing <a href="lex_c.htm#circuit">circuit</a> where the
initial reaction between <a href="lex_c.htm#catalyst">catalysts</a> an incoming signal results in an
imperfect recovery. A catalyst is damaged, destroyed completely as
in a <a href="lex_b.htm#bait">bait</a> reaction, or one or more objects are left behind that
must be cleaned up before the circuit can be reused. In any of these
three cases, output signals from the circuit must be used to complete
the cleanup. In theory the cleanup process might itself be <a href="lex_d.htm#dirty">dirty</a>,
requiring additional cleanup stages. In rare cases this might
theoretically allow the construction of special-purpose circuits with
a lower <a href="lex_r.htm#recoverytime">recovery time</a> than would otherwise be possible, but in
practice this kind of situation does not commonly arise.
<p>An example is the record-breaking (at the time) 487-tick reflector
constructed by Adam P. Goucher on 12 April 2009. 487 ticks was a
slight improvement over the repeat time of the <a href="#silverreflector">Silver reflector</a>.
The reflector featured a standard <a href="lex_c.htm#callahangtoh">Callahan G-to-H</a>, with cleanup by
an internal <a href="lex_d.htm#dirty">dirty</a> glider reflector found by Dieter Leithner many
years before. This in turn was cleaned up by the usual ungainly
Herschel plumbing attached to the G-to-H's output. The dirty glider
reflector is not actually fully recovered before a second p487 signal
enters the full reflector. However, it has been repaired by the time
the internal reflector is actually needed again, so the cycle can be
successfully repeated at p487 instead of p497.
<p><a name=stairstephexomino>:</a><b>stairstep hexomino</b> (stabilizes at time 63) The following
<a href="lex_p.htm#predecessor">predecessor</a> of the <a href="lex_b.htm#blockade">blockade</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO$.OO.$OO..$"
>..OO
.OO.
OO..
</a></pre></td></tr></table></center>
<p><a name=stampcollection>:</a><b>stamp collection</b> A collection of <a href="lex_o.htm#oscillator">oscillators</a> (or perhaps other Life
objects) in a single diagram, displaying the exhibits much like
stamps in a stamp album. The classic examples are by Dean Hickerson
(see <a href="http://conwaylife.com/ref/DRH/stamps.html">http://conwaylife.com/ref/DRH/stamps.html</a>).
<p>Many stamp collections contain "fonts" made of single cells (which
cleanly die) to annotate the objects or to draw boxes around them.
For example, here is a stamp collection which shows all the ways that
two gliders can create a <a href="lex_l.htm#loaf">loaf</a> or an <a href="lex_e.htm#eater">eater</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O......O.O.....O....O.O.O...................O.$............................................O..$.O.....O...O...O.O...O......................OOO$...............................................$.O.....O...O..O...O..O.O.O.....................$...............................................$.O.....O...O..O.O.O..O.........................$........................................OO.....$.O.O.O..O.O...O...O..O.................O.O.....$.........................................O.....$...............................................$...............................................$.............................................O.$............................................O..$O.O.O....O....O.O.O..O.O.O..O.O.............OOO$................................O..............$O.......O.O.....O....O......O..................$................................O..............$O.O.O..O...O....O....O.O.O..O.O................$...............................................$O......O.O.O....O....O......O..O...........O...$..........................................OO...$O.O.O..O...O....O....O.O.O..O...O.........O.O..$"
>.O......O.O.....O....O.O.O...................O.
............................................O..
.O.....O...O...O.O...O......................OOO
...............................................
.O.....O...O..O...O..O.O.O.....................
...............................................
.O.....O...O..O.O.O..O.........................
........................................OO.....
.O.O.O..O.O...O...O..O.................O.O.....
.........................................O.....
...............................................
...............................................
.............................................O.
............................................O..
O.O.O....O....O.O.O..O.O.O..O.O.............OOO
................................O..............
O.......O.O.....O....O......O..................
................................O..............
O.O.O..O...O....O....O.O.O..O.O................
...............................................
O......O.O.O....O....O......O..O...........O...
..........................................OO...
O.O.O..O...O....O....O.O.O..O...O.........O.O..
</a></pre></td></tr></table></center>
<p>Alternatively, stamp collections can use <a href="lex_l.htm#lifehistory">LifeHistory</a> for their
annotations, but this requires a more sophisticated Life program to
handle. Numbers, or more rarely letters, are sometimes constructed
from stable components such as <a href="lex_b.htm#block">blocks</a> or <a href="#snake">snakes</a>, but their
readability is somewhat limited by placement constraints.
<p><a name=standardspaceship>:</a><b>standard spaceship</b> A <a href="lex_g.htm#glider">glider</a>, <a href="lex_l.htm#lwss">LWSS</a>, <a href="lex_m.htm#mwss">MWSS</a> or <a href="lex_h.htm#hwss">HWSS</a>. These have
all been known since 1970.
<p><a name=star>:</a><b>star</b> (p3) Found by Hartmut Holzwart, February 1993.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$....OOO....$..OOO.OOO..$..O.....O..$.OO.....OO.$OO.......OO$.OO.....OO.$..O.....O..$..OOO.OOO..$....OOO....$.....O.....$"
>.....O.....
....OOO....
..OOO.OOO..
..O.....O..
.OO.....OO.
OO.......OO
.OO.....OO.
..O.....O..
..OOO.OOO..
....OOO....
.....O.....
</a></pre></td></tr></table></center>
<p><a name=stargate>:</a><b>star gate</b> A device by Dieter Leithner (October 1996) for transporting
a <a href="lex_l.htm#lwss">LWSS</a> faster than the <a href="#speedoflight">speed of light</a>. The key reaction is the
<a href="lex_f.htm#fastforwardforcefield">Fast Forward Force Field</a>.
<p><a name=stator>:</a><b>stator</b> The cells of an <a href="lex_o.htm#oscillator">oscillator</a> that are always on. Compare
<a href="lex_r.htm#rotor">rotor</a>. (The stator is sometimes taken to include also some of
those cells which are always off.) The stator is divided into the
<a href="lex_b.htm#bushing">bushing</a> and the <a href="lex_c.htm#casing">casing</a>.
<p>By analogy, the cells of an <a href="lex_e.htm#eater">eater</a> that remain on even when the
eater is eating are considered to constitute the stator of the eater.
This is not always well-defined, because an eater can have more than
one eating action.
<p><a name=statorless>:</a><b>statorless</b> A statorless <a href="lex_o.htm#oscillator">oscillator</a> is one in which no cell is
permanently on - that is, the <a href="#stator">stator</a> is empty, or in other words
the oscillator has the maximum possible volatility. See the
<a href="lex_v.htm#volatility">volatility</a> entry for examples of this type of oscillator at
different periods. Statorless oscillators can be constructed for any
sufficiently large period, using <a href="lex_u.htm#universalconstructor">universal constructor</a> technology.
<p><a name=statorlessp5>:</a><b>statorless p5</b> (p5) Found by Josh Ball, June 2016. The first and only
known <a href="#statorless">statorless</a> <a href="lex_p.htm#period">period</a> 5 <a href="lex_o.htm#oscillator">oscillator</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.............O$.OO.........OO.$O....OO.OO....O$OO.O.......O.OO$.O.O..O.O..O.O.$..O.O.....O.O..$..OOO.....OOO..$..OOO.....OOO..$..O.O.....O.O..$.O.O..O.O..O.O.$OO.O.......O.OO$O....OO.OO....O$.OO.........OO.$O.............O$"
>O.............O
.OO.........OO.
O....OO.OO....O
OO.O.......O.OO
.O.O..O.O..O.O.
..O.O.....O.O..
..OOO.....OOO..
..OOO.....OOO..
..O.O.....O.O..
.O.O..O.O..O.O.
OO.O.......O.OO
O....OO.OO....O
.OO.........OO.
O.............O
</a></pre></td></tr></table></center>
<p><a name=step>:</a><b>step</b> Another term for a <a href="lex_g.htm#generation">generation</a> or <a href="lex_t.htm#tick">tick</a>. This term is
particularly used in describing <a href="lex_c.htm#conduit">conduits</a>. For example, a 64-step
conduit is one through which the active object takes 64 generations
to pass.
<p><a name=stillater>:</a><b>stillater</b> (p3) Found by Robert Wainwright, September 1985. This is
one of only three essentially different p3 <a href="lex_o.htm#oscillator">oscillators</a> with only
three cells in the <a href="lex_r.htm#rotor">rotor</a>. The others are <a href="lex_1.htm#a-123">1-2-3</a> and <a href="lex_c.htm#cuphook">cuphook</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O....$..O.O.OO$..O.OO.O$OO......$.O.O.OO.$.O.O..O.$..O..O..$...OO...$"
>...O....
..O.O.OO
..O.OO.O
OO......
.O.O.OO.
.O.O..O.
..O..O..
...OO...
</a></pre></td></tr></table></center>
<p><a name=stilllife>:</a><b>still life</b> Any <a href="#stable">stable</a> pattern, usually assumed to be finite and
nonempty. For the purposes of enumerating still lifes this
definition is, however, unsatisfactory because, for example, any pair
of blocks would count as a still life, and there would therefore be
an infinite number of 8-bit still lifes.
<p>For this reason a stricter definition is often used, counting a
stable pattern as a <a href="#strictstilllife">strict still life</a> only if its <a href="lex_i.htm#island">islands</a> cannot
be divided into two or more nonempty sets both of which are stable in
their own right. If such a subdivision can be made, the pattern can
be referred to as a <a href="lex_c.htm#constellation">constellation</a>. If its cells form a single
<a href="lex_c.htm#cluster">cluster</a> it is also, more specifically, either a <a href="lex_p.htm#pseudostilllife">pseudo still life</a>
or a <a href="lex_q.htm#quasistilllife">quasi still life</a>.
<p>In rare cases above a certain size threshold, a pattern may be
divisible into three or four stable nonempty subsets but not into
two. See the 32-bit <a href="lex_t.htm#triplepseudo">triple pseudo</a> (32 bits) and the 34-bit
<a href="lex_q.htm#quadpseudo">quad pseudo</a> for examples.
<p>All still lifes up to 18 bits have been shown to be
<a href="lex_g.htm#gliderconstructible">glider constructible</a>. It is an open question whether all still
lifes can be incrementally constructed using glider collisions. For
a subset of small still lifes that have been found to be especially
useful in <a href="#selfconstructing">self-constructing</a> circuitry, see also <a href="#spartan">Spartan</a>.
<p>The smallest still life is the <a href="lex_b.htm#block">block</a>. Arbitrarily large still
lifes are easy to construct, for example by extending a <a href="lex_c.htm#canoe">canoe</a> or
<a href="lex_b.htm#barge">barge</a>. The maximum density of a large still life is 1/2, which can
be achieved by an arbitrarily large patch of <a href="lex_z.htm#zebrastripes">zebra stripes</a> or
<a href="lex_c.htm#chickenwire">chicken wire</a>, among many other options. See <a href="lex_d.htm#density">density</a> for more
precise limits.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O..O..O..O..O..O...$.OOOOOOOOOOOOOOOOOOOO.$O....................O$OOOOOOOOOOOOOOOOOOOOOO$......................$OOOOOOOOOOOOOOOOOOOOOO$O....................O$.OOOOOOOOOOOOOOOOOOOO.$......................$.OOOOOOOOOOOOOOOOOOOO.$O....................O$OOOOOOOOOOOOOOOOOOOOOO$......................$OOOOOOOOOOOOOOOOOOOOOO$O....................O$.OOOOOOOOOOOOOOOOOOOO.$......................$.OOOOOOOOOOOOOOOOOOOO.$O....................O$OOOOOOOOOOOOOOOOOOOOOO$......................$OOOOOOOOOOOOOOOOOOOOOO$O....................O$.OOOOOOOOOOOOOOOOOOOO.$...O..O..O..O..O..O...$"
>...O..O..O..O..O..O...
.OOOOOOOOOOOOOOOOOOOO.
O....................O
OOOOOOOOOOOOOOOOOOOOOO
......................
OOOOOOOOOOOOOOOOOOOOOO
O....................O
.OOOOOOOOOOOOOOOOOOOO.
......................
.OOOOOOOOOOOOOOOOOOOO.
O....................O
OOOOOOOOOOOOOOOOOOOOOO
......................
OOOOOOOOOOOOOOOOOOOOOO
O....................O
.OOOOOOOOOOOOOOOOOOOO.
......................
.OOOOOOOOOOOOOOOOOOOO.
O....................O
OOOOOOOOOOOOOOOOOOOOOO
......................
OOOOOOOOOOOOOOOOOOOOOO
O....................O
.OOOOOOOOOOOOOOOOOOOO.
...O..O..O..O..O..O...
</a></pre></td></tr></table></center>
<p><a name=stilllifetagalong>:</a><b>still life tagalong</b> A <a href="lex_t.htm#tagalong">tagalong</a> which takes the form of a
<a href="#stilllife">still life</a> in at least one <a href="lex_p.htm#phase">phase</a>. An example is shown below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO...............$.OO.OO.............$..OOOO.............$...OO..............$...................$...OOOOO...........$..OOOOOOO..........$.OO.OOOOO..........$..OO...............$...................$........O.O.....OO.$......O....O...O..O$......OO.....O.O..O$.O..O..OOOO.O...OO.$O.......OO.........$O...O..............$OOOO...............$"
>..OO...............
.OO.OO.............
..OOOO.............
...OO..............
...................
...OOOOO...........
..OOOOOOO..........
.OO.OOOOO..........
..OO...............
...................
........O.O.....OO.
......O....O...O..O
......OO.....O.O..O
.O..O..OOOO.O...OO.
O.......OO.........
O...O..............
OOOO...............
</a></pre></td></tr></table></center>
<p><a name=stopandgo>:</a><b>stop and go</b> A pattern by Dean Hickerson in which a period 46
<a href="#shuttle">shuttle</a> converts a glider into a block on one oscillation, and then
converts the block back into a glider on the next oscillation. The
glider is reflected back onto its own path, but with a delay.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........................................O.$.......................................O..$OO..............OO.........OO..........OOO$OO...............OO........OO.............$.............OOOOO........................$.............OOOO.........................$..........................................$.............OOOO.........................$.............OOOOO........................$OO...............OO.......................$OO..............OO........................$"
>........................................O.
.......................................O..
OO..............OO.........OO..........OOO
OO...............OO........OO.............
.............OOOOO........................
.............OOOO.........................
..........................................
.............OOOO.........................
.............OOOOO........................
OO...............OO.......................
OO..............OO........................
</a></pre></td></tr></table></center>
<p><a name=stopandrestart>:</a><b>stop and restart</b> A type of <a href="#signal">signal</a> <a href="lex_c.htm#circuit">circuit</a> where an input signal
is converted into a stationary object, which is then re-activated by
a secondary input signal. This can be used either as a memory device
storing one bit of information, or as a simple delay mechanism. In
the following January 2016 example by Martin Grant, a
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> marks the output signal location, and a "ghost
<a href="lex_b.htm#beehive">beehive</a>" marks the location of the intermediate still life.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........................................................O.$.......................................................O..$.......................................................OOO$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$............O.............................................$............OOO...........................................$...............O..........................................$..............OO..........................................$........O.................................................$.......O.O.......OO.......................................$.......O.O......O.O.......................................$.....OOO.OO.....OO........................................$....O.....................................................$.....OOO.OO...............................................$.......O.OO...............................................$..........................................................$..........................................................$..........................................................$OO........................................................$.O........................................................$.O.O......................................................$..OO......................................................$..........................................................$....................O.....................................$...................O.O....................................$...................O...................................O..$....................O................................OOO..$....................................OO...............O....$..O.................................OO...............O....$..O.O.....................................................$..OOO.....................................................$....O....................O................................$........................O.O...............................$........................OO................................$...................OO............OO.......................$...................OO............O........................$..................................O.......................$.................................OO.......................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..........................................................$..OO..........OO..........................................$...O..........O...........................................$OOO............OOO........................................$O................O........................................$"
>........................................................O.
.......................................................O..
.......................................................OOO
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
............O.............................................
............OOO...........................................
...............O..........................................
..............OO..........................................
........O.................................................
.......O.O.......OO.......................................
.......O.O......O.O.......................................
.....OOO.OO.....OO........................................
....O.....................................................
.....OOO.OO...............................................
.......O.OO...............................................
..........................................................
..........................................................
..........................................................
OO........................................................
.O........................................................
.O.O......................................................
..OO......................................................
..........................................................
....................O.....................................
...................O.O....................................
...................O...................................O..
....................O................................OOO..
....................................OO...............O....
..O.................................OO...............O....
..O.O.....................................................
..OOO.....................................................
....O....................O................................
........................O.O...............................
........................OO................................
...................OO............OO.......................
...................OO............O........................
..................................O.......................
.................................OO.......................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..........................................................
..OO..........OO..........................................
...O..........O...........................................
OOO............OOO........................................
O................O........................................
</a></pre></td></tr></table></center>
The <a href="lex_e.htm#eater1">eater1</a> in the lower left corner catches the restart glider if
no input signal has come in to create the beehive. This eater could
be removed if it is useful to have both a "0" and a "1" output for a
memory cell mechanism.
<p>The <a href="lex_c.htm#catchandthrow">catch and throw</a> <a href="lex_t.htm#technology">technology</a> in a <a href="lex_c.htm#caterpillar">Caterpillar</a> is a somewhat
similar idea. See also <a href="#stopandgo">stop and go</a> and <a href="lex_r.htm#reanimation">reanimation</a>.
<p><a name=stream>:</a><b>stream</b> A line of identical objects (usually <a href="#spaceship">spaceships</a>), each of
which is moving in a direction parallel to the line, generally on the
same <a href="lex_l.htm#lane">lane</a>. In many uses the stream is periodic. For example, the
<a href="lex_n.htm#newgun">new gun</a> produces a period 46 <a href="lex_g.htm#glider">glider</a> stream. The stream produced
by a <a href="lex_p.htm#pseudorandomglidergenerator">pseudo-random glider generator</a> can have a very high period.
Compare with <a href="lex_w.htm#wave">wave</a>. See also <a href="#singlechannel">single-channel</a> for a common use of
non-periodic <a href="lex_g.htm#glider">glider</a> streams.
<p><a name=stretcher>:</a><b>stretcher</b> Any pattern that grows by stretching a <a href="lex_w.htm#wick">wick</a> or <a href="lex_a.htm#agar">agar</a>.
See <a href="lex_w.htm#wickstretcher">wickstretcher</a> and <a href="#spacefiller">spacefiller</a>.
<p><a name=strictstilllife>:</a><b>strict still life</b> A <a href="#stilllife">still life</a> that is either a single connected
<a href="lex_p.htm#polyplet">polyplet</a>, or is arranged such that a <a href="#stable">stable</a> smaller pattern
cannot be formed by removing one or more of its <a href="lex_i.htm#island">islands</a>. For
example, <a href="lex_b.htm#beehivewithtail">beehive with tail</a> is a strict still life because it is
connected, and <a href="lex_t.htm#tableontable">table on table</a> is a strict still life because
neither of the <a href="lex_t.htm#table">tables</a> are stable by themselves. See also
<a href="lex_t.htm#triplepseudo">triple pseudo</a>, <a href="lex_q.htm#quadpseudo">quad pseudo</a>.
<p>Still lifes have been enumerated by Conway (4-7 bits), Robert
Wainwright (8-10 bits), Dave Buckingham (11-13 bits), Peter Raynham
(14 bits), Mark Niemiec (15-24 bits), and Simon Ekström and Nathaniel
Johnston (25-32 bits). The resulting figures are shown below; see
also <a href="https://oeis.org/A019473">https://oeis.org/A019473</a>. The most recent search by Nathaniel
Johnston has also confirmed that the <a href="lex_t.htm#triplepseudo">triple pseudo</a> pattern found by
Gabriel Nivasch is the only such still life with 32 bits or less. It
is therefore included in the pseudo still life count and not in the
table below.
<pre>
--------------
Bits Number
--------------
4 2
5 1
6 5
7 4
8 9
9 10
10 25
11 46
12 121
13 240
14 619
15 1353
16 3286
17 7773
18 19044
19 45759
20 112243
21 273188
22 672172
23 1646147
24 4051711
25 9971377
26 24619307
27 60823008
28 150613157
29 373188952
30 926068847
31 2299616637
32 5716948683
--------------
</pre>
<p>As the number of bits increases, the strict still life count goes
up exponentially by approximately O(2.46<sup><i>n</i></sup>). By comparison, the rate
for pseudo still life}s is about O(2.56<sup><i>n</i></sup>) while for
<a href="lex_q.htm#quasistilllife">quasi still lifes</a> it's around O(3.04<sup><i>n</i></sup>).
<p><a name=strictvolatility>:</a><b>strict volatility</b> A term suggested by Noam Elkies in August 1998 for
the proportion of cells involved in a period <i>n</i> <a href="lex_o.htm#oscillator">oscillator</a> which
themselves oscillate with period <i>n</i>. For prime <i>n</i> this is the same as
the ordinary <a href="lex_v.htm#volatility">volatility</a>. Periods with known strictly-volatile
oscillators include 1, 2, 3, 5, 6, 8, 13, 15, 22, 30, 33, and 177.
Examples include <a href="lex_f.htm#figure8">figure-8</a>, <a href="lex_k.htm#koksgalaxy">Kok's galaxy</a>, <a href="#smiley">smiley</a>, and
<a href="lex_p.htm#pentadecathlon">pentadecathlon</a>. A composite example is the following p22, found by
Nicolay Beluchenko on 4 March 2009:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO...$..........O.O...$..O.....O....O..$OO.OO..OO.O.O...$O.......O...O...$.O.O............$................$..OOO.......O...$...O.......OOO..$................$............O.O.$...O...O.......O$...O.O.OO..OO.OO$..O....O.....O..$...O.O..........$...OO...........$"
>...........OO...
..........O.O...
..O.....O....O..
OO.OO..OO.O.O...
O.......O...O...
.O.O............
................
..OOO.......O...
...O.......OOO..
................
............O.O.
...O...O.......O
...O.O.OO..OO.OO
..O....O.....O..
...O.O..........
...OO...........
</a></pre></td></tr></table></center>
<p><a name=superbeehive>:</a><b>super beehive</b> = <a href="lex_h.htm#honeycomb">honeycomb</a>
<p><a name=superfountain>:</a><b>superfountain</b> (p4) A p4 <a href="#sparker">sparker</a> which produces a 1-cell spark that
is separated from the rest of the oscillator by two clear rows of
cells. The first superfountain was found by Noam Elkies in February
1998. In January 2006 Nicolay Beluchenko found the much smaller one
shown below. See also <a href="lex_f.htm#fountain">fountain</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........O...........$.......................$.......................$.....O..O.....O..O.....$...OO..O.OOOOO.O..OO...$.....O...........O.....$...O.OO.........OO.O...$.O.O...OOO...OOO...O.O.$OOO.O.............O.OOO$..........O.O..........$....OOO...O.O...OOO....$....O..O...O...O..O....$...OOOO..O.O.O..OOOO...$...OO..OOO.O.OOO..OO...$..O...O...O.O...O...O..$...O..O.O.O.O.O.O..O...$....O.O.OO...OO.O.O....$.....O...........O.....$"
>...........O...........
.......................
.......................
.....O..O.....O..O.....
...OO..O.OOOOO.O..OO...
.....O...........O.....
...O.OO.........OO.O...
.O.O...OOO...OOO...O.O.
OOO.O.............O.OOO
..........O.O..........
....OOO...O.O...OOO....
....O..O...O...O..O....
...OOOO..O.O.O..OOOO...
...OO..OOO.O.OOO..OO...
..O...O...O.O...O...O..
...O..O.O.O.O.O.O..O...
....O.O.OO...OO.O.O....
.....O...........O.....
</a></pre></td></tr></table></center>
<p><a name=superlineargrowth>:</a><b>superlinear growth</b> Growth faster than any rate proportional to T,
where T is the number of ticks that a pattern has been run. This
term usually applies to a pattern's population growth, rather than
diametric growth or bounding-box growth. For example, <a href="lex_b.htm#breeder">breeders</a>'
and <a href="#spacefiller">spacefillers</a>' population asymptotically grows faster than any
linear-growth pattern. It may also be used to describe the rate of
increase in the number of subpatterns present in a pattern, such as
when describing a <a href="lex_r.htm#replicator">replicator</a>'s rate of reproduction. Due to limits
enforced by the <a href="#speedoflight">speed of light</a>, no pattern's population can grow at
an asymptotic rate faster than <a href="lex_q.htm#quadraticgrowth">quadratic growth</a>. See
<a href="#switchenginepingpong">switch-engine ping-pong</a> for the lowest-population superlinear
growth pattern as of July 2018, along with a list of the
record-holders.
<p><a name=superstring>:</a><b>superstring</b> An infinite orthogonal row of cells stabilized on one
side so that it moves at the <a href="#speedoflight">speed of light</a>, often leaving debris
behind. The first examples were found in 1971 by Edward Fitzgerald
and Robert Wainwright. Superstrings were studied extensively by
Peter Rott during 1992-1994, and he found examples with many
different periods. (But no odd periods. In August 1998 Stephen
Silver proved that odd-period superstrings are impossible.)
<p>Sometimes a finite section of a superstring can be made to run
between two tracks ("waveguides"). This gives a <a href="lex_f.htm#fuse">fuse</a> which can be
made as wide as desired. The first example was found by Tony
Smithurst and uses <a href="lex_t.htm#tub">tubs</a>. (This is shown below. The superstring
itself is p4 with a repeating section of width 9 producing one
blinker per period and was one of those discovered in 1971. With the
track in place, however, the period is 8. This track can also be
used with a number of other superstrings.) Shortly after seeing this
example, in March 1997 Peter Rott found another superstring track
consisting of <a href="lex_b.htm#boat">boats</a>. At present these are the only two waveguides
known. Both are destroyed by the superstring as it moves along. It
would be interesting to find one that remains intact.
<p>See <a href="lex_t.htm#titanictoroidaltraveler">titanic toroidal traveler</a> for another example of a
superstring.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO..........................................................$O..O...O...O...O...O...O...O...O...O...O...O...O...O...O...O.$....O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O$O..O...O...O...O...O...O...O...O...O...O...O...O...O...O...O.$.OOO.........................................................$..OO.........................................................$..OO.........................................................$...O.........................................................$...O.........................................................$...O.........................................................$...O.........................................................$...O.........................................................$...O.........................................................$...O.........................................................$..OO.........................................................$..OO.........................................................$.OOO.........................................................$O..O...O...O...O...O...O...O...O...O...O...O...O...O...O...O.$....O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O$O..O...O...O...O...O...O...O...O...O...O...O...O...O...O...O.$.OO..........................................................$"
>.OO..........................................................
O..O...O...O...O...O...O...O...O...O...O...O...O...O...O...O.
....O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O
O..O...O...O...O...O...O...O...O...O...O...O...O...O...O...O.
.OOO.........................................................
..OO.........................................................
..OO.........................................................
...O.........................................................
...O.........................................................
...O.........................................................
...O.........................................................
...O.........................................................
...O.........................................................
...O.........................................................
..OO.........................................................
..OO.........................................................
.OOO.........................................................
O..O...O...O...O...O...O...O...O...O...O...O...O...O...O...O.
....O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O
O..O...O...O...O...O...O...O...O...O...O...O...O...O...O...O.
.OO..........................................................
</a></pre></td></tr></table></center>
<p><a name=support>:</a><b>support</b> Those parts of an object which are only present in order to
keep the rest of the object (such an <a href="lex_e.htm#engine">engine</a> or an edge <a href="#spark">spark</a>)
working correctly. These can be components of the object, or else
accompanying objects used to <a href="lex_p.htm#perturb">perturb</a> the object. In many cases
there is a wide variation of support possible for an engine. The
<a href="lex_a.htm#arm">arms</a> in many <a href="lex_p.htm#puffer">puffers</a> are an example of support.
<p><a name=surprise>:</a><b>surprise</b> (p3) Found by Dave Buckingham, November 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O....OO$...OOO..O.$.OO...O.O.$O..OO.O.OO$.O......O.$OO.O.OO..O$.O.O...OO.$.O..OOO...$OO....O...$"
>...O....OO
...OOO..O.
.OO...O.O.
O..OO.O.OO
.O......O.
OO.O.OO..O
.O.O...OO.
.O..OOO...
OO....O...
</a></pre></td></tr></table></center>
<p><a name=sw1t43>:</a><b>SW1T43</b> A <a href="lex_h.htm#herscheltoglider">Herschel-to-glider</a> converter that produces a
<a href="lex_t.htm#tandemglider">tandem glider</a> useful in the <a href="lex_t.htm#tee">tee</a> reaction. It is classified as a
"G3" converter because its two gliders are three <a href="lex_l.htm#lane">lanes</a> apart.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......OO........$.......O.........$.....O.O.........$....O.O..........$OO...O...........$OO...............$...........OO....$...........O.O...$.............O...$.............O.OO$..........OO.O.OO$O........O..O....$O.O.......OO.....$OOO..............$..O.......OOOO...$...........O..O..$.........O...OO..$.........OO......$"
>.......OO........
.......O.........
.....O.O.........
....O.O..........
OO...O...........
OO...............
...........OO....
...........O.O...
.............O...
.............O.OO
..........OO.O.OO
O........O..O....
O.O.......OO.....
OOO..............
..O.......OOOO...
...........O..O..
.........O...OO..
.........OO......
</a></pre></td></tr></table></center>
Besides the southwest-travelling glider on lane 1, the converter also
emits the Herschel's standard <a href="lex_f.htm#firstnaturalglider">first natural glider</a>, <a href="#sw2">SW-2</a>. The
converter's full standard name is therefore "HSW1T43_SW-2T21". See
<a href="lex_n.htm#nw31">NW31</a> for an explanation of H-to-G naming conventions.
<p><a name=sw2>:</a><b>SW-2</b> The simplest type of <a href="lex_h.htm#htog">H-to-G</a> <a href="lex_c.htm#converter">converter</a>, where the converter's
effect is simply to suppress a Herschel cleanly after allowing its
<a href="lex_f.htm#firstnaturalglider">first natural glider</a> to escape. The name should be read as "SW
minus two", where -2 is a glider <a href="lex_l.htm#lane">lane</a> number. The complete
designation is SW-2T21. See <a href="lex_n.htm#nw31t120">NW31T120</a> for a discussion of the
standard naming conventions used for these converters.
<p>An unlimited number of converters have the SW-2T21 classification.
The variants most often used consist of just one or two small
<a href="#stilllife">still life</a> <a href="lex_c.htm#catalyst">catalysts</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...................................OO.....$...................................O......$.................................O.O......$.............................OO..OO.......$.............................OO...........$.....OO...................................$.....OO...................................$.............................OO...........$.............................OO...........$..........................................$..........................................$..........................................$.........OO...............................$.........OO...............................$..........................................$O........................O................$O.O......................O.O..............$OOO......................OOO..............$..O........................O..............$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$..........................................$........................................O.$...........O...........................O.O$..........O.O...........................OO$..........O.O.............................$...........O............................OO$O........................O.............O.O$O.O......................O.O............O.$OOO......................OOO..............$..O........................O..............$"
>...................................OO.....
...................................O......
.................................O.O......
.............................OO..OO.......
.............................OO...........
.....OO...................................
.....OO...................................
.............................OO...........
.............................OO...........
..........................................
..........................................
..........................................
.........OO...............................
.........OO...............................
..........................................
O........................O................
O.O......................O.O..............
OOO......................OOO..............
..O........................O..............
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
..........................................
........................................O.
...........O...........................O.O
..........O.O...........................OO
..........O.O.............................
...........O............................OO
O........................O.............O.O
O.O......................O.O............O.
OOO......................OOO..............
..O........................O..............
</a></pre></td></tr></table></center>
<p><a name=sw2t21>:</a><b>SW-2T21</b> = <a href="#sw2">SW-2</a>
<p><a name=swan>:</a><b>swan</b> (<i>c</i>/4 diagonally, p4) A diagonal <a href="#spaceship">spaceship</a> producing some
useful sparks. Found by Tim Coe in February 1996.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..........OO..........$OOOOO......OO...........$O..OO........O.......OO.$..OO.O.....OO......OOO.O$...........OO...O.OO....$.....O.O......OO........$..........OOO.O....O....$.......OOO...O....O.....$........O.......O.......$........O......O........$........................$...........O............$"
>.O..........OO..........
OOOOO......OO...........
O..OO........O.......OO.
..OO.O.....OO......OOO.O
...........OO...O.OO....
.....O.O......OO........
..........OOO.O....O....
.......OOO...O....O.....
........O.......O.......
........O......O........
........................
...........O............
</a></pre></td></tr></table></center>
<p><a name=swimmer>:</a><b>swimmer</b> = <a href="#switchengine">switch engine</a>.
<p><a name=swimmerlane>:</a><b>swimmer lane</b> = <a href="#switchenginechannel">switch engine channel</a>.
<p><a name=switch>:</a><b>switch</b> A <a href="#signal">signal</a>-carrying <a href="lex_c.htm#circuit">circuit</a> that can send output signals to
two or more different locations, depending on the state of the
mechanism. These may be <a href="lex_t.htm#togglecircuit">toggle circuits</a>, where the state of the
switch changes after each use, or <a href="lex_p.htm#permanentswitch">permanent switches</a> that retain
the same state through many uses until a change is made with a
separate signal.
<p>More generally, any circuit may be referred to as a switch, if it
can alter its output based on stored information. For example, the
following simple mechanism based on an eater2 was discovered by
Emerson J. Perkins in 2007. It either reflects or absorbs an
incoming signal, depending on the presence or absence of a nearby
block. The block is removed if a reflection occurs.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...O.....................O....................$....O...................O.O...................$..OOO...................O.O...................$......................OOO.OO................O.$..................O..O....................OOO.$................OOO...OOO.OO...OO........O....$...............O........O.OO...OO........OO...$...............OO.............................$OO............................................$.O............................................$.O.OO.........................................$..O..O....................................OO..$...OO.....................................O.O.$..................OO........................O.$..................OO........................OO$..................................OOO.........$..................................O...........$...................................O..........$..............................................$..........................O...OO..............$.........................O.O...O..............$.....................OO.O.O...O...............$.....................OO.O....O................$.........................OOOOO.O..............$.................OO.O.OO.O....OO...........OOO$.................O.OO.O..O.OO..............O..$..........OO............OO.O.OOO............O.$..........OO...................O..............$"
>...O.....................O....................
....O...................O.O...................
..OOO...................O.O...................
......................OOO.OO................O.
..................O..O....................OOO.
................OOO...OOO.OO...OO........O....
...............O........O.OO...OO........OO...
...............OO.............................
OO............................................
.O............................................
.O.OO.........................................
..O..O....................................OO..
...OO.....................................O.O.
..................OO........................O.
..................OO........................OO
..................................OOO.........
..................................O...........
...................................O..........
..............................................
..........................O...OO..............
.........................O.O...O..............
.....................OO.O.O...O...............
.....................OO.O....O................
.........................OOOOO.O..............
.................OO.O.OO.O....OO...........OOO
.................O.OO.O..O.OO..............O..
..........OO............OO.O.OOO............O.
..........OO...................O..............
</a></pre></td></tr></table></center>
<p>The switching signal here is a glider produced by a high-clearance
<a href="#syringe">syringe</a> variant found by Matthias Merzenich. The syringe is not
technically part of the switch mechanism; any standard <a href="lex_h.htm#herschel">Herschel</a>
source can deliver the signal to the block <a href="lex_f.htm#factory">factory</a> (the two
<a href="lex_e.htm#eater1">eater1s</a> on the right side of the pattern). Alternate <a href="lex_c.htm#converter">converter</a>
mechanisms could also be used to place the block.
<p>An earlier example of the same type of one-time switch mechanism,
also mediated by a block, can be found in the NW34T204 <a href="lex_h.htm#htog">H-to-G</a>. See
also <a href="lex_b.htm#bistableswitch">bistable switch</a> for a very robust and versatile toggle switch
with two input <a href="lex_l.htm#lane">lanes</a> and four possible outputs.
<p><a name=switchablegun>:</a><b>switchable gun</b> A <a href="lex_g.htm#gun">gun</a> that includes a mechanism to turn the output
stream off and on with simple signals, often gliders. A small
example is Dieter Leithner's switchable LWSS gun from July 8, 1995.
The ON signal enters from the northeast, and the OFF signal from the
northwest:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................OO...........................................$.................O..O.........................................$..............................................................$.....................O........................................$..............................................................$.O.................OO.........................................$..O...............O...........................................$OOO...........................................................$..............................................................$...............OO...OO........................................$...............OO...OO........................................$................OOOOO........................O................$.................O.O........................O.................$............................................OOO...............$.................OOO..........................................$....................................O.O.......................$....................................O...O.....................$........................................O.......O.............$..........................OO........O....O....OOOO............$..........................OO............O....O.O.OO...........$.....................O..............O...O...O..O.OOO........OO$......................O.............O.O......O.O.OO.........OO$....................OOO.......................OOOO............$................O...............................O.............$...............OOO...................O........................$..............OOOOO..................O.O.....O................$.............OO...OO.................OO....OOO................$..........................................O...................$.............................O............OO..................$...........................O..O.........OOO...................$...............OOO..........OOO.........OO....................$...............OOO..........O..........O.O....................$.............................O................................$.............................OOO..............................$................OO............................................$................OO............................................$.....................O........................................$...................OOOO......OO..OO...........................$.............OO...O.O.OO.....OOOO.O..O.O......................$.............OO..O..O.OOO.....OO.O...O...O....................$..................O.O.OO....O............O.....OO.............$...................OOOO..............O....O....OO.............$.....................O...................O....................$.....................................O...O....................$.....................................O.O......................$"
>.................OO...........................................
.................O..O.........................................
..............................................................
.....................O........................................
..............................................................
.O.................OO.........................................
..O...............O...........................................
OOO...........................................................
..............................................................
...............OO...OO........................................
...............OO...OO........................................
................OOOOO........................O................
.................O.O........................O.................
............................................OOO...............
.................OOO..........................................
....................................O.O.......................
....................................O...O.....................
........................................O.......O.............
..........................OO........O....O....OOOO............
..........................OO............O....O.O.OO...........
.....................O..............O...O...O..O.OOO........OO
......................O.............O.O......O.O.OO.........OO
....................OOO.......................OOOO............
................O...............................O.............
...............OOO...................O........................
..............OOOOO..................O.O.....O................
.............OO...OO.................OO....OOO................
..........................................O...................
.............................O............OO..................
...........................O..O.........OOO...................
...............OOO..........OOO.........OO....................
...............OOO..........O..........O.O....................
.............................O................................
.............................OOO..............................
................OO............................................
................OO............................................
.....................O........................................
...................OOOO......OO..OO...........................
.............OO...O.O.OO.....OOOO.O..O.O......................
.............OO..O..O.OOO.....OO.O...O...O....................
..................O.O.OO....O............O.....OO.............
...................OOOO..............O....O....OO.............
.....................O...................O....................
.....................................O...O....................
.....................................O.O......................
</a></pre></td></tr></table></center>
<p><a name=switchengine>:</a><b>switch engine</b> The following pattern discovered by Charles Corderman
in 1971, which is a <a href="lex_g.htm#glidesymmetric">glide symmetric</a> unstable <a href="lex_p.htm#puffer">puffer</a> which moves
diagonally at a speed of <i>c</i>/12 (8 cells every 96 generations).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.O..$O.....$.O..O.$...OOO$"
>.O.O..
O.....
.O..O.
...OOO
</a></pre></td></tr></table></center>
<p>The <a href="lex_e.htm#exhaust">exhaust</a> is <a href="lex_d.htm#dirty">dirty</a> and unfortunately catches up and destroys
the switch engine before it runs 13 full periods. Corderman found
several ways to stabilize the switch engine to produce <a href="lex_p.htm#puffer">puffers</a>,
using either one or two switch engines in tandem. See
<a href="#stabilizedswitchengine">stabilized switch engine</a> and <a href="lex_a.htm#ark">ark</a>.
<p>No <a href="#spaceship">spaceships</a> were able to be made from switch engines until Dean
Hickerson found the first one in April 1991 (see <a href="lex_c.htm#cordership">Cordership</a>).
Switch engine <a href="lex_t.htm#technology">technology</a> is now well-advanced, producing many <i>c</i>/12
diagonal spaceships, puffers, and rakes of many periods.
<p>Small <a href="lex_p.htm#polyomino">polyominoes</a> exist whose <a href="lex_e.htm#evolution">evolution</a> results in a switch
engine. See <a href="lex_n.htm#nonominoswitchenginepredecessor">nonomino switch engine predecessor</a>.
<p>Several three-glider collisions produce <a href="lex_d.htm#dirty">dirty</a> reactions that
produce a stabilized switch engine along with other <a href="lex_a.htm#ash">ash</a>, making
<a href="lex_i.htm#infinitegrowth">infinite growth</a>. Until recently the only known syntheses for
<a href="lex_c.htm#clean">clean</a> unstabilized switch engines used four or more gliders. There
are several such recipes. In the reaction shown below no glider
arrives from the direction that the switch engine will travel to,
making it easier to repeat the reaction:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO................$..O................$.O.................$...................$.......OO..........$......OO...........$........O..........$...................$...................$...................$...................$...................$...................$...................$..OO...............$.O.O...............$...O...............$...................$................OOO$................O..$.................O.$"
>OOO................
..O................
.O.................
...................
.......OO..........
......OO...........
........O..........
...................
...................
...................
...................
...................
...................
...................
..OO...............
.O.O...............
...O...............
...................
................OOO
................O..
.................O.
</a></pre></td></tr></table></center>
Running the above for 20 ticks completes a <a href="lex_k.htm#kickback">kickback</a> reaction with
the top two gliders, resulting in the three-glider switch engine
recipe discovered by Luka Okanishi on 12 March 2017.
<p><a name=switchenginechannel>:</a><b>switch engine channel</b> Two lines of <a href="lex_b.htm#boat">boats</a> (or other suitable
objects, such as <a href="lex_t.htm#tubwithtail">tub with tails</a>) arranged so that a <a href="#switchengine">switch engine</a>
can travel between them, in the following manner:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OO................$.............O.O................$..............O.................$................................$................................$................................$................................$................................$.......OOO............OO........$........O..O.........O.O........$............O.........O.........$.........O.O....................$................................$................................$................................$................................$..............................OO$.............................O.O$..............................O.$................................$................................$.O..............................$O.O.............................$OO..............................$................................$................................$................................$................................$................................$.........O......................$........O.O.....................$........OO......................$"
>..............OO................
.............O.O................
..............O.................
................................
................................
................................
................................
................................
.......OOO............OO........
........O..O.........O.O........
............O.........O.........
.........O.O....................
................................
................................
................................
................................
..............................OO
.............................O.O
..............................O.
................................
................................
.O..............................
O.O.............................
OO..............................
................................
................................
................................
................................
................................
.........O......................
........O.O.....................
........OO......................
</a></pre></td></tr></table></center>
David Bell used this in June 2005 to construct a "bobsled"
oscillator, in which a switch engine <a href="lex_f.htm#factory">factory</a> sends switch engines
down a channel, at the other end of which they are deleted.
<p><a name=switchenginechute>:</a><b>switch engine chute</b> = <a href="#switchenginechannel">switch engine channel</a>
<p><a name=switchenginepingpong>:</a><b>switch-engine ping-pong</b> A very large (210515x183739)
<a href="lex_q.htm#quadraticgrowth">quadratic growth</a> pattern found by Michael Simkin in October 2014.
Currently this is the smallest starting population (23 cells) known
to result in a quadratic population growth rate. Previous
record-holders include <a href="lex_j.htm#jaws">Jaws</a>, <a href="lex_m.htm#mosquito1">mosquito1</a>, <a href="lex_m.htm#mosquito2">mosquito2</a>, <a href="lex_m.htm#mosquito3">mosquito3</a>,
<a href="lex_m.htm#mosquito4">mosquito4</a>, <a href="lex_m.htm#mosquito5">mosquito5</a>, <a href="lex_t.htm#teeth">teeth</a>, <a href="lex_c.htm#catacryst">catacryst</a>, <a href="lex_m.htm#metacatacryst">metacatacryst</a>,
<a href="lex_g.htm#gottsdots">Gotts dots</a>, <a href="lex_w.htm#wedge">wedge</a>, <a href="lex_1.htm#a-26cellquadraticgrowth">26-cell quadratic growth</a>,
<a href="lex_1.htm#a-25cellquadraticgrowth">25-cell quadratic growth</a>, and <a href="lex_1.htm#a-24cellquadraticgrowth">24-cell quadratic growth</a>.
<p><a name=symmetric>:</a><b>symmetric</b> Any object which can be rotated and/or flipped over an axis
and still maintain the same shape. Many common small objects such as
the <a href="lex_b.htm#block">block</a>, <a href="lex_b.htm#beehive">beehive</a>, <a href="lex_p.htm#pond">pond</a>, <a href="lex_l.htm#loaf">loaf</a>, <a href="lex_c.htm#clock">clock</a>, and <a href="lex_b.htm#blinker">blinker</a> are
symmetric. Some larger symmetric objects are <a href="lex_k.htm#koksgalaxy">Kok's galaxy</a>,
<a href="lex_a.htm#achimsp16">Achim's p16</a>, <a href="lex_c.htm#cross">cross</a>, <a href="lex_e.htm#eureka">Eureka</a>, and the <a href="lex_p.htm#pulsar">pulsar</a>.
<p>Large symmetric objects can easily be created by placing multiple
copies of any finite object together in a symmetrical way. Unless
the individual objects interact significantly, this is considered
trivial and is not considered further here (e.g., two <a href="lex_l.htm#lwss">LWSSs</a>
travelling together a hundred cells apart).
<p>There are two kinds of symmetry. Odd symmetry occurs when an
object's line of reflection passes through the center of a line of
cells. Objects with odd symmetry have an odd number of columns or
rows, and can have a <a href="lex_g.htm#gutter">gutter</a>. Even symmetry occurs when the line of
reflection follows the boundary between two lines of cells. Objects
with even symmetry have an even number of columns or rows.
<p>Because the Life universe and its rules are symmetric, all
symmetric objects must remain symmetric throughout their <a href="lex_e.htm#evolution">evolution</a>.
Most non-symmetric objects keep their non-symmetry as they evolve,
but some can become symmetric, especially if they result in a single
object. Here is a slightly more complicated example where two
gliders interact to form a <a href="lex_b.htm#blockade">blockade</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O.........$O.O.........$.OO........O$.........OO.$..........OO$"
>..O.........
O.O.........
.OO........O
.........OO.
..........OO
</a></pre></td></tr></table></center>
<p>Many useful objects are symmetric along an orthogonal axis. This
commonly occurs by placing two copies of an object side by side to
change the behaviour of the objects due to the inhibition or killing
of new cells at their <a href="lex_g.htm#gutter">gutter</a> interface. Examples of this are
<a href="lex_t.htm#twinbeesshuttle">twin bees shuttle</a>, <a href="lex_c.htm#centinal">centinal</a>, and the object shown in <a href="lex_p.htm#puffer">puffer</a>.
Other useful symmetric objects are created by perturbing a symmetric
object using nearby <a href="lex_o.htm#oscillator">oscillators</a> or <a href="#spaceship">spaceships</a> in a symmetric
manner. Examples of this are <a href="#schickengine">Schick engine</a>, <a href="lex_b.htm#blinkership">blinker ship</a>, and
<a href="lex_h.htm#hivenudger">hivenudger</a>.
<p>Many <a href="#spaceship">spaceships</a> found by <a href="#searchprogram">search programs</a> are symmetric because
the search space for such objects is much smaller than for
non-symmetrical spaceships. Examples include <a href="lex_d.htm#dart">dart</a>, <a href="lex_1.htm#a-60p5h2v0">60P5H2V0</a>, and
<a href="lex_1.htm#a-119p4h1v0">119P4H1V0</a>.
<p><a name=synchronized>:</a><b>synchronized</b> Indicates that precise relative timing is required for
two or more input <a href="#signal">signals</a> entering a <a href="lex_c.htm#circuit">circuit</a>, or two or more sets
of <a href="lex_g.htm#glider">gliders</a> participating in a <a href="lex_g.htm#glidersynthesis">glider synthesis</a>. Compare
<a href="lex_a.htm#asynchronous">asynchronous</a>. See also <a href="#salvo">salvo</a> and <a href="#slowgliderconstruction">slow glider construction</a>.
<p><a name=synchronous>:</a><b>synchronous</b> = <a href="#synchronized">synchronized</a>
<p><a name=synthesis>:</a><b>synthesis</b> = <a href="lex_g.htm#glidersynthesis">glider synthesis</a>
<p><a name=syringe>:</a><b>syringe</b> A small stable <a href="lex_c.htm#converter">converter</a> found by Tanner Jacobi in March
2015, accepting a glider as input and producing an output <a href="lex_h.htm#herschel">Herschel</a>
As of June 2018 it is the smallest known converter of this type, so
it is very often used to handle input gliders in complex <a href="#signal">signal</a>
<a href="lex_c.htm#circuit">circuitry</a>, as described in <a href="lex_h.htm#herschelcircuit">Herschel circuit</a>. A second glider can
safely follow the first any time after 78 ticks, but <a href="lex_o.htm#overclocking">overclocking</a>
also allows the syringe to work at a <a href="lex_r.htm#repeattime">repeat time</a> of 74 or 75 ticks.
If followed by a <a href="lex_d.htm#dependentconduit">dependent conduit</a> a simple <a href="lex_e.htm#eater2">eater2</a> can be used
instead of the large <a href="lex_w.htm#weld">welded</a> <a href="lex_c.htm#catalyst">catalyst</a> shown here. A
<a href="lex_g.htm#ghostherschel">ghost Herschel</a> marks the output location.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O.............................$.....O............................$...OOO............................$..................O...............$................OOO...............$...............O..................$...............OO.................$OO................................$.O................................$.O.OO.............................$..O..O.......................O....$...OO........................O....$..................OO.........OOO..$..................OO...........O..$..................................$..................................$..................................$...........................O...OO.$..........................O.O...O.$.........................O.O...O..$.....................OO.O.O...O...$.....................OO.O..OOOO.O.$.........................O.O...O.O$.....................OO.OO..O..O.O$......................O.O..OO...O.$..........OO..........O.O.........$..........OO...........O..........$"
>....O.............................
.....O............................
...OOO............................
..................O...............
................OOO...............
...............O..................
...............OO.................
OO................................
.O................................
.O.OO.............................
..O..O.......................O....
...OO........................O....
..................OO.........OOO..
..................OO...........O..
..................................
..................................
..................................
...........................O...OO.
..........................O.O...O.
.........................O.O...O..
.....................OO.O.O...O...
.....................OO.O..OOOO.O.
.........................O.O...O.O
.....................OO.OO..O..O.O
......................O.O..OO...O.
..........OO..........O.O.........
..........OO...........O..........
</a></pre></td></tr></table></center>
<p>A different version of the large catalyst, with better <a href="lex_c.htm#clearance">clearance</a>
for some situations, can be seen in the <a href="#switch">switch</a> entry.
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
</body>
|