File: lex_t.htm

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (1592 lines) | stat: -rw-r--r-- 110,931 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (T)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">

<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
<p><a name=t>:</a><b>T</b> = <a href="#ttetromino">T-tetromino</a>
<p><a name=table>:</a><b>table</b> The following <a href="lex_i.htm#inductioncoil">induction coil</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOOO$O..O$"
>OOOO
O..O
</a></pre></td></tr></table></center>
<p><a name=tableontable>:</a><b>table on table</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..O$OOOO$....$OOOO$O..O$"
>O..O
OOOO
....
OOOO
O..O
</a></pre></td></tr></table></center>
<p><a name=tag>:</a><b>tag</b> = <a href="#tagalong">tagalong</a>
<p><a name=tagalong>:</a><b>tagalong</b> An object which is not a <a href="lex_s.htm#spaceship">spaceship</a> in its own right, but
which can be attached to one or more spaceships to form a larger
spaceship. For examples see <a href="lex_c.htm#canadagoose">Canada goose</a>, <a href="lex_f.htm#fly">fly</a>, <a href="lex_p.htm#pushalong">pushalong</a>,
<a href="lex_s.htm#sidecar">sidecar</a> and <a href="lex_s.htm#sparky">sparky</a>. See also <a href="lex_s.htm#schickengine">Schick engine</a>, which consists of
a tagalong attached to two LWSS (or similar).
<p>The following <a href="lex_c.htm#c4spaceship">c/4 spaceship</a> (Nicolay Beluchenko, February 2004)
has two wings, either of which can be considered as a tagalong. But
if either wing is removed, then the remaining wing becomes an
essential component of the spaceship, and so is no longer a tagalong.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................O.......................$.......................O.......................$......................O.O......................$...............................................$.....................O...O.....................$....................OO...OO....................$..................OO.O...O.OO..................$................OO.O.O...O.O.OO................$............O...OOO.O.....O.OOO...O............$............OOOOOO...........OOOOOO............$...........O..O....O.......O....O..O...........$...................O.......O...................$..........OOO.....................OOO..........$.........O.OO.....................OO.O.........$........O..O.......................O..O........$........O.............................O........$.........OO.........................OO.........$.........OO.........................OO.........$OOO......O...........................O......OOO$.O......OOO.........................OOO......O.$......OO..O.........................O..OO......$..OO.O.OOO...........................OOO.O.OO..$.O...O.O...............................O.O...O.$.O...OO.................................OO...O.$"
>.......................O.......................
.......................O.......................
......................O.O......................
...............................................
.....................O...O.....................
....................OO...OO....................
..................OO.O...O.OO..................
................OO.O.O...O.O.OO................
............O...OOO.O.....O.OOO...O............
............OOOOOO...........OOOOOO............
...........O..O....O.......O....O..O...........
...................O.......O...................
..........OOO.....................OOO..........
.........O.OO.....................OO.O.........
........O..O.......................O..O........
........O.............................O........
.........OO.........................OO.........
.........OO.........................OO.........
OOO......O...........................O......OOO
.O......OOO.........................OOO......O.
......OO..O.........................O..OO......
..OO.O.OOO...........................OOO.O.OO..
.O...O.O...............................O.O...O.
.O...OO.................................OO...O.
</a></pre></td></tr></table></center>
<p><a name=tailspark>:</a><b>tail spark</b> A <a href="lex_s.htm#spark">spark</a> at the back of a spaceship. For example, the
1-bit spark at the back of a <a href="lex_l.htm#lwss">LWSS</a>, <a href="lex_m.htm#mwss">MWSS</a> or <a href="lex_h.htm#hwss">HWSS</a> in their less
dense phases.
<p><a name=tame>:</a><b>tame</b> To <a href="lex_p.htm#perturb">perturb</a> a <a href="lex_d.htm#dirty">dirty</a> reaction using other patterns so as to
make it <a href="lex_c.htm#clean">clean</a> and hopefully useful. Or to make a reaction work
which would otherwise fail due to unwanted products which interfere
with the reaction.
<p><a name=taming>:</a><b>taming</b> See <a href="#tame">tame</a>.
<p><a name=tandemglider>:</a><b>tandem glider</b> Two gliders travelling on parallel lanes at a fixed
spacetime offset, usually as a single signal in a
<a href="lex_h.htm#herscheltransceiver">Herschel transceiver</a>. See also <a href="lex_g.htm#gliderpair">glider pair</a>.
<p><a name=tannersp46>:</a><b>Tanner's p46</b> (p46) An <a href="lex_o.htm#oscillator">oscillator</a> found by Tanner Jacobi on 20
October 2017. This oscillator hassles an evolving <a href="lex_p.htm#piheptomino">pi-heptomino</a> to
produce an <a href="lex_p.htm#phi">phi</a> <a href="lex_s.htm#spark">spark</a>. The spark is very accessible and is able
to perturb many things.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............O...........$...OO.......OO.OO.........$...OO.......OO.OO.....O.OO$......................OO.O$..........................$..OO......................$...O......................$OOO.......................$O.............O...........$.............O.O.O.OO.....$............O.OO.OO.O.....$............O.............$...........OO.............$"
>..............O...........
...OO.......OO.OO.........
...OO.......OO.OO.....O.OO
......................OO.O
..........................
..OO......................
...O......................
OOO.......................
O.............O...........
.............O.O.O.OO.....
............O.OO.OO.O.....
............O.............
...........OO.............
</a></pre></td></tr></table></center>
The snakes can be replaced with eaters to form a slightly smaller
version, as shown in the p46 MWSS gun in <a href="lex_g.htm#gliderless">gliderless</a>
<p>The period of this new oscillator is the same as the old
<a href="#twinbeesshuttle">twin bees shuttle</a>, and so this is able to expand the known p46
<a href="#technology">technology</a>. For example, a p46 glider gun can be made from a
Tanner's p46 and just one of the <a href="#twinbeesshuttle">twin bees shuttles</a>.
<p>Acting on their own, two copies of Tanner's p46 placed at right
angles to each other with their sparks interacting can produce two
different p46 glider guns and a gliderless p46 MWSS gun. See
<a href="lex_p.htm#p46gun">p46 gun</a> and <a href="lex_g.htm#gliderless">gliderless</a> for two of these. These are the first p46
guns found which do not use a twin bees shuttle at all.
<p><a name=target>:</a><b>target</b> A necessary component of a <a href="lex_s.htm#slowsalvo">slow salvo</a> recipe used by a
<a href="lex_s.htm#singlearm">single-arm</a> <a href="lex_u.htm#universalconstructor">universal constructor</a>. A target usually consists of a
single object, or sometimes a small <a href="lex_c.htm#constellation">constellation</a> of common still
lifes and/or oscillators. See <a href="lex_i.htm#intermediatetarget">intermediate target</a>. If no <a href="lex_h.htm#hand">hand</a>
target is available, a construction arm may be unable to construct
anything, unless recipes are available to generate targets directly
from the <a href="lex_e.htm#elbow">elbow</a>.
<p><a name=teardrop>:</a><b>teardrop</b> The following <a href="lex_i.htm#inductioncoil">induction coil</a>, or the formation of two
beehives that it evolves into after 20 generations. (Compare
<a href="lex_b.htm#butterfly">butterfly</a>, where the beehives are five cells further apart.)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO.$O..O$O..O$.OO.$"
>OOO.
O..O
O..O
.OO.
</a></pre></td></tr></table></center>
<p><a name=technician>:</a><b>technician</b> (p5) Found by Dave Buckingham, January 1973.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$....O.O....$....OO.....$..OO.......$.O...OOO...$O..OO...O.O$.OO....O.OO$...O.O.O...$...O...O...$....OOO....$......O.O..$.......OO..$"
>.....O.....
....O.O....
....OO.....
..OO.......
.O...OOO...
O..OO...O.O
.OO....O.OO
...O.O.O...
...O...O...
....OOO....
......O.O..
.......OO..
</a></pre></td></tr></table></center>
<p><a name=technicianfinishedproduct>:</a><b>technician finished product</b> = <a href="#technician">technician</a>
<p><a name=technology>:</a><b>technology</b> The collective set of known reactions exploiting one
subset of the Life universe. Examples of these subsets include
<a href="lex_g.htm#glidersynthesis">glider synthesis</a>, period 30 glider <a href="lex_s.htm#stream">streams</a>, <i>c</i>/3 <a href="lex_s.htm#spaceship">spaceships</a>,
<a href="lex_s.htm#sparker">sparkers</a>, <a href="lex_h.htm#herschelconduit">Herschel conduits</a>, and <a href="lex_s.htm#slowsalvo">slow salvos</a>. As new reactions
and objects are found, over time any particular technology becomes
more versatile and complete. Many Life experts like to concentrate
on particular technologies.
<p><a name=tee>:</a><b>tee</b> A head-on collision between three <a href="lex_g.htm#glider">gliders</a>, producing a
perpendicular output glider that can be used to construct closely
spaced glider <a href="lex_s.htm#salvo">salvos</a>, or to <a href="lex_i.htm#inject">inject</a> a glider into an existing
<a href="lex_s.htm#stream">stream</a>. There are several workable <a href="lex_r.htm#recipe">recipes</a>. One of the more
useful is the following, because the <a href="#tandemglider">tandem glider</a> can be generated
by a small <a href="lex_h.htm#herschel">Herschel</a> <a href="lex_c.htm#converter">converter</a>, <a href="lex_s.htm#sw1t43">SW1T43</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............O.$..............O..$..............OOO$.........O.......$.........O.O.....$.........OO......$.OO..............$O.O..............$..O..............$"
>...............O.
..............O..
..............OOO
.........O.......
.........O.O.....
.........OO......
.OO..............
O.O..............
..O..............
</a></pre></td></tr></table></center>
<p><a name=teeth>:</a><b>teeth</b> A 65-cell quadratic growth pattern found by Nick Gotts in March
2000. This (and a related 65-cell pattern which Gotts found at about
the same time) beat the record previously held by <a href="lex_m.htm#mosquito5">mosquito5</a> for
smallest population known to have superlinear growth, but was later
superseded by <a href="lex_c.htm#catacryst">catacryst</a>. See <a href="lex_s.htm#switchenginepingpong">switch-engine ping-pong</a> for the
lowest-population <a href="lex_s.htm#superlineargrowth">superlinear growth</a> pattern as of July 2018, along
with a list of the record-holders.
<p><a name=telegraph>:</a><b>telegraph</b> A pattern created by Jason Summers in February 2003. It
transmits and receives information using a rare type of
<a href="lex_r.htm#reburnablefuse">reburnable fuse</a>, a <a href="lex_l.htm#lightspeedwire">lightspeed wire</a> made from a chain of beehives,
at the rate of 1440 ticks per bit. The rate of travel of signals
through the entire <a href="#transceiver">transceiver</a> device can be increased to any speed
strictly less than the <a href="lex_s.htm#speedoflight">speed of light</a> by increasing the length of
the beehive chain appropriately.
<p>"Telegraph" may also refer to any device that sends and receives
lightspeed signals; see also <a href="lex_p.htm#p1telegraph">p1 telegraph</a>,
<a href="lex_h.htm#highbandwidthtelegraph">high-bandwidth telegraph</a>.
<p><a name=ternaryreaction>:</a><b>ternary reaction</b> Any reaction between three objects. In particular,
a reaction in which two gliders from one stream and one glider from a
crossing stream of the same period annihilate each other. This can
be used to combine two glider guns of the same period to produce a
new glider gun with double the period.
<p><a name=testtubebaby>:</a><b>test tube baby</b> (p2)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....OO$O.O..O.O$..O..O..$..O..O..$...OO...$"
>OO....OO
O.O..O.O
..O..O..
..O..O..
...OO...
</a></pre></td></tr></table></center>
<p><a name=tetraplet>:</a><b>tetraplet</b> Any 4-cell <a href="lex_p.htm#polyplet">polyplet</a>.
<p><a name=tetromino>:</a><b>tetromino</b> Any 4-cell <a href="lex_p.htm#polyomino">polyomino</a>. There are five such objects, shown
below. The first is the <a href="lex_b.htm#block">block</a>, the second is the <a href="#ttetromino">T-tetromino</a> and
the remaining three rapidly evolve into <a href="lex_b.htm#beehive">beehives</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO......OOO......OOOO......OOO......OO.$OO.......O...................O.......OO$"
>OO......OOO......OOOO......OOO......OO.
OO.......O...................O.......OO
</a></pre></td></tr></table></center>
<p><a name=theonlinelifelikecasoupsearch>:</a><b>The Online Life-Like CA Soup Search</b> A distributed search effort set
up by Nathaniel Johnston in 2009, using a Python script running in
<a href="lex_g.htm#golly">Golly</a>. Results included a collection of the longest-lived 20x20
soups, as well as a <a href="lex_c.htm#census">census</a> of over 174 billion <a href="lex_a.htm#ash">ash</a> objects. It
has since been superseded by <a href="lex_c.htm#catagolue">Catagolue</a>.
<p><a name=therecursiveuniverse>:</a><b>The Recursive Universe</b> A popular science book by William Poundstone
(1985) dealing with the nature of the universe, illuminated by
parallels with the game of Life. This book brought to a wider
audience many of the results that first appeared in <a href="lex_l.htm#lifeline">LifeLine</a>. It
also outlines the proof of the existence of a <a href="lex_u.htm#universalconstructor">universal constructor</a>
in Life first given in <a href="lex_w.htm#winningways">Winning Ways</a>.
<p><a name=thumb>:</a><b>thumb</b> A <a href="lex_s.htm#spark">spark</a>-like protrusion which flicks out in a manner
resembling a thumb being flicked. Below on the left is a p9 thumb
sparker found by Dean Hickerson in October 1998. On the right is a
p4 example found by David Eppstein in June 2000.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O..............O.....$...OO...O.........OO...O....$...O.....O.OO.....O.....O...$OO.O.O......O......OOO.O.OO.$OO.O.OO.OOOO............OO.O$...O.O...........OOOOOO....O$...O.O.OOO.......O....OOOOO.$....O.O...O.........O.......$......O..OO........O.OOOO...$......OO...........O.O..O...$....................O.......$"
>.......O..............O.....
...OO...O.........OO...O....
...O.....O.OO.....O.....O...
OO.O.O......O......OOO.O.OO.
OO.O.OO.OOOO............OO.O
...O.O...........OOOOOO....O
...O.O.OOO.......O....OOOOO.
....O.O...O.........O.......
......O..OO........O.OOOO...
......OO...........O.O..O...
....................O.......
</a></pre></td></tr></table></center>
<p><a name=thunderbird>:</a><b>thunderbird</b> (stabilizes at time 243)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO$...$.O.$.O.$.O.$"
>OOO
...
.O.
.O.
.O.
</a></pre></td></tr></table></center>
<p><a name=tick>:</a><b>tick</b> = <a href="lex_g.htm#generation">generation</a>
<p><a name=tictactoe>:</a><b>tic tac toe</b> = <a href="lex_o.htm#octagonii">octagon II</a>
<p><a name=tie>:</a><b>tie</b> A term used in naming certain <a href="lex_s.htm#stilllife">still lifes</a> (and the <a href="lex_s.htm#stator">stator</a>
part of certain <a href="lex_o.htm#oscillator">oscillators</a>). It indicates that the object
consists of two smaller objects joined point to point, as in
<a href="lex_s.htm#shiptieboat">ship tie boat</a>.
<p><a name=timebomb>:</a><b>time bomb</b> The following pattern by Doug Petrie, which is really just
a glider-producing <a href="lex_s.htm#switchengine">switch engine</a> in disguise. See
<a href="lex_i.htm#infinitegrowth">infinite growth</a> for some better examples of a similar nature.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O...........OO$O.O....O......O$.......O....O..$..O..O...O..O..$..OO......O....$...O...........$"
>.O...........OO
O.O....O......O
.......O....O..
..O..O...O..O..
..OO......O....
...O...........
</a></pre></td></tr></table></center>
<p><a name=titanictoroidaltraveler>:</a><b>titanic toroidal traveler</b> The <a href="lex_s.htm#superstring">superstring</a> with the following
repeating segment. The front part becomes p16, but the eventual fate
of the detached back part is unknown.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOOOOO$OOO...$"
>OOOOOO
OOO...
</a></pre></td></tr></table></center>
<p><a name=tl>:</a><b>TL</b> = <a href="#trafficlight">traffic light</a>
<p><a name=tnosedp4>:</a><b>T-nosed p4</b> (p4) Found by Robert Wainwright in October 1989. See also
<a href="lex_f.htm#filter">filter</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$.....O.....$....OOO....$...........$...........$...........$...OOOOO...$..O.OOO.O..$..O.O.O.O..$.OO.O.O.OO.$O..OO.OO..O$OO.......OO$"
>.....O.....
.....O.....
....OOO....
...........
...........
...........
...OOOOO...
..O.OOO.O..
..O.O.O.O..
.OO.O.O.OO.
O..OO.OO..O
OO.......OO
</a></pre></td></tr></table></center>
<p><a name=tnosedp5>:</a><b>T-nosed p5</b> (p5) Found by Nicolay Beluchenko in April 2005.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO...............OO.OO.....O........$..O..O.........OO.O.OOO.OO......O........$.O.O.O.....O....O.O.OOO......OO.O........$O..O.O.OOOOOO.....O....O.O...OO.O........$.OO.O.O..O...OOO..O.OOOO..O.O.OO.OO......$..O.O..OO.O..O..O.OO....OOO.O.O....OO....$.O..O...O..O.O.OO....OOO...O.............$.O.O.O...OOO.O...OOOO...O..O.O..OO.O..O..$OO.O.........OO.O....O.O.O.O........O.OOO$.O.O.O...OOO.O...OOOO...O..O.O..OO.O..O..$.O..O...O..O.O.OO....OOO...O.............$..O.O..OO.O..O..O.OO....OOO.O.O....OO....$.OO.O.O..O...OOO..O.OOOO..O.O.OO.OO......$O..O.O.OOOOOO.....O....O.O...OO.O........$.O.O.O.....O....O.O.OOO......OO.O........$..O..O.........OO.O.OOO.OO......O........$.....OO...............OO.OO.....O........$"
>.....OO...............OO.OO.....O........
..O..O.........OO.O.OOO.OO......O........
.O.O.O.....O....O.O.OOO......OO.O........
O..O.O.OOOOOO.....O....O.O...OO.O........
.OO.O.O..O...OOO..O.OOOO..O.O.OO.OO......
..O.O..OO.O..O..O.OO....OOO.O.O....OO....
.O..O...O..O.O.OO....OOO...O.............
.O.O.O...OOO.O...OOOO...O..O.O..OO.O..O..
OO.O.........OO.O....O.O.O.O........O.OOO
.O.O.O...OOO.O...OOOO...O..O.O..OO.O..O..
.O..O...O..O.O.OO....OOO...O.............
..O.O..OO.O..O..O.OO....OOO.O.O....OO....
.OO.O.O..O...OOO..O.OOOO..O.O.OO.OO......
O..O.O.OOOOOO.....O....O.O...OO.O........
.O.O.O.....O....O.O.OOO......OO.O........
..O..O.........OO.O.OOO.OO......O........
.....OO...............OO.OO.....O........
</a></pre></td></tr></table></center>
<p><a name=tnosedp6>:</a><b>T-nosed p6</b> (p6) Found by Achim Flammenkamp in September 1994. There
is also a much larger and fully symmetric version found by
Flammenkamp in August 1994.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......OO...OO......$......O.O.O.O......$.......O...O.......$...................$..O.O.O.....O.O.O..$OOO.O.OO...OO.O.OOO$..O.O.O.....O.O.O..$...................$.......O...O.......$......O.O.O.O......$......OO...OO......$"
>......OO...OO......
......O.O.O.O......
.......O...O.......
...................
..O.O.O.....O.O.O..
OOO.O.OO...OO.O.OOO
..O.O.O.....O.O.O..
...................
.......O...O.......
......O.O.O.O......
......OO...OO......
</a></pre></td></tr></table></center>
<p><a name=toad>:</a><b>toad</b> (p2) Found by Simon Norton, May 1970. This is the second most
common <a href="lex_o.htm#oscillator">oscillator</a>, although <a href="lex_b.htm#blinker">blinkers</a> are more than a hundred
times as frequent. See also <a href="lex_k.htm#killertoads">killer toads</a>. A toad can be used as a
90-degree <a href="lex_o.htm#onetime">one-time</a> <a href="#turner">turner</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO$OOO.$"
>.OOO
OOO.
</a></pre></td></tr></table></center>
<p>The protruding cells at the edges can perturb some reactions by
encouraging and then suppressing births on successive ticks. For
example, a toad can replace the northwest eater in the
<a href="lex_c.htm#callahangtoh">Callahan G-to-H</a> converter, allowing it to be packed one diagonal
cell closer to other circuits.
<p><a name=toadflipper>:</a><b>toad-flipper</b> A <a href="#toad">toad</a> <a href="lex_h.htm#hassler">hassler</a> that works in the manner of the
following example. Two <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#sparker">sparkers</a>, here <a href="lex_p.htm#pentadecathlon">pentadecathlons</a>,
apply their <a href="lex_s.htm#spark">sparks</a> to the toad in order to flip it over. When the
sparks are applied again it is flipped back. Either or both domino
sparkers can be moved down two spaces from the position shown and the
toad-flipper will still work, but because of symmetry there are
really only two different types. Compare <a href="#toadsucker">toad-sucker</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..............O.$.O..............O.$O.O............O.O$.O..............O.$.O......O.......O.$.O......OO......O.$.O......OO......O.$O.O......O.....O.O$.O..............O.$.O..............O.$"
>.O..............O.
.O..............O.
O.O............O.O
.O..............O.
.O......O.......O.
.O......OO......O.
.O......OO......O.
O.O......O.....O.O
.O..............O.
.O..............O.
</a></pre></td></tr></table></center>
<p><a name=toadsucker>:</a><b>toad-sucker</b> A <a href="#toad">toad</a> <a href="lex_h.htm#hassler">hassler</a> that works in the manner of the
following example. Two <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#sparker">sparkers</a>, here <a href="lex_p.htm#pentadecathlon">pentadecathlons</a>,
apply their <a href="lex_s.htm#spark">sparks</a> to the toad in order to shift it. When the
sparks are applied again it is shifted back. Either or both domino
sparkers can be moved down two spaces from the position shown and the
toad-sucker will still work, but because of symmetry there are really
only three different types. Compare <a href="#toadflipper">toad-flipper</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O................$.O..............O.$O.O.............O.$.O.............O.O$.O......O.......O.$.O......OO......O.$.O......OO......O.$O.O......O......O.$.O.............O.O$.O..............O.$................O.$"
>.O................
.O..............O.
O.O.............O.
.O.............O.O
.O......O.......O.
.O......OO......O.
.O......OO......O.
O.O......O......O.
.O.............O.O
.O..............O.
................O.
</a></pre></td></tr></table></center>
<p><a name=toaster>:</a><b>toaster</b> (p5) Found by Dean Hickerson, April 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O......OO..$...O.O.OO..O...$...O.O.O.O.O...$..OO.O...O.OO..$O...OO.O.OO...O$...O.......O...$...O.......O...$O...OO.O.OO...O$..OO.O...O.OO..$...O.O.O.O.O...$...O.O.OO..O...$....O......OO..$"
>....O......OO..
...O.O.OO..O...
...O.O.O.O.O...
..OO.O...O.OO..
O...OO.O.OO...O
...O.......O...
...O.......O...
O...OO.O.OO...O
..OO.O...O.OO..
...O.O.O.O.O...
...O.O.OO..O...
....O......OO..
</a></pre></td></tr></table></center>
<p><a name=toggleablegun>:</a><b>toggleable gun</b> Any <a href="lex_g.htm#gun">gun</a> that can be turned off or turned on by the
same external signal - the simplest possible switching mechanism. An
input signal causes the gun to stop producing gliders. Another input
signal from the same source restores the gun to its original
function. Compare <a href="lex_s.htm#switchablegun">switchable gun</a>.
<p>Here's a small example by Dean Hickerson from September 1996:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OO..............O..$..............O.O.............O.O$..............O...............OO.$.................................$.................................$.................................$.................................$...............O..O....b.........$.OOOO..............O..b..........$O...O..........O...O..bbb........$....O...........OOOO.............$O..O........................aaa..$............................a....$.............................a...$"
>..............OO..............O..
..............O.O.............O.O
..............O...............OO.
.................................
.................................
.................................
.................................
...............O..O....b.........
.OOOO..............O..b..........
O...O..........O...O..bbb........
....O...........OOOO.............
O..O........................aaa..
............................a....
.............................a...
</a></pre></td></tr></table></center>
In the figure above, glider B and an LWSS are about to send a glider
NW. Glider A will delete the next glider after B, turning off the
output stream. But if the device were already off, B wouldn't be
present and A would instead delete the leading LWSS, turning the
device back on.
<p><a name=togglecircuit>:</a><b>toggle circuit</b> Any signal-processing <a href="lex_c.htm#circuit">circuit</a> that switches back and
forth between two possible states or outputs. An early example is
the <a href="lex_b.htm#boatbit">boat-bit</a>. More recent discoveries include the <a href="lex_s.htm#semisnark">semi-Snarks</a>,
which alternate between reflecting and absorbing input <a href="lex_g.htm#glider">gliders</a>.
The following B-to-G <a href="lex_c.htm#converter">converter</a> sends alternate glider outputs in
opposite directions.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO....................................OO....$......OO..O.O...............................OO..O.O....$......O...O....O............................O...O....O.$.......OOO.OOOOO.............................OOO.OOOOO.$.........O.O...................................O.O.....$.........O.O.OOO...............................O.O.OOO.$..........OO.O..O...............................OO.O..O$...............OO....................................OO$.......................................................$.......................................................$.............................................OO........$.............................................OO........$.......................................................$.......................................................$.......................................................$OO....................................OO...............$OO....................................OO...............$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.........OO....................................OO......$.........OO....................................OO......$.......................................................$OO.O.......O..........................OO.O.......O.....$O.OO......OOO.........................O.OO......OOO....$.........OO..O.................................OO..O...$"
>...........OO....................................OO....
......OO..O.O...............................OO..O.O....
......O...O....O............................O...O....O.
.......OOO.OOOOO.............................OOO.OOOOO.
.........O.O...................................O.O.....
.........O.O.OOO...............................O.O.OOO.
..........OO.O..O...............................OO.O..O
...............OO....................................OO
.......................................................
.......................................................
.............................................OO........
.............................................OO........
.......................................................
.......................................................
.......................................................
OO....................................OO...............
OO....................................OO...............
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.........OO....................................OO......
.........OO....................................OO......
.......................................................
OO.O.......O..........................OO.O.......O.....
O.OO......OOO.........................O.OO......OOO....
.........OO..O.................................OO..O...
</a></pre></td></tr></table></center>
<p><a name=tollcass>:</a><b>TOLLCASS</b> Acronym for <a href="#theonlinelifelikecasoupsearch">The Online Life-Like CA Soup Search</a>.
<p><a name=toolkit>:</a><b>toolkit</b> A set of Life reactions and mechanisms that can be used to
solve any problem in a specific pre-defined class of problems:
<a href="lex_g.htm#glider">glider</a> timing adjustment, <a href="lex_s.htm#salvo">salvo</a> creation, <a href="lex_s.htm#seed">seed</a> construction,
etc. See also <a href="lex_u.htm#universaltoolkit">universal toolkit</a>, <a href="#technology">technology</a>.
<p><a name=torus>:</a><b>torus</b> As applies to Life, usually means a finite Life universe which
takes the form of an <i>m</i> x <i>n</i> rectangle with the bottom edge considered
to be joined to the top edge and the left edge joined to the right
edge, so that the universe is topologically a torus. There are also
other less obvious ways of obtaining a toroidal universe.
<p>See also <a href="lex_k.htm#kleinbottle">Klein bottle</a>. Every object in a torus universe
obviously either dies or becomes a <a href="lex_s.htm#stilllife">still life</a> or <a href="lex_o.htm#oscillator">oscillator</a>.
<p><a name=totalaperiodic>:</a><b>total aperiodic</b> Any finite pattern which evolves in such a way that
no cell in the Life plane is eventually periodic. The first example
was found by Bill Gosper in November 1997. A few days later he found
the following much smaller example consisting of three copies of a
p12 <a href="lex_b.htm#backrake">backrake</a> by Dave Buckingham.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........................................O.................$........................................OOO................$.......................................OO.O.....O..........$.......................................OOO.....OOO.........$........................................OO....O..OO...OOO..$..............................................OOO....O..O..$........................................................O..$........................................................O..$........................................................O..$........................................OOO............O...$........................................O..O...............$........................................O..................$........................................O..................$.........................................O.................$...........................................................$...........................................................$...........................................................$...........................................................$...........................................................$...........................................................$......................................OOO..................$......................................O..O...........O.....$......................................O.............OOO....$......................................O............OO.O....$......................................O............OOO.....$.......................................O............OO.....$...........................................................$...........................................................$...................................OOO.....................$..................................OOOOO....................$..................................OOO.OO.......OO........O.$.....................................OO.......OOOO........O$..............................................OO.OO...O...O$................................................OO.....OOOO$...........................................................$...........................................................$....................O......................................$.....................O.....................................$.OO.............O....O................................OOO..$OOOO.............OOOOO..................................O..$OO.OO...................................................O..$..OO...................................................O...$....................................O......................$.....................................O.....................$.....................OO..........O...O.....................$......................OO..........OOOO...............OO....$.....................OO...........................OOO.OO...$.....................O............................OOOOO....$...................................................OOO.....$...........................................................$......................OO...................................$.............OOOO....OOOO..................................$............O...O....OO.OO.................................$.OOOOO..........O......OO..................................$O....O.........O...........................................$.....O.....................................................$....O......................................................$"
>.........................................O.................
........................................OOO................
.......................................OO.O.....O..........
.......................................OOO.....OOO.........
........................................OO....O..OO...OOO..
..............................................OOO....O..O..
........................................................O..
........................................................O..
........................................................O..
........................................OOO............O...
........................................O..O...............
........................................O..................
........................................O..................
.........................................O.................
...........................................................
...........................................................
...........................................................
...........................................................
...........................................................
...........................................................
......................................OOO..................
......................................O..O...........O.....
......................................O.............OOO....
......................................O............OO.O....
......................................O............OOO.....
.......................................O............OO.....
...........................................................
...........................................................
...................................OOO.....................
..................................OOOOO....................
..................................OOO.OO.......OO........O.
.....................................OO.......OOOO........O
..............................................OO.OO...O...O
................................................OO.....OOOO
...........................................................
...........................................................
....................O......................................
.....................O.....................................
.OO.............O....O................................OOO..
OOOO.............OOOOO..................................O..
OO.OO...................................................O..
..OO...................................................O...
....................................O......................
.....................................O.....................
.....................OO..........O...O.....................
......................OO..........OOOO...............OO....
.....................OO...........................OOO.OO...
.....................O............................OOOOO....
...................................................OOO.....
...........................................................
......................OO...................................
.............OOOO....OOOO..................................
............O...O....OO.OO.................................
.OOOOO..........O......OO..................................
O....O.........O...........................................
.....O.....................................................
....O......................................................
</a></pre></td></tr></table></center>
<p><a name=tpentomino>:</a><b>T-pentomino</b> Conway's name for the following <a href="lex_p.htm#pentomino">pentomino</a>, which is a
common <a href="lex_p.htm#parent">parent</a> of the <a href="#ttetromino">T-tetromino</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO$.O.$.O.$"
>OOO
.O.
.O.
</a></pre></td></tr></table></center>
<p><a name=track>:</a><b>track</b> A path made out of <a href="lex_c.htm#conduit">conduits</a>, often ending where it begins so
that the active <a href="lex_s.htm#signal">signal</a> object is cycled forever, forming an
<a href="lex_o.htm#oscillator">oscillator</a> or a <a href="lex_g.htm#gun">gun</a>.
<p>This term has also been used to refer to the <a href="lex_l.htm#lane">lane</a> on which a
<a href="lex_g.htm#glider">glider</a> or <a href="lex_s.htm#spaceship">spaceship</a> travels. The concept is very similar, but a
reference to a "track" now usually implies a non-trivial supporting
conduit.
<p><a name=tractorbeam>:</a><b>tractor beam</b> A stream of <a href="lex_s.htm#spaceship">spaceships</a> that can draw an object towards
the source of the stream. The example below shows a tractor beam
pulling a <a href="lex_l.htm#loaf">loaf</a>; this was used by Dean Hickerson to construct a
<a href="lex_s.htm#sawtooth">sawtooth</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................O..O......................$.....OOOO...........O..............OOOO........$.....O...O..........O...O..........O...O.......$.....O........OO....OOOO...........O........OO.$.OO...O..O...OOOO...........OO......O..O...OOOO$O..O........OO.OO..........OO.OO..........OO.OO$O.O..........OO.............OOOO...........OO..$.O...........................OO................$"
>.....................O..O......................
.....OOOO...........O..............OOOO........
.....O...O..........O...O..........O...O.......
.....O........OO....OOOO...........O........OO.
.OO...O..O...OOOO...........OO......O..O...OOOO
O..O........OO.OO..........OO.OO..........OO.OO
O.O..........OO.............OOOO...........OO..
.O...........................OO................
</a></pre></td></tr></table></center>
<p><a name=trafficcircle>:</a><b>traffic circle</b> (p100)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................OO....OO...................$.....................O.O..O.O...................$.......................O..O.....................$......................OO..OO....................$.....................OOO..OOO...................$.......................O..O.....................$...............................O................$..............................O.OO..............$..................................O.............$..........................O...O..O.O............$..........................O.....O..O............$..........................O......OO.............$.........OO.....................................$........O..O..........OOO...OOO.................$.......O.O.O....................................$......OOO.O...............O.....................$......OOO.................O.....................$..........................O.....................$............OOO.................................$OO..O................OOO........................$O..OO.....O.....O...............................$.OOOOO....O.....O..O.....O.................O..OO$..........O.....O..O.....O.................OO..O$...................O.....O.......OOO......OOOOO.$.OOOOO......OOO.................................$O..OO................OOO.......O.....O..........$OO..O..........................O.....O....OOOOO.$...............................O.....O.....OO..O$...........................................O..OO$.................................OOO............$.......................................OO.......$......................................OOO.......$.....................................O.OO.......$....................................O.O.........$....................OOO.............O..O........$.....................................OO.........$.............OO....O..O.........................$............O..O................................$............O.O.O...............................$.............O..O...............................$.................O..............................$..............O.O...............................$.....................O..O.......................$...................OOO..OOO.....................$....................OO..OO......................$.....................O..O.......................$...................O.O..O.O.....................$...................OO....OO.....................$"
>.....................OO....OO...................
.....................O.O..O.O...................
.......................O..O.....................
......................OO..OO....................
.....................OOO..OOO...................
.......................O..O.....................
...............................O................
..............................O.OO..............
..................................O.............
..........................O...O..O.O............
..........................O.....O..O............
..........................O......OO.............
.........OO.....................................
........O..O..........OOO...OOO.................
.......O.O.O....................................
......OOO.O...............O.....................
......OOO.................O.....................
..........................O.....................
............OOO.................................
OO..O................OOO........................
O..OO.....O.....O...............................
.OOOOO....O.....O..O.....O.................O..OO
..........O.....O..O.....O.................OO..O
...................O.....O.......OOO......OOOOO.
.OOOOO......OOO.................................
O..OO................OOO.......O.....O..........
OO..O..........................O.....O....OOOOO.
...............................O.....O.....OO..O
...........................................O..OO
.................................OOO............
.......................................OO.......
......................................OOO.......
.....................................O.OO.......
....................................O.O.........
....................OOO.............O..O........
.....................................OO.........
.............OO....O..O.........................
............O..O................................
............O.O.O...............................
.............O..O...............................
.................O..............................
..............O.O...............................
.....................O..O.......................
...................OOO..OOO.....................
....................OO..OO......................
.....................O..O.......................
...................O.O..O.O.....................
...................OO....OO.....................
</a></pre></td></tr></table></center>
<p><a name=trafficjam>:</a><b>traffic jam</b> Any <a href="#trafficlight">traffic light</a> <a href="lex_h.htm#hassler">hassler</a>, such as <a href="#trafficcircle">traffic circle</a>.
The term is also applied to the following reaction, used in most
traffic light hasslers, in which two traffic lights interact in such
a way as to reappear after 25 generations with an extra 6 spaces
between them. See <a href="#trafficlightsextruder">traffic lights extruder</a> for a way to make this
reaction <a href="lex_e.htm#extensible">extensible</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OOO...........$...........OOO..$O.....O.........$O.....O..O.....O$O.....O..O.....O$.........O.....O$..OOO...........$...........OOO..$"
>..OOO...........
...........OOO..
O.....O.........
O.....O..O.....O
O.....O..O.....O
.........O.....O
..OOO...........
...........OOO..
</a></pre></td></tr></table></center>
<p><a name=trafficlight>:</a><b>traffic light</b> (p2) A common formation of four blinkers.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OOO..$.......$O.....O$O.....O$O.....O$.......$..OOO..$"
>..OOO..
.......
O.....O
O.....O
O.....O
.......
..OOO..
</a></pre></td></tr></table></center>
<p><a name=trafficlightsextruder>:</a><b>traffic lights extruder</b> A growing pattern constructed by Jason
Summers in October 2006, which slowly creates an outward-growing
chain of <a href="#trafficlight">traffic lights</a>. The growth occurs in waves which travel
through the chain from one end to the other. It can be thought of as
a complex <a href="lex_f.htm#fencepost">fencepost</a> for a <a href="lex_w.htm#wick">wick</a> that does not need a
<a href="lex_w.htm#wickstretcher">wickstretcher</a>.
<p>The following illustrates the reaction used, in which a newly
created traffic light at the left eventually pushes the rightmost one
slightly to the right.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................O.......................O....$......................O.......................O....$.........OOO..........O..........OOO..........O....$.OO................................................$OOO....O.....O....OOO...OOO....O.....O....OOO...OOO$.OO....O.....O.................O.....O.............$.......O.....O........O........O.....O........O....$......................O.......................O....$.........OOO..........O..........OOO..........O....$"
>......................O.......................O....
......................O.......................O....
.........OOO..........O..........OOO..........O....
.OO................................................
OOO....O.....O....OOO...OOO....O.....O....OOO...OOO
.OO....O.....O.................O.....O.............
.......O.....O........O........O.....O........O....
......................O.......................O....
.........OOO..........O..........OOO..........O....
</a></pre></td></tr></table></center>
<p><a name=transbeaconontable>:</a><b>trans-beacon on table</b> (p2)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO$.....O$..O...$..OO..$......$OOOO..$O..O..$"
>....OO
.....O
..O...
..OO..
......
OOOO..
O..O..
</a></pre></td></tr></table></center>
<p><a name=transboatwithtail>:</a><b>trans-boat with tail</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...$O.O..$.O.O.$...O.$...OO$"
>OO...
O.O..
.O.O.
...O.
...OO
</a></pre></td></tr></table></center>
<p><a name=transceiver>:</a><b>transceiver</b> = <a href="lex_h.htm#herscheltransceiver">Herschel transceiver</a>.
<p><a name=transloafwithtail>:</a><b>trans-loaf with tail</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O....$O.O...$O..O..$.OO.O.$....O.$....OO$"
>.O....
O.O...
O..O..
.OO.O.
....O.
....OO
</a></pre></td></tr></table></center>
<p><a name=transmitter>:</a><b>transmitter</b> = <a href="lex_h.htm#herscheltransmitter">Herschel transmitter</a>.
<p><a name=transparent>:</a><b>transparent</b> In signal circuitry, a term used for a <a href="lex_c.htm#catalyst">catalyst</a> that is
completely destroyed by the passing signal, then rebuilt. Often
(though not always) the active reaction passes directly through the
area occupied by the transparent catalyst, then rebuilds the catalyst
behind itself, as in the <a href="#transparentblockreaction">transparent block reaction</a>. See also
<a href="#transparentlane">transparent lane</a>.
<p><a name=transparentblockreaction>:</a><b>transparent block reaction</b> A certain reaction between a block and a
<a href="lex_h.htm#herschel">Herschel</a> <a href="lex_p.htm#predecessor">predecessor</a> in which the block reappears in its original
place some time later, the reaction having effectively passed through
it. This reaction was found by Dave Buckingham in 1988. It has been
used in some <a href="lex_h.htm#herschelconduit">Herschel conduits</a>, and in the <a href="lex_g.htm#gunstar">gunstars</a>. Because the
reaction involves a Herschel predecessor rather than an actual
Herschel, the following diagram shows instead a <a href="lex_b.htm#bheptomino">B-heptomino</a> (which
by itself would evolve into a block and a Herschel).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.............$OO..........OO$.OO.........OO$OO............$"
>O.............
OO..........OO
.OO.........OO
OO............
</a></pre></td></tr></table></center>
<p><a name=transparentdebriseffect>:</a><b>transparent debris effect</b> A mechanism where a <a href="lex_h.htm#herschel">Herschel</a> or other
active reaction completely destroys a <a href="lex_c.htm#catalyst">catalyst</a> in a particular
location in a <a href="lex_c.htm#conduit">conduit</a>. After passing through or past that
location, the same reaction then recreates the catalyst in exactly
its original position. This type of catalysis is surprisingly common
in <a href="lex_s.htm#signal">signal</a> <a href="lex_c.htm#circuit">circuitry</a>. For an example, see
<a href="#transparentblockreaction">transparent block reaction</a>.
<p>The transparent object is most often a very common <a href="lex_s.htm#stilllife">still life</a>
such as a block or beehive. Rarer objects are not unknown; for
example, a transparent <a href="lex_l.htm#loaf">loaf</a> was found by Stephen Silver in October
1997, in a very useful <a href="lex_e.htm#elementaryconduit">elementary conduit</a> making up part of a
<a href="lex_h.htm#herschelreceiver">Herschel receiver</a>. However, not surprisingly, rarer objects are
much less likely to reappear in exactly the correct location and
orientation, so transparent reactions involving them are much more
difficult to find, on average.
<p><a name=transparentlane>:</a><b>transparent lane</b> A path through a signal-producing <a href="lex_c.htm#circuit">circuit</a> that can
be used to merge signal streams. The signal is usually a
<a href="lex_s.htm#standardspaceship">standard spaceship</a> such as a <a href="lex_g.htm#glider">glider</a>. It can either be produced
by the circuit, or it can come from elsewhere, passing safely through
on the same <a href="lex_l.htm#lane">lane</a> without interacting with the circuit. A good
example is the NW31 converter, which has two glider outputs on
transparent lanes:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.......................$.O.......................$.O.O.....................$..OO.....................$.........................$.........................$.........................$.......................OO$.......................OO$.........................$..O......................$..O.O....................$..OOO....................$....O....................$.........................$.........................$.........................$.........................$.........................$.........................$.........................$.........................$.............OO..........$.............OO..........$"
>OO.......................
.O.......................
.O.O.....................
..OO.....................
.........................
.........................
.........................
.......................OO
.......................OO
.........................
..O......................
..O.O....................
..OOO....................
....O....................
.........................
.........................
.........................
.........................
.........................
.........................
.........................
.........................
.............OO..........
.............OO..........
</a></pre></td></tr></table></center>
<p>The optional third output shown in <a href="lex_n.htm#nw31">NW31</a> is non-transparent,
because the upper <a href="lex_e.htm#eater1">eater1</a> catalyst would get in the way of a passing
glider on the same lane.
<p><a name=tremisnark>:</a><b>tremi-Snark</b> A <a href="lex_c.htm#colourpreserving">colour-preserving</a> period-multiplying <a href="lex_s.htm#signal">signal</a>
<a href="lex_c.htm#conduit">conduit</a> found by Tanner Jacobi on 7 September 2017, producing one
output <a href="lex_g.htm#glider">glider</a> for every three input gliders. It uses the same
block-to-pre-honeyfarm <a href="lex_b.htm#bait">bait</a> reaction as the <a href="lex_s.htm#snark">Snark</a>, and so has the
same 43-<a href="#tick">tick</a> <a href="lex_r.htm#recoverytime">recovery time</a>. Compare <a href="lex_s.htm#semisnark">semi-Snark</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O............................$..O...........................$OOO...........................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$...........O..................$............OO................$...........OO.................$..............................$...........................O..$.........................OOO..$........................O.....$........................OO....$..............................$..............................$..............................$.......................O......$.....................O.O......$......................OO......$..............OO..............$.............O.O........O.....$.............O.........O.O....$............OO.........O.O....$........................O.....$..............................$..............................$..............................$.....................OO.OO....$.................OO..OO.O...OO$.................O......O.O..O$..................OOOOOOO.OO..$.........................O....$....................OOOO.O....$....................O..OO.....$"
>.O............................
..O...........................
OOO...........................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
...........O..................
............OO................
...........OO.................
..............................
...........................O..
.........................OOO..
........................O.....
........................OO....
..............................
..............................
..............................
.......................O......
.....................O.O......
......................OO......
..............OO..............
.............O.O........O.....
.............O.........O.O....
............OO.........O.O....
........................O.....
..............................
..............................
..............................
.....................OO.OO....
.................OO..OO.O...OO
.................O......O.O..O
..................OOOOOOO.OO..
.........................O....
....................OOOO.O....
....................O..OO.....
</a></pre></td></tr></table></center>
<p><a name=tricetongs>:</a><b>trice tongs</b> (p3) Found by Robert Wainwright, February 1982. In terms
of its 7x7 <a href="lex_b.htm#boundingbox">bounding box</a> this ties with <a href="lex_j.htm#jam">jam</a> as the smallest p3
<a href="lex_o.htm#oscillator">oscillator</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O....$..OOO..$OO...O.$.O.O.O.$.O.....$..OO..O$.....OO$"
>..O....
..OOO..
OO...O.
.O.O.O.
.O.....
..OO..O
.....OO
</a></pre></td></tr></table></center>
<p><a name=trigger>:</a><b>trigger</b> A <a href="lex_s.htm#signal">signal</a>, usually a single <a href="lex_g.htm#glider">glider</a>, that collides with a
<a href="lex_s.htm#seed">seed</a> <a href="lex_c.htm#constellation">constellation</a> to produce a relatively rare still life or
oscillator, or an output <a href="lex_s.htm#spaceship">spaceship</a> or other signal. The
constellation is destroyed or damaged in the process; compare
<a href="lex_c.htm#circuit">circuit</a>, <a href="lex_r.htm#reflector">reflector</a>. Here a pair of trigger gliders strike a
<a href="lex_d.htm#dirty">dirty</a> seed constellation assembled by Chris Cain in March 2015, to
launch a three-engine <a href="lex_c.htm#cordership">Cordership</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................................................OO.$................................................OO..OO.$................................................OO.....$.......................................................$.......................................................$.......................................................$........................................OO.............$........................................OO.............$...................................................OO..$..................................O................O.O.$.................................O.O...........OO...O.O$..................................OO..........O.O....O.$...............................................O.......$.......................................................$..................................O.................OOO$.................................O.O................O..$..................................OO.................O.$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$...........................O...........................$..........................O.O..........................$...........................OO..........................$.......................................................$.......................................................$...........................O...........................$..........................O.O..........................$...........................OO..........................$.......................................................$.......................................................$.......................................................$.......................................................$.......O....O..........................................$......O.O..O.O.........................................$.......OO...OO.........................................$.......................................................$.......................................................$.......................................................$.......................................................$OO.....................................................$O.O....................................................$.O.O...................................................$..O....................................................$.......................................................$.......................................................$.......................................................$.............O.........................................$............OO.........................................$............O.O........................................$"
>....................................................OO.
................................................OO..OO.
................................................OO.....
.......................................................
.......................................................
.......................................................
........................................OO.............
........................................OO.............
...................................................OO..
..................................O................O.O.
.................................O.O...........OO...O.O
..................................OO..........O.O....O.
...............................................O.......
.......................................................
..................................O.................OOO
.................................O.O................O..
..................................OO.................O.
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
...........................O...........................
..........................O.O..........................
...........................OO..........................
.......................................................
.......................................................
...........................O...........................
..........................O.O..........................
...........................OO..........................
.......................................................
.......................................................
.......................................................
.......................................................
.......O....O..........................................
......O.O..O.O.........................................
.......OO...OO.........................................
.......................................................
.......................................................
.......................................................
.......................................................
OO.....................................................
O.O....................................................
.O.O...................................................
..O....................................................
.......................................................
.......................................................
.......................................................
.............O.........................................
............OO.........................................
............O.O........................................
</a></pre></td></tr></table></center>
<p>"Trigger" is also used when a spaceship reacts with another object
to cause a reaction to occur whenever desired (but perhaps only at
particular intervals). The object being triggered lies <a href="lex_d.htm#dormant">dormant</a>
until the reaction is required. All <a href="#turner">turners</a> and <a href="lex_f.htm#freezedried">freeze-dried</a>
constellations are triggerable.
<p>In some cases the object is not destroyed so that the reaction can
be repeated after some <a href="lex_r.htm#repeattime">repeat time</a>. See for example <a href="lex_c.htm#converter">converter</a>
and <a href="lex_r.htm#reflector">reflector</a>, and more specifically <a href="lex_m.htm#mwssoutoftheblue">MWSS out of the blue</a> and
<a href="lex_q.htm#queenbeeshuttlepair">queen bee shuttle pair</a>.
<p><a name=triomino>:</a><b>triomino</b> Either of the two 3-cell <a href="lex_p.htm#polyomino">polyominoes</a>. The term is rarely
used in Life, since the two objects in question are simply the
<a href="lex_b.htm#blinker">blinker</a> and the <a href="lex_p.htm#preblock">pre-block</a>.
<p><a name=triplecaterer>:</a><b>triple caterer</b> (p3) Found by Dean Hickerson, October 1989. Compare
<a href="lex_c.htm#caterer">caterer</a> and <a href="lex_d.htm#doublecaterer">double caterer</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO.........$....O..O..OO....$....OO.O...O....$......O.OOO....O$..OOO.O.O....OOO$.O..O..O....O...$O.O..O...O..OO..$.O..............$..OO.OO.OO.OO...$...O...O...O....$...O...O...O....$"
>.....OO.........
....O..O..OO....
....OO.O...O....
......O.OOO....O
..OOO.O.O....OOO
.O..O..O....O...
O.O..O...O..OO..
.O..............
..OO.OO.OO.OO...
...O...O...O....
...O...O...O....
</a></pre></td></tr></table></center>
<p><a name=triplepseudo>:</a><b>triple pseudo</b> The following pattern, found by Gabriel Nivasch in July
2001. It is unique among 32-bit <a href="lex_s.htm#stilllife">still lifes</a> in that it can be
broken down into three <a href="lex_s.htm#stable">stable</a> pieces but not into two. The term
may also refer to any larger <a href="lex_s.htm#stable">stable</a> pattern with the same property.
See also <a href="lex_q.htm#quadpseudo">quad pseudo</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......OO$..O.O..O$.O.OO.O.$.O....OO$OO.OO...$...OO.OO$OO....O.$.O.OO.O.$O..O.O..$OO......$"
>......OO
..O.O..O
.O.OO.O.
.O....OO
OO.OO...
...OO.OO
OO....O.
.O.OO.O.
O..O.O..
OO......
</a></pre></td></tr></table></center>
<p><a name=triplet>:</a><b>triplet</b> Any 3-cell <a href="lex_p.htm#polyplet">polyplet</a>. There are 5 such objects, shown
below. The first two are the two <a href="#triomino">triominoes</a>, and the other three
vanish in two generations.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..................O.......O.......O..$OO......OOO......OO.......O.O.......O.$.....................................O$"
>O..................O.......O.......O..
OO......OOO......OO.......O.O.......O.
.....................................O
</a></pre></td></tr></table></center>
<p><a name=tripole>:</a><b>tripole</b> (p2) The <a href="lex_b.htm#barberpole">barberpole</a> of length 3.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....$O.O...$......$..O.O.$.....O$....OO$"
>OO....
O.O...
......
..O.O.
.....O
....OO
</a></pre></td></tr></table></center>
<p><a name=tritoad>:</a><b>tritoad</b> (p3) Found by Dave Buckingham, October 1977.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........OO.......$.........O........$..........O..OO...$.......OOO.O..O...$......O....OO.O.OO$......O.OO..O.O.OO$...OO.O...OO..O...$...O..OO...O.OO...$OO.O.O..OO.O......$OO.O.OO....O......$...O..O.OOO.......$...OO..O..........$........O.........$.......OO.........$"
>.........OO.......
.........O........
..........O..OO...
.......OOO.O..O...
......O....OO.O.OO
......O.OO..O.O.OO
...OO.O...OO..O...
...O..OO...O.OO...
OO.O.O..OO.O......
OO.O.OO....O......
...O..O.OOO.......
...OO..O..........
........O.........
.......OO.........
</a></pre></td></tr></table></center>
<p><a name=trivial>:</a><b>trivial</b> A trivial period-<i>N</i> oscillator is one in which every cell
oscillates at some smaller factor of <i>N</i>. See <a href="lex_o.htm#omniperiodic">omniperiodic</a>. For
example, the joining of a period 3 and a period 4 <a href="lex_o.htm#oscillator">oscillator</a> as
shown below creates a single object which is a trivial oscillator of
period 12.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O.O.$...........O$.......O..O.$......O.O.O.$......O..O..$....OO.OO...$...O..O.....$....O.O.....$OO...O......$.O.OO.......$...O........$...O........$"
>........O.O.
...........O
.......O..O.
......O.O.O.
......O..O..
....OO.OO...
...O..O.....
....O.O.....
OO...O......
.O.OO.......
...O........
...O........
</a></pre></td></tr></table></center>
However, there are trivial oscillators that meet this requirement,
but may still be considered to be <a href="lex_n.htm#nontrivial">non-trivial</a> because the
different-period <a href="lex_r.htm#rotor">rotors</a> are not separated by <a href="lex_s.htm#stator">stator</a> cells. An
example is Dean Hickerson's <a href="#trivialp6">trivial p6</a>. Conversely, there are
oscillators formed by trivial combinations of high-period <a href="lex_g.htm#gun">guns</a> or
<a href="lex_s.htm#sparker">sparkers</a> that are only technically non-trivial, because the
lower-period components overlap but do not interact in any way.
<p>"Trivial" is also used to describe a <a href="lex_p.htm#parent">parent</a> of an object which
has groups of cells that can be removed without changing the result,
such as isolated faraway cells. For example, here is a trivial
parent of a block.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O......$.O....O$.O.....$O......$"
>O......
.O....O
.O.....
O......
</a></pre></td></tr></table></center>
<p><a name=trivialp6>:</a><b>trivial p6</b> (p6) An <a href="lex_o.htm#oscillator">oscillator</a> found by Dean Hickerson in December
1994. Every cell has period less than 6, so this is a <a href="#trivial">trivial</a>
oscillator. It is unusual because it has period-2 cells in contact
with period-3 cells.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO..............$...........O......OO.......$........OO.O......O..O.....$........O.O.OO.OO.O.OO..O..$.O........O..O.O..O..O.O.O.$.O.O.....OO..O.O.O.OO..O..O$.O.O.O........OO.O.O.OO.OO.$.......O.O.OOO...O....OO...$..O...O....O.OO........O...$....O...OOO..OO.OOO.O.O.OO.$OO..O......O..........O.O..$..O...........OO.OO...O.O..$........O.OOOOO...O....O...$........OO...O..O..O.......$...........OOOO.OOO........$........OOO....O...........$........O..O..O..OO........$..........OO...OO.O........$"
>...........OO..............
...........O......OO.......
........OO.O......O..O.....
........O.O.OO.OO.O.OO..O..
.O........O..O.O..O..O.O.O.
.O.O.....OO..O.O.O.OO..O..O
.O.O.O........OO.O.O.OO.OO.
.......O.O.OOO...O....OO...
..O...O....O.OO........O...
....O...OOO..OO.OOO.O.O.OO.
OO..O......O..........O.O..
..O...........OO.OO...O.O..
........O.OOOOO...O....O...
........OO...O..O..O.......
...........OOOO.OOO........
........OOO....O...........
........O..O..O..OO........
..........OO...OO.O........
</a></pre></td></tr></table></center>
<p><a name=tromboneslide>:</a><b>trombone slide</b> An arrangement of four 90-degree <a href="lex_r.htm#reflector">reflectors</a> that can
be placed into the path of a <a href="lex_g.htm#glider">glider</a> so as to delay it by an
adjustable number of generations, without changing its <a href="lex_l.htm#lane">lane</a>. More
generally, any combination of <a href="lex_c.htm#circuit">circuits</a> may be referred to as a
trombone slide, if the grouping can be moved as a single unit that
functions as a 180-degree glider <a href="lex_r.htm#reflector">reflector</a>.
<p>The smallest known trombone slides are made using <a href="lex_s.htm#snark">Snarks</a>. In the
trombone slide shown below, sample input and output gliders are
shown. The input glider will reach the same output location 128
generations sooner if the trombone slide is removed.
<p>If the top and left Snarks are moved together diagonally to the
upper left by <i>N</i> cells, then the glider delay is increased by 8<i>N</i>
generations since the glider has to travel <i>N</i> more cells in each
direction. This sliding action gives the trombone slide its name.
If only the final Snark is moved, then the output glider's path can
be altered by a number of full diagonals.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................OO...OO....................$......................OO..O.OOO..................$..........................O....O.................$......................OOOO.OO..O.................$......................O..O.O.O.OO................$.........................O.O.O.O.................$..........................OO.O.O.................$..............................O..................$.................................................$................OO...............................$.................O.......OO......................$.................O.O.....OO......................$..................OO.............................$.................................................$.................................................$.............................................O...$...........................................OOO...$..........................................O......$..........................................OO.....$............................OO...................$............................O....................$.............................OOO..............OOO$...............................O................O$...............................................O.$.................................................$................................OO...............$....O..........................O.O.....OO........$..OOOOO..............OO........O.......OO........$.O.....O.............O........OO.................$.O..OOO............O.O...........................$OO.O...............OO.......................O....$O..OOOO.................................OO.O.O...$.OO...O...OO...........................O.O.O.O...$...OOO....OO........................O..O.O.O.OO..$...O................................OOOO.OO..O...$OO.O....................................O....O...$OO.OO...............................OO..O.OOO....$....................................OO...OO......$.................................................$...........OO....................................$............O....................O...............$.........OOO...OO..............OOOOO.............$.........O......O.............O.....O............$................O.O............OOO..O............$.................OO...............O.OO...........$...............................OOOO..O...........$..........................OO...O...OO............$..........................OO....OOO..............$..................................O..............$..................................O.OO...........$.................................OO.OO...........$.................................................$.................................................$..............OOO........OO......................$................O........O.......................$...............O..........OOO....................$............................O....................$"
>......................OO...OO....................
......................OO..O.OOO..................
..........................O....O.................
......................OOOO.OO..O.................
......................O..O.O.O.OO................
.........................O.O.O.O.................
..........................OO.O.O.................
..............................O..................
.................................................
................OO...............................
.................O.......OO......................
.................O.O.....OO......................
..................OO.............................
.................................................
.................................................
.............................................O...
...........................................OOO...
..........................................O......
..........................................OO.....
............................OO...................
............................O....................
.............................OOO..............OOO
...............................O................O
...............................................O.
.................................................
................................OO...............
....O..........................O.O.....OO........
..OOOOO..............OO........O.......OO........
.O.....O.............O........OO.................
.O..OOO............O.O...........................
OO.O...............OO.......................O....
O..OOOO.................................OO.O.O...
.OO...O...OO...........................O.O.O.O...
...OOO....OO........................O..O.O.O.OO..
...O................................OOOO.OO..O...
OO.O....................................O....O...
OO.OO...............................OO..O.OOO....
....................................OO...OO......
.................................................
...........OO....................................
............O....................O...............
.........OOO...OO..............OOOOO.............
.........O......O.............O.....O............
................O.O............OOO..O............
.................OO...............O.OO...........
...............................OOOO..O...........
..........................OO...O...OO............
..........................OO....OOO..............
..................................O..............
..................................O.OO...........
.................................OO.OO...........
.................................................
.................................................
..............OOO........OO......................
................O........O.......................
...............O..........OOO....................
............................O....................
</a></pre></td></tr></table></center>
<p>Trombone slides made of the same type of component cannot alter the
glider path by half-diagonals, and can only change the timing by
multiples of 8 generations. For other timing changes, different
components are necessary. These may be stable like the
<a href="lex_s.htm#silverreflector">Silver reflector</a> or the <a href="lex_c.htm#colourchanging">colour-changing</a> example shown in the
<a href="lex_r.htm#reflector">reflector</a> article, or periodic like the various <a href="lex_b.htm#bumper">bumpers</a>.
<p><a name=true>:</a><b>true</b> Opposite of <a href="lex_p.htm#pseudo">pseudo</a>. A <a href="lex_g.htm#gun">gun</a> emitting a period <i>n</i> stream of
<a href="lex_s.htm#spaceship">spaceships</a> (or <a href="lex_r.htm#rake">rakes</a>) is said to be a true period <i>n</i> gun if its
mechanism oscillates with period <i>n</i>. The same distinction between
true and pseudo also exists for <a href="lex_p.htm#puffer">puffers</a>. An easy way to check that
a gun is true period <i>n</i> is to stop the output with an <a href="lex_e.htm#eater">eater</a>, and
check that the result is a period-<i>n</i> <a href="lex_o.htm#oscillator">oscillator</a>.
<p>True period <i>n</i> guns are known to exist for all periods greater than
61 (see <a href="lex_m.htm#myexperiencewithbheptominosinoscillators">My Experience with B-heptominos in Oscillators</a>), but only a
few smaller periods have been achieved, namely 20, 22, 24, 30, 36,
40, 44, 45, 46, 48, 50, and 54 through 61. See also <a href="lex_q.htm#quetzal">Quetzal</a> for
the 54-61 range.
<pre>
  ------------------------------------
  Period  Discoverers            Date
  ------------------------------------
  20      Matthias Merzenich  May 2013
          Noam Elkies
  22      David Eppstein      Aug 2000
          Jason Summers
  24      Noam Elkies         Jun 1997
  30      Bill Gosper         Nov 1970
  36      Jason Summers       Jul 2004
  40      Adam P. Goucher     Mar 2013
          Matthias Merzenich
          Jason Summers
  44      Dave Buckingham     Apr 1992
  45      Matthias Merzenich  Apr 2010
  46      Bill Gosper             1971
  48      Noam Elkies         Jun 1997
  50      Dean Hickerson      Oct 1996
          Noam Elkies
          Dave Buckingham
  54      Dieter Leithner     Jan 1998
          Noam Elkies
          Dave Buckingham
  55      Stephen Silver      Oct 1998
  56      Dieter Leithner     Jan 1998
          Dave Buckingham
          Noam Elkies
  57      Matthias Merzenich  Apr 2016
  58      'thunk'             Apr 2016
          Matthias Merzenich
          Chris Cain
  59      Adam P. Goucher     Dec 2009
          Jason Summers
  60      Bill Gosper         Nov 1970
  61      Luka Okanishi       Apr 2016
  ------------------------------------
</pre>
<p><a name=ttetromino>:</a><b>T-tetromino</b> The following common <a href="lex_p.htm#predecessor">predecessor</a> of a <a href="#trafficlight">traffic light</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO$.O.$"
>OOO
.O.
</a></pre></td></tr></table></center>
<p><a name=tub>:</a><b>tub</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.$O.O$.O.$"
>.O.
O.O
.O.
</a></pre></td></tr></table></center>
<p><a name=tubber>:</a><b>tubber</b> (p3) Found by Robert Wainwright before June 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O.O......$....OO.O.....$.......OOO...$....OO....O..$OO.O..OO..O..$.O.O....O.OO.$O...O...O...O$.OO.O....O.O.$..O..OO..O.OO$..O....OO....$...OOO.......$.....O.OO....$......O.O....$"
>....O.O......
....OO.O.....
.......OOO...
....OO....O..
OO.O..OO..O..
.O.O....O.OO.
O...O...O...O
.OO.O....O.O.
..O..OO..O.OO
..O....OO....
...OOO.......
.....O.OO....
......O.O....
</a></pre></td></tr></table></center>
<p><a name=tubeater>:</a><b>tubeater</b> A pattern that consumes the output of a <a href="#tubstretcher">tubstretcher</a>. The
smallest known tubeater was found by Nicolay Beluchenko (September
2005), and is shown below in conjunction with the smallest known
tubstretcher.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O....................$.......OO....................$.......O.O...................$.............................$..........OO.................$..........OO.................$.......................OOO...$.O......OO...O.........O.....$OO.....O..O.O.O.........O....$O.O...OO.O...O.O..........OOO$....O.........O.O............$...O...........O.O.....OO....$...O..O.........O.O....O.O.O.$.................O.O...O...OO$..................O.....O....$...................O..OO..O..$.....................O.OOOO..$......................OOO...O$..........................OO.$...........................O.$...........................OO$..........................O..$...........................OO$"
>........O....................
.......OO....................
.......O.O...................
.............................
..........OO.................
..........OO.................
.......................OOO...
.O......OO...O.........O.....
OO.....O..O.O.O.........O....
O.O...OO.O...O.O..........OOO
....O.........O.O............
...O...........O.O.....OO....
...O..O.........O.O....O.O.O.
.................O.O...O...OO
..................O.....O....
...................O..OO..O..
.....................O.OOOO..
......................OOO...O
..........................OO.
...........................O.
...........................OO
..........................O..
...........................OO
</a></pre></td></tr></table></center>
<p><a name=tubstretcher>:</a><b>tubstretcher</b> Any <a href="lex_w.htm#wickstretcher">wickstretcher</a> in which the wick is two diagonal
lines of cells forming, successively, a <a href="#tub">tub</a>, a <a href="lex_b.htm#barge">barge</a>, a
<a href="lex_l.htm#longbarge">long barge</a>, etc. The first one was found by Hartmut Holzwart in
June 1993, although at the time this was considered to be a
boatstretcher (as it was shown with an extra cell, making the tub
into a <a href="lex_b.htm#boat">boat</a>). The following small example is by Nicolay Beluchenko
(August 2005), using a <a href="lex_q.htm#quarter">quarter</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......OOO.....$.......O.......$........O......$..........OO...$...........O...$...............$........OO...O.$OOO.....OO..O.O$O......O.O...O.$.O....OO.......$...OOOO.O......$....OO.........$"
>.......OOO.....
.......O.......
........O......
..........OO...
...........O...
...............
........OO...O.
OOO.....OO..O.O
O......O.O...O.
.O....OO.......
...OOOO.O......
....OO.........
</a></pre></td></tr></table></center>
<p>In October 2005, David Bell constructed an adjustable high-period
diagonal <i>c</i>/4 <a href="lex_r.htm#rake">rake</a> that <a href="lex_b.htm#burn">burns</a> tubstretcher wicks to create
<a href="lex_g.htm#glider">gliders</a>, which are then turned and duplicated by <a href="lex_c.htm#convoy">convoys</a> of
diagonal <a href="lex_c.htm#c4spaceship">c/4 spaceships</a> to re-ignite the stabilized ends of the
same wicks.
<p><a name=tubwithtail>:</a><b>tub with tail</b> (p1) The following 8-cell <a href="lex_s.htm#stilllife">still life</a>. See <a href="lex_e.htm#eater">eater</a>
for a use of this object.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O...$O.O..$.O.O.$...O.$...OO$"
>.O...
O.O..
.O.O.
...O.
...OO
</a></pre></td></tr></table></center>
<p><a name=tugalong>:</a><b>tugalong</b> = <a href="#tagalong">tagalong</a>
<p><a name=tumbler>:</a><b>tumbler</b> (p14) The smallest known p14 <a href="lex_o.htm#oscillator">oscillator</a>. Found by George
Collins in 1970. The oscillator generates <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#spark">sparks</a>, but
they are fragile and no use has been found for them to date. In each
domino, one cell is "held" (remains alive) for two generations, the
other for three. By contrast, useful domino sparks are usually alive
for only one tick per oscillator <a href="lex_p.htm#period">period</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.....O.$O.O...O.O$O..O.O..O$..O...O..$..OO.OO..$"
>.O.....O.
O.O...O.O
O..O.O..O
..O...O..
..OO.OO..
</a></pre></td></tr></table></center>
<p><a name=tumblingttetson>:</a><b>tumbling T-tetson</b> (p8) A <a href="#ttetromino">T-tetromino</a> <a href="lex_h.htm#hassle">hassled</a> by two <a href="lex_f.htm#figure8">figure-8s</a>.
Found by Robert Wainwright.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO.................$O..................OO$O...O............O.OO$O..O.O..........O....$..O.O..O...........O.$...O...O.......OO.O..$.......O.......OO....$....OOO....O.........$.........OO..........$...........O.........$"
>.OOO.................
O..................OO
O...O............O.OO
O..O.O..........O....
..O.O..O...........O.
...O...O.......OO.O..
.......O.......OO....
....OOO....O.........
.........OO..........
...........O.........
</a></pre></td></tr></table></center>
<p><a name=turingmachine>:</a><b>Turing machine</b> See <a href="lex_u.htm#universalcomputer">universal computer</a>.
<p><a name=turner>:</a><b>turner</b> A <a href="lex_o.htm#onetime">one-time</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a>, or in other words a
single-glider <a href="lex_s.htm#seed">seed</a> (the term is seldom or never used in relation to
spaceships other than gliders). One-time turners may be 90-degree or
180-degree, or they may be 0-degree with the output in the same
direction as the input. A reusable turner would instead be called a
reflector. Shown on the top row below are the four 90-degree turner
reactions that use common small <a href="lex_a.htm#ash">ash</a> objects: <a href="lex_b.htm#boat">boat</a>, <a href="lex_e.htm#eater1">eater1</a>,
<a href="lex_l.htm#longboat">long boat</a>, and <a href="#toad">toad</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..............O..............O..............O.........$..O..............O..............O..............O........$OOO............OOO............OOO............OOO........$........................................................$........................................................$........................................................$.....OO........OO...............O.......................$....O.O.......O.O..............O.O...............OOO....$.....O........O.................O.O...............OOO...$.............OO..................OO.....................$........................................................$........................................................$........................................................$........................................................$........................................................$.O..............O..............O..............O.........$..O..............O..............O....OO........O........$OOO............OOO............OOO....OO......OOO........$......................................................OO$......................................................OO$........................................................$...O...............OO...................................$..O.O.............O.O............OO..............OO.....$.O.O.............O.O.............OO..............OO.....$.OO..............OO.....................................$........................................................$........................................................$........................................................$........................................................$........................................................$.O......................................................$..O.....................................................$OOO.....................................................$........................................................$........................................................$........................................................$....OO..................................................$..O..O..................................................$..OO....................................................$"
>.O..............O..............O..............O.........
..O..............O..............O..............O........
OOO............OOO............OOO............OOO........
........................................................
........................................................
........................................................
.....OO........OO...............O.......................
....O.O.......O.O..............O.O...............OOO....
.....O........O.................O.O...............OOO...
.............OO..................OO.....................
........................................................
........................................................
........................................................
........................................................
........................................................
.O..............O..............O..............O.........
..O..............O..............O....OO........O........
OOO............OOO............OOO....OO......OOO........
......................................................OO
......................................................OO
........................................................
...O...............OO...................................
..O.O.............O.O............OO..............OO.....
.O.O.............O.O.............OO..............OO.....
.OO..............OO.....................................
........................................................
........................................................
........................................................
........................................................
........................................................
.O......................................................
..O.....................................................
OOO.....................................................
........................................................
........................................................
........................................................
....OO..................................................
..O..O..................................................
..OO....................................................
</a></pre></td></tr></table></center>
<p>Of the reactions on the first row, the glider output is the same
<a href="lex_p.htm#parity">parity</a> for all but the long boat. The three still lifes are all
<a href="lex_c.htm#colourchanging">colour-changing</a>, but the <a href="#toad">toad</a> happens to be a <a href="lex_c.htm#colourpreserving">colour-preserving</a>
turner. The third row shows an <a href="lex_a.htm#aircraftcarrier">aircraft carrier</a> serving as a
"0-degree turner" that is also colour-changing.
<p>Three of the simplest 180-degree turners are shown in the second
row. The <a href="lex_b.htm#blockic">Blockic</a> 180-degree turner is colour-preserving. The
<a href="lex_l.htm#longboat">long boat</a> and <a href="lex_l.htm#longship">long ship</a> are again colour-changing; this is
somewhat counterintuitive as the output glider is on exactly the same
<a href="lex_l.htm#lane">lane</a> as the input glider, but gliders travelling in opposite
directions on the same lane always have opposite colours.
<p>Many small one-time turner <a href="lex_c.htm#constellation">constellations</a> have also been
catalogued. The 90-degree two-block turner on the right, directly
below the toad, is also colour-changing but has the opposite parity.
<p>A one-time turner reaction can be used as part of a glider
<a href="lex_i.htm#inject">injection</a> mechanism, or as a switching mechanism for a <a href="lex_s.htm#signal">signal</a>.
If a previous reaction has created the sacrificial object, then a
later glider is turned onto a new path. Otherwise it passes through
the area unaffected. This is one way to create simple switching
systems or logic <a href="lex_c.htm#circuit">circuits</a>. An example is shown in <a href="lex_d.htm#demultiplexer">demultiplexer</a>.
<p><a name=turningtoads>:</a><b>turning toads</b> (p4 wick) Found by Dean Hickerson, October 1989.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OO.....OO.....OO.....OO.....OO..............$.......O.....O......O......O......O......O................$......OO...O....O.O....O.O....O.O....O.O....O.O.O.OO......$..OO.O.OOO.O..OO..O..OO..O..OO..O..OO..O..OO..O..O..O.OO..$O..O.OO.........................................OOOOO.O..O$OO.O..............................................OO..O.OO$...O..................................................O...$...OO................................................OO...$"
>..............OO.....OO.....OO.....OO.....OO..............
.......O.....O......O......O......O......O................
......OO...O....O.O....O.O....O.O....O.O....O.O.O.OO......
..OO.O.OOO.O..OO..O..OO..O..OO..O..OO..O..OO..O..O..O.OO..
O..O.OO.........................................OOOOO.O..O
OO.O..............................................OO..O.OO
...O..................................................O...
...OO................................................OO...
</a></pre></td></tr></table></center>
<p><a name=turtle>:</a><b>turtle</b> (<i>c</i>/3 orthogonally, p3) A <a href="lex_s.htm#spaceship">spaceship</a> found by Dean Hickerson
in August 1989 that produces a <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#spark">spark</a> at the back.
Hickerson used this spark to convert an approaching <a href="lex_h.htm#hwss">HWSS</a> into a
<a href="lex_l.htm#loaf">loaf</a>, as part of the first <a href="lex_s.htm#sawtooth">sawtooth</a>. (Also see <a href="#tractorbeam">tractor beam</a>).
The shape of the back end of the turtle is distinctive. Very similar
but wider back ends have been found in other <i>c</i>/3 ships to produce
period 9 and 15 <a href="lex_s.htm#spaceship">spaceships</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO.......O$.OO..O.OO.OO$...OOO....O.$.O..O.O...O.$O....O....O.$O....O....O.$.O..O.O...O.$...OOO....O.$.OO..O.OO.OO$.OOO.......O$"
>.OOO.......O
.OO..O.OO.OO
...OOO....O.
.O..O.O...O.
O....O....O.
O....O....O.
.O..O.O...O.
...OOO....O.
.OO..O.OO.OO
.OOO.......O
</a></pre></td></tr></table></center>
<p><a name=twinbeesshuttle>:</a><b>twin bees shuttle</b> (p46) Found by Bill Gosper in 1971, this was the
basis of all known <a href="#true">true</a> p46 <a href="lex_g.htm#gun">guns</a>, and all known p46 oscillators
except for <a href="lex_g.htm#glider">glider</a> <a href="lex_s.htm#signal">signal</a> loops using <a href="lex_s.htm#snark">Snarks</a>, until the
discovery of <a href="#tannersp46">Tanner's p46</a> in 2017. See <a href="lex_n.htm#newgun">new gun</a> for an example.
There are numerous ways to stabilize the ends, two of which are shown
in the diagram. On the left is David Bell's <a href="lex_d.htm#doubleblockreaction">double block reaction</a>
(which results in a shorter, but wider, shuttle than usual), and on
the right is the stabilization by a single block. This latter method
produces the very large <a href="#twinbeesshuttlespark">twin bees shuttle spark</a> which is useful in
a number of ways. See <a href="lex_m.htm#metamorphosis">metamorphosis</a> for an example. Adding a
symmetrically placed block below this one suppresses the spark. See
also <a href="lex_p.htm#p54shuttle">p54 shuttle</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO........................$.OO........................$...........................$...............O...........$OO.............OO........OO$OO..............OO.......OO$...........OO..OO..........$...........................$...........................$...........................$...........OO..OO..........$OO..............OO.........$OO.............OO..........$...............O...........$...........................$.OO........................$.OO........................$"
>.OO........................
.OO........................
...........................
...............O...........
OO.............OO........OO
OO..............OO.......OO
...........OO..OO..........
...........................
...........................
...........................
...........OO..OO..........
OO..............OO.........
OO.............OO..........
...............O...........
...........................
.OO........................
.OO........................
</a></pre></td></tr></table></center>
<p><a name=twinbeesshuttlepair>:</a><b>twin bees shuttle pair</b> Any arrangement of two <a href="#twinbeesshuttle">twin bees shuttles</a>
such that they interact. There are many ways that the two shuttles
can be placed, either head-to-head, or else at right angles. Glider
guns can be constructed in at least five different ways. Here is one
by Bill Gosper in which the shuttles interact head-to-head:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................O...............................$OO...............OO..............................$OO................OO.............................$.................OO...........OO.................$.............................O.O.................$.............................O...................$.............................OOO.................$.................OO..............................$..................OO.............................$.................OO..............................$.................O...........OOO.................$.............................O.................OO$.............................O.O...............OO$..............................OO.................$"
>.................O...............................
OO...............OO..............................
OO................OO.............................
.................OO...........OO.................
.............................O.O.................
.............................O...................
.............................OOO.................
.................OO..............................
..................OO.............................
.................OO..............................
.................O...........OOO.................
.............................O.................OO
.............................O.O...............OO
..............................OO.................
</a></pre></td></tr></table></center>
For other examples, see <a href="lex_n.htm#newgun">new gun</a>, <a href="lex_e.htm#edgeshooter">edge shooter</a>, <a href="lex_d.htm#doublebarrelled">double-barrelled</a>
and <a href="lex_n.htm#naturalheisenburp">natural Heisenburp</a>.
<p><a name=twinbeesshuttlespark>:</a><b>twin bees shuttle spark</b> The large and distinctive long-lived <a href="lex_s.htm#spark">spark</a>
produced, most commonly, by the <a href="#twinbeesshuttle">twin bees shuttle</a>. It starts off
as shown below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO.$..OO.$.O..O$O.OO.$O.OO.$"
>..OO.
..OO.
.O..O
O.OO.
O.OO.
</a></pre></td></tr></table></center>
After 3 generations it becomes <a href="lex_s.htm#symmetric">symmetric</a> along the horizontal axis,
after 9 generations it becomes symmetric along the vertical axis
also, and finally dies after 18 generations.
<p>Since the spark is isolated and long-lived, there are many possible
<a href="lex_p.htm#perturbation">perturbations</a> that it can perform. One of the most useful is
demonstrated in <a href="lex_m.htm#metamorphosis">metamorphosis</a> where a glider is converted into a
<a href="lex_l.htm#lwss">LWSS</a>. Another useful one can turn a <a href="lex_l.htm#lwss">LWSS</a> by 90 degrees:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..O.........$....O........$O...O.....O..$.OOOO....OOO.$........O...O$........OO.OO$........OO.OO$.............$........OO.OO$........OO.OO$........O...O$.........OOO.$..........O..$"
>O..O.........
....O........
O...O.....O..
.OOOO....OOO.
........O...O
........OO.OO
........OO.OO
.............
........OO.OO
........OO.OO
........O...O
.........OOO.
..........O..
</a></pre></td></tr></table></center>
<p><a name=twinhat>:</a><b>twinhat</b> (p1) See also <a href="lex_h.htm#hat">hat</a> and <a href="lex_s.htm#sesquihat">sesquihat</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O...O..$.O.O.O.O.$.O.O.O.O.$OO.O.O.OO$....O....$"
>..O...O..
.O.O.O.O.
.O.O.O.O.
OO.O.O.OO
....O....
</a></pre></td></tr></table></center>
<p><a name=twinpeaks>:</a><b>twin peaks</b> = <a href="#twinhat">twinhat</a>
<p><a name=twirlingttetsonsii>:</a><b>twirling T-tetsons II</b> (p60) Found by Robert Wainwright. This is a
<a href="lex_p.htm#prepulsar">pre-pulsar</a> <a href="lex_h.htm#hassle">hassled</a> by <a href="lex_k.htm#killertoads">killer toads</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......OO...OO..........$......O.......O.........$.........O.O............$.......OO...OO..........$........................$........................$........................$.....................OOO$....................OOO.$.............O..........$OOO.........OOO.........$.OOO....................$....................OOO.$.....................OOO$........................$.OOO....................$OOO.........OOO.........$.............O..........$........................$........................$..........OO...OO.......$............O.O.........$.........O.......O......$..........OO...OO.......$"
>.......OO...OO..........
......O.......O.........
.........O.O............
.......OO...OO..........
........................
........................
........................
.....................OOO
....................OOO.
.............O..........
OOO.........OOO.........
.OOO....................
....................OOO.
.....................OOO
........................
.OOO....................
OOO.........OOO.........
.............O..........
........................
........................
..........OO...OO.......
............O.O.........
.........O.......O......
..........OO...OO.......
</a></pre></td></tr></table></center>
<p><a name=twit>:</a><b>TWIT</b> = <a href="lex_e.htm#eater5">eater5</a>
<p><a name=twoarm>:</a><b>two-arm</b> The type of <a href="lex_u.htm#universalconstructor">universal constructor</a> exemplified by the
original <a href="lex_g.htm#gemini">Gemini</a> spaceship, where two independently programmed
<a href="lex_c.htm#constructionarm">construction arms</a> sent gliders in pairs on 90-degree paths to
collide with each other at the construction site. Construction
recipes for two-arm constructors are much more efficient in general,
but they require many more <a href="lex_c.htm#circuit">circuits</a> and multiple independent data
streams, which both tend to increase the complexity of
<a href="lex_s.htm#selfconstructing">self-constructing</a> circuitry. Compare <a href="lex_s.htm#singlearm">single-arm</a>.
<p><a name=twobitspark>:</a><b>two-bit spark</b> = <a href="lex_d.htm#duoplet">duoplet</a>.
<p><a name=twoeaters>:</a><b>two eaters</b> (p3) Found by Bill Gosper, September 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.......$.O.......$.O.O.....$..OO.....$.....OO..$.....O.O.$.......O.$.......OO$"
>OO.......
.O.......
.O.O.....
..OO.....
.....OO..
.....O.O.
.......O.
.......OO
</a></pre></td></tr></table></center>
<p><a name=twopulsarquadrants>:</a><b>two pulsar quadrants</b> (p3) Found by Dave Buckingham, July 1973.
Compare <a href="lex_p.htm#pulsarquadrant">pulsar quadrant</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O....$....O....$...OO....$..O......$O..O..OOO$O...O.O..$O....O...$.........$..OOO....$"
>....O....
....O....
...OO....
..O......
O..O..OOO
O...O.O..
O....O...
.........
..OOO....
</a></pre></td></tr></table></center>
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>

</center>
<hr>
</body>