1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
<head>
<title>Life Lexicon (T)</title>
<meta name="author" content="Stephen A. Silver">
<meta name="description" content="Part of Stephen Silver's Life Lexicon.">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<link href="lifelex.css" rel="stylesheet" type="text/css">
<link rel="begin" type="text/html" href="lex.htm" title="Life Lexicon">
<base target="_top">
</head>
<body bgcolor="#FFFFCE">
<center><A HREF="lex.htm">Introduction</A> | <A HREF="lex_bib.htm">Bibliography</A></center></center>
<hr>
<center>
<b>
<A HREF="lex_1.htm">1-9</A> |
<A HREF="lex_a.htm">A</A> |
<A HREF="lex_b.htm">B</A> |
<A HREF="lex_c.htm">C</A> |
<A HREF="lex_d.htm">D</A> |
<A HREF="lex_e.htm">E</A> |
<A HREF="lex_f.htm">F</A> |
<A HREF="lex_g.htm">G</A> |
<A HREF="lex_h.htm">H</A> |
<A HREF="lex_i.htm">I</A> |
<A HREF="lex_j.htm">J</A> |
<A HREF="lex_k.htm">K</A> |
<A HREF="lex_l.htm">L</A> |
<A HREF="lex_m.htm">M</A> |
<A HREF="lex_n.htm">N</A> |
<A HREF="lex_o.htm">O</A> |
<A HREF="lex_p.htm">P</A> |
<A HREF="lex_q.htm">Q</A> |
<A HREF="lex_r.htm">R</A> |
<A HREF="lex_s.htm">S</A> |
<A HREF="lex_t.htm">T</A> |
<A HREF="lex_u.htm">U</A> |
<A HREF="lex_v.htm">V</A> |
<A HREF="lex_w.htm">W</A> |
<A HREF="lex_x.htm">X</A> |
<A HREF="lex_y.htm">Y</A> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
<p><a name=t>:</a><b>T</b> = <a href="#ttetromino">T-tetromino</a>
<p><a name=table>:</a><b>table</b> The following <a href="lex_i.htm#inductioncoil">induction coil</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOOO$O..O$"
>OOOO
O..O
</a></pre></td></tr></table></center>
<p><a name=tableontable>:</a><b>table on table</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..O$OOOO$....$OOOO$O..O$"
>O..O
OOOO
....
OOOO
O..O
</a></pre></td></tr></table></center>
<p><a name=tag>:</a><b>tag</b> = <a href="#tagalong">tagalong</a>
<p><a name=tagalong>:</a><b>tagalong</b> An object which is not a <a href="lex_s.htm#spaceship">spaceship</a> in its own right, but
which can be attached to one or more spaceships to form a larger
spaceship. For examples see <a href="lex_c.htm#canadagoose">Canada goose</a>, <a href="lex_f.htm#fly">fly</a>, <a href="lex_p.htm#pushalong">pushalong</a>,
<a href="lex_s.htm#sidecar">sidecar</a> and <a href="lex_s.htm#sparky">sparky</a>. See also <a href="lex_s.htm#schickengine">Schick engine</a>, which consists of
a tagalong attached to two LWSS (or similar).
<p>The following <a href="lex_c.htm#c4spaceship">c/4 spaceship</a> (Nicolay Beluchenko, February 2004)
has two wings, either of which can be considered as a tagalong. But
if either wing is removed, then the remaining wing becomes an
essential component of the spaceship, and so is no longer a tagalong.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......................O.......................$.......................O.......................$......................O.O......................$...............................................$.....................O...O.....................$....................OO...OO....................$..................OO.O...O.OO..................$................OO.O.O...O.O.OO................$............O...OOO.O.....O.OOO...O............$............OOOOOO...........OOOOOO............$...........O..O....O.......O....O..O...........$...................O.......O...................$..........OOO.....................OOO..........$.........O.OO.....................OO.O.........$........O..O.......................O..O........$........O.............................O........$.........OO.........................OO.........$.........OO.........................OO.........$OOO......O...........................O......OOO$.O......OOO.........................OOO......O.$......OO..O.........................O..OO......$..OO.O.OOO...........................OOO.O.OO..$.O...O.O...............................O.O...O.$.O...OO.................................OO...O.$"
>.......................O.......................
.......................O.......................
......................O.O......................
...............................................
.....................O...O.....................
....................OO...OO....................
..................OO.O...O.OO..................
................OO.O.O...O.O.OO................
............O...OOO.O.....O.OOO...O............
............OOOOOO...........OOOOOO............
...........O..O....O.......O....O..O...........
...................O.......O...................
..........OOO.....................OOO..........
.........O.OO.....................OO.O.........
........O..O.......................O..O........
........O.............................O........
.........OO.........................OO.........
.........OO.........................OO.........
OOO......O...........................O......OOO
.O......OOO.........................OOO......O.
......OO..O.........................O..OO......
..OO.O.OOO...........................OOO.O.OO..
.O...O.O...............................O.O...O.
.O...OO.................................OO...O.
</a></pre></td></tr></table></center>
<p><a name=tailspark>:</a><b>tail spark</b> A <a href="lex_s.htm#spark">spark</a> at the back of a spaceship. For example, the
1-bit spark at the back of a <a href="lex_l.htm#lwss">LWSS</a>, <a href="lex_m.htm#mwss">MWSS</a> or <a href="lex_h.htm#hwss">HWSS</a> in their less
dense phases.
<p><a name=tame>:</a><b>tame</b> To <a href="lex_p.htm#perturb">perturb</a> a <a href="lex_d.htm#dirty">dirty</a> reaction using other patterns so as to
make it <a href="lex_c.htm#clean">clean</a> and hopefully useful. Or to make a reaction work
which would otherwise fail due to unwanted products which interfere
with the reaction.
<p><a name=taming>:</a><b>taming</b> See <a href="#tame">tame</a>.
<p><a name=tandemglider>:</a><b>tandem glider</b> Two gliders travelling on parallel lanes at a fixed
spacetime offset, usually as a single signal in a
<a href="lex_h.htm#herscheltransceiver">Herschel transceiver</a>. See also <a href="lex_g.htm#gliderpair">glider pair</a>.
<p><a name=tannersp46>:</a><b>Tanner's p46</b> (p46) An <a href="lex_o.htm#oscillator">oscillator</a> found by Tanner Jacobi on 20
October 2017. This oscillator hassles an evolving <a href="lex_p.htm#piheptomino">pi-heptomino</a> to
produce an <a href="lex_p.htm#phi">phi</a> <a href="lex_s.htm#spark">spark</a>. The spark is very accessible and is able
to perturb many things.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............O...........$...OO.......OO.OO.........$...OO.......OO.OO.....O.OO$......................OO.O$..........................$..OO......................$...O......................$OOO.......................$O.............O...........$.............O.O.O.OO.....$............O.OO.OO.O.....$............O.............$...........OO.............$"
>..............O...........
...OO.......OO.OO.........
...OO.......OO.OO.....O.OO
......................OO.O
..........................
..OO......................
...O......................
OOO.......................
O.............O...........
.............O.O.O.OO.....
............O.OO.OO.O.....
............O.............
...........OO.............
</a></pre></td></tr></table></center>
The snakes can be replaced with eaters to form a slightly smaller
version, as shown in the p46 MWSS gun in <a href="lex_g.htm#gliderless">gliderless</a>
<p>The period of this new oscillator is the same as the old
<a href="#twinbeesshuttle">twin bees shuttle</a>, and so this is able to expand the known p46
<a href="#technology">technology</a>. For example, a p46 glider gun can be made from a
Tanner's p46 and just one of the <a href="#twinbeesshuttle">twin bees shuttles</a>.
<p>Acting on their own, two copies of Tanner's p46 placed at right
angles to each other with their sparks interacting can produce two
different p46 glider guns and a gliderless p46 MWSS gun. See
<a href="lex_p.htm#p46gun">p46 gun</a> and <a href="lex_g.htm#gliderless">gliderless</a> for two of these. These are the first p46
guns found which do not use a twin bees shuttle at all.
<p><a name=target>:</a><b>target</b> A necessary component of a <a href="lex_s.htm#slowsalvo">slow salvo</a> recipe used by a
<a href="lex_s.htm#singlearm">single-arm</a> <a href="lex_u.htm#universalconstructor">universal constructor</a>. A target usually consists of a
single object, or sometimes a small <a href="lex_c.htm#constellation">constellation</a> of common still
lifes and/or oscillators. See <a href="lex_i.htm#intermediatetarget">intermediate target</a>. If no <a href="lex_h.htm#hand">hand</a>
target is available, a construction arm may be unable to construct
anything, unless recipes are available to generate targets directly
from the <a href="lex_e.htm#elbow">elbow</a>.
<p><a name=teardrop>:</a><b>teardrop</b> The following <a href="lex_i.htm#inductioncoil">induction coil</a>, or the formation of two
beehives that it evolves into after 20 generations. (Compare
<a href="lex_b.htm#butterfly">butterfly</a>, where the beehives are five cells further apart.)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO.$O..O$O..O$.OO.$"
>OOO.
O..O
O..O
.OO.
</a></pre></td></tr></table></center>
<p><a name=technician>:</a><b>technician</b> (p5) Found by Dave Buckingham, January 1973.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$....O.O....$....OO.....$..OO.......$.O...OOO...$O..OO...O.O$.OO....O.OO$...O.O.O...$...O...O...$....OOO....$......O.O..$.......OO..$"
>.....O.....
....O.O....
....OO.....
..OO.......
.O...OOO...
O..OO...O.O
.OO....O.OO
...O.O.O...
...O...O...
....OOO....
......O.O..
.......OO..
</a></pre></td></tr></table></center>
<p><a name=technicianfinishedproduct>:</a><b>technician finished product</b> = <a href="#technician">technician</a>
<p><a name=technology>:</a><b>technology</b> The collective set of known reactions exploiting one
subset of the Life universe. Examples of these subsets include
<a href="lex_g.htm#glidersynthesis">glider synthesis</a>, period 30 glider <a href="lex_s.htm#stream">streams</a>, <i>c</i>/3 <a href="lex_s.htm#spaceship">spaceships</a>,
<a href="lex_s.htm#sparker">sparkers</a>, <a href="lex_h.htm#herschelconduit">Herschel conduits</a>, and <a href="lex_s.htm#slowsalvo">slow salvos</a>. As new reactions
and objects are found, over time any particular technology becomes
more versatile and complete. Many Life experts like to concentrate
on particular technologies.
<p><a name=tee>:</a><b>tee</b> A head-on collision between three <a href="lex_g.htm#glider">gliders</a>, producing a
perpendicular output glider that can be used to construct closely
spaced glider <a href="lex_s.htm#salvo">salvos</a>, or to <a href="lex_i.htm#inject">inject</a> a glider into an existing
<a href="lex_s.htm#stream">stream</a>. There are several workable <a href="lex_r.htm#recipe">recipes</a>. One of the more
useful is the following, because the <a href="#tandemglider">tandem glider</a> can be generated
by a small <a href="lex_h.htm#herschel">Herschel</a> <a href="lex_c.htm#converter">converter</a>, <a href="lex_s.htm#sw1t43">SW1T43</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...............O.$..............O..$..............OOO$.........O.......$.........O.O.....$.........OO......$.OO..............$O.O..............$..O..............$"
>...............O.
..............O..
..............OOO
.........O.......
.........O.O.....
.........OO......
.OO..............
O.O..............
..O..............
</a></pre></td></tr></table></center>
<p><a name=teeth>:</a><b>teeth</b> A 65-cell quadratic growth pattern found by Nick Gotts in March
2000. This (and a related 65-cell pattern which Gotts found at about
the same time) beat the record previously held by <a href="lex_m.htm#mosquito5">mosquito5</a> for
smallest population known to have superlinear growth, but was later
superseded by <a href="lex_c.htm#catacryst">catacryst</a>. See <a href="lex_s.htm#switchenginepingpong">switch-engine ping-pong</a> for the
lowest-population <a href="lex_s.htm#superlineargrowth">superlinear growth</a> pattern as of July 2018, along
with a list of the record-holders.
<p><a name=telegraph>:</a><b>telegraph</b> A pattern created by Jason Summers in February 2003. It
transmits and receives information using a rare type of
<a href="lex_r.htm#reburnablefuse">reburnable fuse</a>, a <a href="lex_l.htm#lightspeedwire">lightspeed wire</a> made from a chain of beehives,
at the rate of 1440 ticks per bit. The rate of travel of signals
through the entire <a href="#transceiver">transceiver</a> device can be increased to any speed
strictly less than the <a href="lex_s.htm#speedoflight">speed of light</a> by increasing the length of
the beehive chain appropriately.
<p>"Telegraph" may also refer to any device that sends and receives
lightspeed signals; see also <a href="lex_p.htm#p1telegraph">p1 telegraph</a>,
<a href="lex_h.htm#highbandwidthtelegraph">high-bandwidth telegraph</a>.
<p><a name=ternaryreaction>:</a><b>ternary reaction</b> Any reaction between three objects. In particular,
a reaction in which two gliders from one stream and one glider from a
crossing stream of the same period annihilate each other. This can
be used to combine two glider guns of the same period to produce a
new glider gun with double the period.
<p><a name=testtubebaby>:</a><b>test tube baby</b> (p2)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....OO$O.O..O.O$..O..O..$..O..O..$...OO...$"
>OO....OO
O.O..O.O
..O..O..
..O..O..
...OO...
</a></pre></td></tr></table></center>
<p><a name=tetraplet>:</a><b>tetraplet</b> Any 4-cell <a href="lex_p.htm#polyplet">polyplet</a>.
<p><a name=tetromino>:</a><b>tetromino</b> Any 4-cell <a href="lex_p.htm#polyomino">polyomino</a>. There are five such objects, shown
below. The first is the <a href="lex_b.htm#block">block</a>, the second is the <a href="#ttetromino">T-tetromino</a> and
the remaining three rapidly evolve into <a href="lex_b.htm#beehive">beehives</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO......OOO......OOOO......OOO......OO.$OO.......O...................O.......OO$"
>OO......OOO......OOOO......OOO......OO.
OO.......O...................O.......OO
</a></pre></td></tr></table></center>
<p><a name=theonlinelifelikecasoupsearch>:</a><b>The Online Life-Like CA Soup Search</b> A distributed search effort set
up by Nathaniel Johnston in 2009, using a Python script running in
<a href="lex_g.htm#golly">Golly</a>. Results included a collection of the longest-lived 20x20
soups, as well as a <a href="lex_c.htm#census">census</a> of over 174 billion <a href="lex_a.htm#ash">ash</a> objects. It
has since been superseded by <a href="lex_c.htm#catagolue">Catagolue</a>.
<p><a name=therecursiveuniverse>:</a><b>The Recursive Universe</b> A popular science book by William Poundstone
(1985) dealing with the nature of the universe, illuminated by
parallels with the game of Life. This book brought to a wider
audience many of the results that first appeared in <a href="lex_l.htm#lifeline">LifeLine</a>. It
also outlines the proof of the existence of a <a href="lex_u.htm#universalconstructor">universal constructor</a>
in Life first given in <a href="lex_w.htm#winningways">Winning Ways</a>.
<p><a name=thumb>:</a><b>thumb</b> A <a href="lex_s.htm#spark">spark</a>-like protrusion which flicks out in a manner
resembling a thumb being flicked. Below on the left is a p9 thumb
sparker found by Dean Hickerson in October 1998. On the right is a
p4 example found by David Eppstein in June 2000.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......O..............O.....$...OO...O.........OO...O....$...O.....O.OO.....O.....O...$OO.O.O......O......OOO.O.OO.$OO.O.OO.OOOO............OO.O$...O.O...........OOOOOO....O$...O.O.OOO.......O....OOOOO.$....O.O...O.........O.......$......O..OO........O.OOOO...$......OO...........O.O..O...$....................O.......$"
>.......O..............O.....
...OO...O.........OO...O....
...O.....O.OO.....O.....O...
OO.O.O......O......OOO.O.OO.
OO.O.OO.OOOO............OO.O
...O.O...........OOOOOO....O
...O.O.OOO.......O....OOOOO.
....O.O...O.........O.......
......O..OO........O.OOOO...
......OO...........O.O..O...
....................O.......
</a></pre></td></tr></table></center>
<p><a name=thunderbird>:</a><b>thunderbird</b> (stabilizes at time 243)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO$...$.O.$.O.$.O.$"
>OOO
...
.O.
.O.
.O.
</a></pre></td></tr></table></center>
<p><a name=tick>:</a><b>tick</b> = <a href="lex_g.htm#generation">generation</a>
<p><a name=tictactoe>:</a><b>tic tac toe</b> = <a href="lex_o.htm#octagonii">octagon II</a>
<p><a name=tie>:</a><b>tie</b> A term used in naming certain <a href="lex_s.htm#stilllife">still lifes</a> (and the <a href="lex_s.htm#stator">stator</a>
part of certain <a href="lex_o.htm#oscillator">oscillators</a>). It indicates that the object
consists of two smaller objects joined point to point, as in
<a href="lex_s.htm#shiptieboat">ship tie boat</a>.
<p><a name=timebomb>:</a><b>time bomb</b> The following pattern by Doug Petrie, which is really just
a glider-producing <a href="lex_s.htm#switchengine">switch engine</a> in disguise. See
<a href="lex_i.htm#infinitegrowth">infinite growth</a> for some better examples of a similar nature.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O...........OO$O.O....O......O$.......O....O..$..O..O...O..O..$..OO......O....$...O...........$"
>.O...........OO
O.O....O......O
.......O....O..
..O..O...O..O..
..OO......O....
...O...........
</a></pre></td></tr></table></center>
<p><a name=titanictoroidaltraveler>:</a><b>titanic toroidal traveler</b> The <a href="lex_s.htm#superstring">superstring</a> with the following
repeating segment. The front part becomes p16, but the eventual fate
of the detached back part is unknown.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOOOOO$OOO...$"
>OOOOOO
OOO...
</a></pre></td></tr></table></center>
<p><a name=tl>:</a><b>TL</b> = <a href="#trafficlight">traffic light</a>
<p><a name=tnosedp4>:</a><b>T-nosed p4</b> (p4) Found by Robert Wainwright in October 1989. See also
<a href="lex_f.htm#filter">filter</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....O.....$.....O.....$....OOO....$...........$...........$...........$...OOOOO...$..O.OOO.O..$..O.O.O.O..$.OO.O.O.OO.$O..OO.OO..O$OO.......OO$"
>.....O.....
.....O.....
....OOO....
...........
...........
...........
...OOOOO...
..O.OOO.O..
..O.O.O.O..
.OO.O.O.OO.
O..OO.OO..O
OO.......OO
</a></pre></td></tr></table></center>
<p><a name=tnosedp5>:</a><b>T-nosed p5</b> (p5) Found by Nicolay Beluchenko in April 2005.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO...............OO.OO.....O........$..O..O.........OO.O.OOO.OO......O........$.O.O.O.....O....O.O.OOO......OO.O........$O..O.O.OOOOOO.....O....O.O...OO.O........$.OO.O.O..O...OOO..O.OOOO..O.O.OO.OO......$..O.O..OO.O..O..O.OO....OOO.O.O....OO....$.O..O...O..O.O.OO....OOO...O.............$.O.O.O...OOO.O...OOOO...O..O.O..OO.O..O..$OO.O.........OO.O....O.O.O.O........O.OOO$.O.O.O...OOO.O...OOOO...O..O.O..OO.O..O..$.O..O...O..O.O.OO....OOO...O.............$..O.O..OO.O..O..O.OO....OOO.O.O....OO....$.OO.O.O..O...OOO..O.OOOO..O.O.OO.OO......$O..O.O.OOOOOO.....O....O.O...OO.O........$.O.O.O.....O....O.O.OOO......OO.O........$..O..O.........OO.O.OOO.OO......O........$.....OO...............OO.OO.....O........$"
>.....OO...............OO.OO.....O........
..O..O.........OO.O.OOO.OO......O........
.O.O.O.....O....O.O.OOO......OO.O........
O..O.O.OOOOOO.....O....O.O...OO.O........
.OO.O.O..O...OOO..O.OOOO..O.O.OO.OO......
..O.O..OO.O..O..O.OO....OOO.O.O....OO....
.O..O...O..O.O.OO....OOO...O.............
.O.O.O...OOO.O...OOOO...O..O.O..OO.O..O..
OO.O.........OO.O....O.O.O.O........O.OOO
.O.O.O...OOO.O...OOOO...O..O.O..OO.O..O..
.O..O...O..O.O.OO....OOO...O.............
..O.O..OO.O..O..O.OO....OOO.O.O....OO....
.OO.O.O..O...OOO..O.OOOO..O.O.OO.OO......
O..O.O.OOOOOO.....O....O.O...OO.O........
.O.O.O.....O....O.O.OOO......OO.O........
..O..O.........OO.O.OOO.OO......O........
.....OO...............OO.OO.....O........
</a></pre></td></tr></table></center>
<p><a name=tnosedp6>:</a><b>T-nosed p6</b> (p6) Found by Achim Flammenkamp in September 1994. There
is also a much larger and fully symmetric version found by
Flammenkamp in August 1994.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......OO...OO......$......O.O.O.O......$.......O...O.......$...................$..O.O.O.....O.O.O..$OOO.O.OO...OO.O.OOO$..O.O.O.....O.O.O..$...................$.......O...O.......$......O.O.O.O......$......OO...OO......$"
>......OO...OO......
......O.O.O.O......
.......O...O.......
...................
..O.O.O.....O.O.O..
OOO.O.OO...OO.O.OOO
..O.O.O.....O.O.O..
...................
.......O...O.......
......O.O.O.O......
......OO...OO......
</a></pre></td></tr></table></center>
<p><a name=toad>:</a><b>toad</b> (p2) Found by Simon Norton, May 1970. This is the second most
common <a href="lex_o.htm#oscillator">oscillator</a>, although <a href="lex_b.htm#blinker">blinkers</a> are more than a hundred
times as frequent. See also <a href="lex_k.htm#killertoads">killer toads</a>. A toad can be used as a
90-degree <a href="lex_o.htm#onetime">one-time</a> <a href="#turner">turner</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO$OOO.$"
>.OOO
OOO.
</a></pre></td></tr></table></center>
<p>The protruding cells at the edges can perturb some reactions by
encouraging and then suppressing births on successive ticks. For
example, a toad can replace the northwest eater in the
<a href="lex_c.htm#callahangtoh">Callahan G-to-H</a> converter, allowing it to be packed one diagonal
cell closer to other circuits.
<p><a name=toadflipper>:</a><b>toad-flipper</b> A <a href="#toad">toad</a> <a href="lex_h.htm#hassler">hassler</a> that works in the manner of the
following example. Two <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#sparker">sparkers</a>, here <a href="lex_p.htm#pentadecathlon">pentadecathlons</a>,
apply their <a href="lex_s.htm#spark">sparks</a> to the toad in order to flip it over. When the
sparks are applied again it is flipped back. Either or both domino
sparkers can be moved down two spaces from the position shown and the
toad-flipper will still work, but because of symmetry there are
really only two different types. Compare <a href="#toadsucker">toad-sucker</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..............O.$.O..............O.$O.O............O.O$.O..............O.$.O......O.......O.$.O......OO......O.$.O......OO......O.$O.O......O.....O.O$.O..............O.$.O..............O.$"
>.O..............O.
.O..............O.
O.O............O.O
.O..............O.
.O......O.......O.
.O......OO......O.
.O......OO......O.
O.O......O.....O.O
.O..............O.
.O..............O.
</a></pre></td></tr></table></center>
<p><a name=toadsucker>:</a><b>toad-sucker</b> A <a href="#toad">toad</a> <a href="lex_h.htm#hassler">hassler</a> that works in the manner of the
following example. Two <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#sparker">sparkers</a>, here <a href="lex_p.htm#pentadecathlon">pentadecathlons</a>,
apply their <a href="lex_s.htm#spark">sparks</a> to the toad in order to shift it. When the
sparks are applied again it is shifted back. Either or both domino
sparkers can be moved down two spaces from the position shown and the
toad-sucker will still work, but because of symmetry there are really
only three different types. Compare <a href="#toadflipper">toad-flipper</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O................$.O..............O.$O.O.............O.$.O.............O.O$.O......O.......O.$.O......OO......O.$.O......OO......O.$O.O......O......O.$.O.............O.O$.O..............O.$................O.$"
>.O................
.O..............O.
O.O.............O.
.O.............O.O
.O......O.......O.
.O......OO......O.
.O......OO......O.
O.O......O......O.
.O.............O.O
.O..............O.
................O.
</a></pre></td></tr></table></center>
<p><a name=toaster>:</a><b>toaster</b> (p5) Found by Dean Hickerson, April 1992.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O......OO..$...O.O.OO..O...$...O.O.O.O.O...$..OO.O...O.OO..$O...OO.O.OO...O$...O.......O...$...O.......O...$O...OO.O.OO...O$..OO.O...O.OO..$...O.O.O.O.O...$...O.O.OO..O...$....O......OO..$"
>....O......OO..
...O.O.OO..O...
...O.O.O.O.O...
..OO.O...O.OO..
O...OO.O.OO...O
...O.......O...
...O.......O...
O...OO.O.OO...O
..OO.O...O.OO..
...O.O.O.O.O...
...O.O.OO..O...
....O......OO..
</a></pre></td></tr></table></center>
<p><a name=toggleablegun>:</a><b>toggleable gun</b> Any <a href="lex_g.htm#gun">gun</a> that can be turned off or turned on by the
same external signal - the simplest possible switching mechanism. An
input signal causes the gun to stop producing gliders. Another input
signal from the same source restores the gun to its original
function. Compare <a href="lex_s.htm#switchablegun">switchable gun</a>.
<p>Here's a small example by Dean Hickerson from September 1996:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OO..............O..$..............O.O.............O.O$..............O...............OO.$.................................$.................................$.................................$.................................$...............O..O....b.........$.OOOO..............O..b..........$O...O..........O...O..bbb........$....O...........OOOO.............$O..O........................aaa..$............................a....$.............................a...$"
>..............OO..............O..
..............O.O.............O.O
..............O...............OO.
.................................
.................................
.................................
.................................
...............O..O....b.........
.OOOO..............O..b..........
O...O..........O...O..bbb........
....O...........OOOO.............
O..O........................aaa..
............................a....
.............................a...
</a></pre></td></tr></table></center>
In the figure above, glider B and an LWSS are about to send a glider
NW. Glider A will delete the next glider after B, turning off the
output stream. But if the device were already off, B wouldn't be
present and A would instead delete the leading LWSS, turning the
device back on.
<p><a name=togglecircuit>:</a><b>toggle circuit</b> Any signal-processing <a href="lex_c.htm#circuit">circuit</a> that switches back and
forth between two possible states or outputs. An early example is
the <a href="lex_b.htm#boatbit">boat-bit</a>. More recent discoveries include the <a href="lex_s.htm#semisnark">semi-Snarks</a>,
which alternate between reflecting and absorbing input <a href="lex_g.htm#glider">gliders</a>.
The following B-to-G <a href="lex_c.htm#converter">converter</a> sends alternate glider outputs in
opposite directions.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO....................................OO....$......OO..O.O...............................OO..O.O....$......O...O....O............................O...O....O.$.......OOO.OOOOO.............................OOO.OOOOO.$.........O.O...................................O.O.....$.........O.O.OOO...............................O.O.OOO.$..........OO.O..O...............................OO.O..O$...............OO....................................OO$.......................................................$.......................................................$.............................................OO........$.............................................OO........$.......................................................$.......................................................$.......................................................$OO....................................OO...............$OO....................................OO...............$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.........OO....................................OO......$.........OO....................................OO......$.......................................................$OO.O.......O..........................OO.O.......O.....$O.OO......OOO.........................O.OO......OOO....$.........OO..O.................................OO..O...$"
>...........OO....................................OO....
......OO..O.O...............................OO..O.O....
......O...O....O............................O...O....O.
.......OOO.OOOOO.............................OOO.OOOOO.
.........O.O...................................O.O.....
.........O.O.OOO...............................O.O.OOO.
..........OO.O..O...............................OO.O..O
...............OO....................................OO
.......................................................
.......................................................
.............................................OO........
.............................................OO........
.......................................................
.......................................................
.......................................................
OO....................................OO...............
OO....................................OO...............
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.........OO....................................OO......
.........OO....................................OO......
.......................................................
OO.O.......O..........................OO.O.......O.....
O.OO......OOO.........................O.OO......OOO....
.........OO..O.................................OO..O...
</a></pre></td></tr></table></center>
<p><a name=tollcass>:</a><b>TOLLCASS</b> Acronym for <a href="#theonlinelifelikecasoupsearch">The Online Life-Like CA Soup Search</a>.
<p><a name=toolkit>:</a><b>toolkit</b> A set of Life reactions and mechanisms that can be used to
solve any problem in a specific pre-defined class of problems:
<a href="lex_g.htm#glider">glider</a> timing adjustment, <a href="lex_s.htm#salvo">salvo</a> creation, <a href="lex_s.htm#seed">seed</a> construction,
etc. See also <a href="lex_u.htm#universaltoolkit">universal toolkit</a>, <a href="#technology">technology</a>.
<p><a name=torus>:</a><b>torus</b> As applies to Life, usually means a finite Life universe which
takes the form of an <i>m</i> x <i>n</i> rectangle with the bottom edge considered
to be joined to the top edge and the left edge joined to the right
edge, so that the universe is topologically a torus. There are also
other less obvious ways of obtaining a toroidal universe.
<p>See also <a href="lex_k.htm#kleinbottle">Klein bottle</a>. Every object in a torus universe
obviously either dies or becomes a <a href="lex_s.htm#stilllife">still life</a> or <a href="lex_o.htm#oscillator">oscillator</a>.
<p><a name=totalaperiodic>:</a><b>total aperiodic</b> Any finite pattern which evolves in such a way that
no cell in the Life plane is eventually periodic. The first example
was found by Bill Gosper in November 1997. A few days later he found
the following much smaller example consisting of three copies of a
p12 <a href="lex_b.htm#backrake">backrake</a> by Dave Buckingham.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........................................O.................$........................................OOO................$.......................................OO.O.....O..........$.......................................OOO.....OOO.........$........................................OO....O..OO...OOO..$..............................................OOO....O..O..$........................................................O..$........................................................O..$........................................................O..$........................................OOO............O...$........................................O..O...............$........................................O..................$........................................O..................$.........................................O.................$...........................................................$...........................................................$...........................................................$...........................................................$...........................................................$...........................................................$......................................OOO..................$......................................O..O...........O.....$......................................O.............OOO....$......................................O............OO.O....$......................................O............OOO.....$.......................................O............OO.....$...........................................................$...........................................................$...................................OOO.....................$..................................OOOOO....................$..................................OOO.OO.......OO........O.$.....................................OO.......OOOO........O$..............................................OO.OO...O...O$................................................OO.....OOOO$...........................................................$...........................................................$....................O......................................$.....................O.....................................$.OO.............O....O................................OOO..$OOOO.............OOOOO..................................O..$OO.OO...................................................O..$..OO...................................................O...$....................................O......................$.....................................O.....................$.....................OO..........O...O.....................$......................OO..........OOOO...............OO....$.....................OO...........................OOO.OO...$.....................O............................OOOOO....$...................................................OOO.....$...........................................................$......................OO...................................$.............OOOO....OOOO..................................$............O...O....OO.OO.................................$.OOOOO..........O......OO..................................$O....O.........O...........................................$.....O.....................................................$....O......................................................$"
>.........................................O.................
........................................OOO................
.......................................OO.O.....O..........
.......................................OOO.....OOO.........
........................................OO....O..OO...OOO..
..............................................OOO....O..O..
........................................................O..
........................................................O..
........................................................O..
........................................OOO............O...
........................................O..O...............
........................................O..................
........................................O..................
.........................................O.................
...........................................................
...........................................................
...........................................................
...........................................................
...........................................................
...........................................................
......................................OOO..................
......................................O..O...........O.....
......................................O.............OOO....
......................................O............OO.O....
......................................O............OOO.....
.......................................O............OO.....
...........................................................
...........................................................
...................................OOO.....................
..................................OOOOO....................
..................................OOO.OO.......OO........O.
.....................................OO.......OOOO........O
..............................................OO.OO...O...O
................................................OO.....OOOO
...........................................................
...........................................................
....................O......................................
.....................O.....................................
.OO.............O....O................................OOO..
OOOO.............OOOOO..................................O..
OO.OO...................................................O..
..OO...................................................O...
....................................O......................
.....................................O.....................
.....................OO..........O...O.....................
......................OO..........OOOO...............OO....
.....................OO...........................OOO.OO...
.....................O............................OOOOO....
...................................................OOO.....
...........................................................
......................OO...................................
.............OOOO....OOOO..................................
............O...O....OO.OO.................................
.OOOOO..........O......OO..................................
O....O.........O...........................................
.....O.....................................................
....O......................................................
</a></pre></td></tr></table></center>
<p><a name=tpentomino>:</a><b>T-pentomino</b> Conway's name for the following <a href="lex_p.htm#pentomino">pentomino</a>, which is a
common <a href="lex_p.htm#parent">parent</a> of the <a href="#ttetromino">T-tetromino</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO$.O.$.O.$"
>OOO
.O.
.O.
</a></pre></td></tr></table></center>
<p><a name=track>:</a><b>track</b> A path made out of <a href="lex_c.htm#conduit">conduits</a>, often ending where it begins so
that the active <a href="lex_s.htm#signal">signal</a> object is cycled forever, forming an
<a href="lex_o.htm#oscillator">oscillator</a> or a <a href="lex_g.htm#gun">gun</a>.
<p>This term has also been used to refer to the <a href="lex_l.htm#lane">lane</a> on which a
<a href="lex_g.htm#glider">glider</a> or <a href="lex_s.htm#spaceship">spaceship</a> travels. The concept is very similar, but a
reference to a "track" now usually implies a non-trivial supporting
conduit.
<p><a name=tractorbeam>:</a><b>tractor beam</b> A stream of <a href="lex_s.htm#spaceship">spaceships</a> that can draw an object towards
the source of the stream. The example below shows a tractor beam
pulling a <a href="lex_l.htm#loaf">loaf</a>; this was used by Dean Hickerson to construct a
<a href="lex_s.htm#sawtooth">sawtooth</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................O..O......................$.....OOOO...........O..............OOOO........$.....O...O..........O...O..........O...O.......$.....O........OO....OOOO...........O........OO.$.OO...O..O...OOOO...........OO......O..O...OOOO$O..O........OO.OO..........OO.OO..........OO.OO$O.O..........OO.............OOOO...........OO..$.O...........................OO................$"
>.....................O..O......................
.....OOOO...........O..............OOOO........
.....O...O..........O...O..........O...O.......
.....O........OO....OOOO...........O........OO.
.OO...O..O...OOOO...........OO......O..O...OOOO
O..O........OO.OO..........OO.OO..........OO.OO
O.O..........OO.............OOOO...........OO..
.O...........................OO................
</a></pre></td></tr></table></center>
<p><a name=trafficcircle>:</a><b>traffic circle</b> (p100)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....................OO....OO...................$.....................O.O..O.O...................$.......................O..O.....................$......................OO..OO....................$.....................OOO..OOO...................$.......................O..O.....................$...............................O................$..............................O.OO..............$..................................O.............$..........................O...O..O.O............$..........................O.....O..O............$..........................O......OO.............$.........OO.....................................$........O..O..........OOO...OOO.................$.......O.O.O....................................$......OOO.O...............O.....................$......OOO.................O.....................$..........................O.....................$............OOO.................................$OO..O................OOO........................$O..OO.....O.....O...............................$.OOOOO....O.....O..O.....O.................O..OO$..........O.....O..O.....O.................OO..O$...................O.....O.......OOO......OOOOO.$.OOOOO......OOO.................................$O..OO................OOO.......O.....O..........$OO..O..........................O.....O....OOOOO.$...............................O.....O.....OO..O$...........................................O..OO$.................................OOO............$.......................................OO.......$......................................OOO.......$.....................................O.OO.......$....................................O.O.........$....................OOO.............O..O........$.....................................OO.........$.............OO....O..O.........................$............O..O................................$............O.O.O...............................$.............O..O...............................$.................O..............................$..............O.O...............................$.....................O..O.......................$...................OOO..OOO.....................$....................OO..OO......................$.....................O..O.......................$...................O.O..O.O.....................$...................OO....OO.....................$"
>.....................OO....OO...................
.....................O.O..O.O...................
.......................O..O.....................
......................OO..OO....................
.....................OOO..OOO...................
.......................O..O.....................
...............................O................
..............................O.OO..............
..................................O.............
..........................O...O..O.O............
..........................O.....O..O............
..........................O......OO.............
.........OO.....................................
........O..O..........OOO...OOO.................
.......O.O.O....................................
......OOO.O...............O.....................
......OOO.................O.....................
..........................O.....................
............OOO.................................
OO..O................OOO........................
O..OO.....O.....O...............................
.OOOOO....O.....O..O.....O.................O..OO
..........O.....O..O.....O.................OO..O
...................O.....O.......OOO......OOOOO.
.OOOOO......OOO.................................
O..OO................OOO.......O.....O..........
OO..O..........................O.....O....OOOOO.
...............................O.....O.....OO..O
...........................................O..OO
.................................OOO............
.......................................OO.......
......................................OOO.......
.....................................O.OO.......
....................................O.O.........
....................OOO.............O..O........
.....................................OO.........
.............OO....O..O.........................
............O..O................................
............O.O.O...............................
.............O..O...............................
.................O..............................
..............O.O...............................
.....................O..O.......................
...................OOO..OOO.....................
....................OO..OO......................
.....................O..O.......................
...................O.O..O.O.....................
...................OO....OO.....................
</a></pre></td></tr></table></center>
<p><a name=trafficjam>:</a><b>traffic jam</b> Any <a href="#trafficlight">traffic light</a> <a href="lex_h.htm#hassler">hassler</a>, such as <a href="#trafficcircle">traffic circle</a>.
The term is also applied to the following reaction, used in most
traffic light hasslers, in which two traffic lights interact in such
a way as to reappear after 25 generations with an extra 6 spaces
between them. See <a href="#trafficlightsextruder">traffic lights extruder</a> for a way to make this
reaction <a href="lex_e.htm#extensible">extensible</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OOO...........$...........OOO..$O.....O.........$O.....O..O.....O$O.....O..O.....O$.........O.....O$..OOO...........$...........OOO..$"
>..OOO...........
...........OOO..
O.....O.........
O.....O..O.....O
O.....O..O.....O
.........O.....O
..OOO...........
...........OOO..
</a></pre></td></tr></table></center>
<p><a name=trafficlight>:</a><b>traffic light</b> (p2) A common formation of four blinkers.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OOO..$.......$O.....O$O.....O$O.....O$.......$..OOO..$"
>..OOO..
.......
O.....O
O.....O
O.....O
.......
..OOO..
</a></pre></td></tr></table></center>
<p><a name=trafficlightsextruder>:</a><b>traffic lights extruder</b> A growing pattern constructed by Jason
Summers in October 2006, which slowly creates an outward-growing
chain of <a href="#trafficlight">traffic lights</a>. The growth occurs in waves which travel
through the chain from one end to the other. It can be thought of as
a complex <a href="lex_f.htm#fencepost">fencepost</a> for a <a href="lex_w.htm#wick">wick</a> that does not need a
<a href="lex_w.htm#wickstretcher">wickstretcher</a>.
<p>The following illustrates the reaction used, in which a newly
created traffic light at the left eventually pushes the rightmost one
slightly to the right.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................O.......................O....$......................O.......................O....$.........OOO..........O..........OOO..........O....$.OO................................................$OOO....O.....O....OOO...OOO....O.....O....OOO...OOO$.OO....O.....O.................O.....O.............$.......O.....O........O........O.....O........O....$......................O.......................O....$.........OOO..........O..........OOO..........O....$"
>......................O.......................O....
......................O.......................O....
.........OOO..........O..........OOO..........O....
.OO................................................
OOO....O.....O....OOO...OOO....O.....O....OOO...OOO
.OO....O.....O.................O.....O.............
.......O.....O........O........O.....O........O....
......................O.......................O....
.........OOO..........O..........OOO..........O....
</a></pre></td></tr></table></center>
<p><a name=transbeaconontable>:</a><b>trans-beacon on table</b> (p2)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....OO$.....O$..O...$..OO..$......$OOOO..$O..O..$"
>....OO
.....O
..O...
..OO..
......
OOOO..
O..O..
</a></pre></td></tr></table></center>
<p><a name=transboatwithtail>:</a><b>trans-boat with tail</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO...$O.O..$.O.O.$...O.$...OO$"
>OO...
O.O..
.O.O.
...O.
...OO
</a></pre></td></tr></table></center>
<p><a name=transceiver>:</a><b>transceiver</b> = <a href="lex_h.htm#herscheltransceiver">Herschel transceiver</a>.
<p><a name=transloafwithtail>:</a><b>trans-loaf with tail</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O....$O.O...$O..O..$.OO.O.$....O.$....OO$"
>.O....
O.O...
O..O..
.OO.O.
....O.
....OO
</a></pre></td></tr></table></center>
<p><a name=transmitter>:</a><b>transmitter</b> = <a href="lex_h.htm#herscheltransmitter">Herschel transmitter</a>.
<p><a name=transparent>:</a><b>transparent</b> In signal circuitry, a term used for a <a href="lex_c.htm#catalyst">catalyst</a> that is
completely destroyed by the passing signal, then rebuilt. Often
(though not always) the active reaction passes directly through the
area occupied by the transparent catalyst, then rebuilds the catalyst
behind itself, as in the <a href="#transparentblockreaction">transparent block reaction</a>. See also
<a href="#transparentlane">transparent lane</a>.
<p><a name=transparentblockreaction>:</a><b>transparent block reaction</b> A certain reaction between a block and a
<a href="lex_h.htm#herschel">Herschel</a> <a href="lex_p.htm#predecessor">predecessor</a> in which the block reappears in its original
place some time later, the reaction having effectively passed through
it. This reaction was found by Dave Buckingham in 1988. It has been
used in some <a href="lex_h.htm#herschelconduit">Herschel conduits</a>, and in the <a href="lex_g.htm#gunstar">gunstars</a>. Because the
reaction involves a Herschel predecessor rather than an actual
Herschel, the following diagram shows instead a <a href="lex_b.htm#bheptomino">B-heptomino</a> (which
by itself would evolve into a block and a Herschel).
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O.............$OO..........OO$.OO.........OO$OO............$"
>O.............
OO..........OO
.OO.........OO
OO............
</a></pre></td></tr></table></center>
<p><a name=transparentdebriseffect>:</a><b>transparent debris effect</b> A mechanism where a <a href="lex_h.htm#herschel">Herschel</a> or other
active reaction completely destroys a <a href="lex_c.htm#catalyst">catalyst</a> in a particular
location in a <a href="lex_c.htm#conduit">conduit</a>. After passing through or past that
location, the same reaction then recreates the catalyst in exactly
its original position. This type of catalysis is surprisingly common
in <a href="lex_s.htm#signal">signal</a> <a href="lex_c.htm#circuit">circuitry</a>. For an example, see
<a href="#transparentblockreaction">transparent block reaction</a>.
<p>The transparent object is most often a very common <a href="lex_s.htm#stilllife">still life</a>
such as a block or beehive. Rarer objects are not unknown; for
example, a transparent <a href="lex_l.htm#loaf">loaf</a> was found by Stephen Silver in October
1997, in a very useful <a href="lex_e.htm#elementaryconduit">elementary conduit</a> making up part of a
<a href="lex_h.htm#herschelreceiver">Herschel receiver</a>. However, not surprisingly, rarer objects are
much less likely to reappear in exactly the correct location and
orientation, so transparent reactions involving them are much more
difficult to find, on average.
<p><a name=transparentlane>:</a><b>transparent lane</b> A path through a signal-producing <a href="lex_c.htm#circuit">circuit</a> that can
be used to merge signal streams. The signal is usually a
<a href="lex_s.htm#standardspaceship">standard spaceship</a> such as a <a href="lex_g.htm#glider">glider</a>. It can either be produced
by the circuit, or it can come from elsewhere, passing safely through
on the same <a href="lex_l.htm#lane">lane</a> without interacting with the circuit. A good
example is the NW31 converter, which has two glider outputs on
transparent lanes:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.......................$.O.......................$.O.O.....................$..OO.....................$.........................$.........................$.........................$.......................OO$.......................OO$.........................$..O......................$..O.O....................$..OOO....................$....O....................$.........................$.........................$.........................$.........................$.........................$.........................$.........................$.........................$.............OO..........$.............OO..........$"
>OO.......................
.O.......................
.O.O.....................
..OO.....................
.........................
.........................
.........................
.......................OO
.......................OO
.........................
..O......................
..O.O....................
..OOO....................
....O....................
.........................
.........................
.........................
.........................
.........................
.........................
.........................
.........................
.............OO..........
.............OO..........
</a></pre></td></tr></table></center>
<p>The optional third output shown in <a href="lex_n.htm#nw31">NW31</a> is non-transparent,
because the upper <a href="lex_e.htm#eater1">eater1</a> catalyst would get in the way of a passing
glider on the same lane.
<p><a name=tremisnark>:</a><b>tremi-Snark</b> A <a href="lex_c.htm#colourpreserving">colour-preserving</a> period-multiplying <a href="lex_s.htm#signal">signal</a>
<a href="lex_c.htm#conduit">conduit</a> found by Tanner Jacobi on 7 September 2017, producing one
output <a href="lex_g.htm#glider">glider</a> for every three input gliders. It uses the same
block-to-pre-honeyfarm <a href="lex_b.htm#bait">bait</a> reaction as the <a href="lex_s.htm#snark">Snark</a>, and so has the
same 43-<a href="#tick">tick</a> <a href="lex_r.htm#recoverytime">recovery time</a>. Compare <a href="lex_s.htm#semisnark">semi-Snark</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O............................$..O...........................$OOO...........................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$..............................$...........O..................$............OO................$...........OO.................$..............................$...........................O..$.........................OOO..$........................O.....$........................OO....$..............................$..............................$..............................$.......................O......$.....................O.O......$......................OO......$..............OO..............$.............O.O........O.....$.............O.........O.O....$............OO.........O.O....$........................O.....$..............................$..............................$..............................$.....................OO.OO....$.................OO..OO.O...OO$.................O......O.O..O$..................OOOOOOO.OO..$.........................O....$....................OOOO.O....$....................O..OO.....$"
>.O............................
..O...........................
OOO...........................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
..............................
...........O..................
............OO................
...........OO.................
..............................
...........................O..
.........................OOO..
........................O.....
........................OO....
..............................
..............................
..............................
.......................O......
.....................O.O......
......................OO......
..............OO..............
.............O.O........O.....
.............O.........O.O....
............OO.........O.O....
........................O.....
..............................
..............................
..............................
.....................OO.OO....
.................OO..OO.O...OO
.................O......O.O..O
..................OOOOOOO.OO..
.........................O....
....................OOOO.O....
....................O..OO.....
</a></pre></td></tr></table></center>
<p><a name=tricetongs>:</a><b>trice tongs</b> (p3) Found by Robert Wainwright, February 1982. In terms
of its 7x7 <a href="lex_b.htm#boundingbox">bounding box</a> this ties with <a href="lex_j.htm#jam">jam</a> as the smallest p3
<a href="lex_o.htm#oscillator">oscillator</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O....$..OOO..$OO...O.$.O.O.O.$.O.....$..OO..O$.....OO$"
>..O....
..OOO..
OO...O.
.O.O.O.
.O.....
..OO..O
.....OO
</a></pre></td></tr></table></center>
<p><a name=trigger>:</a><b>trigger</b> A <a href="lex_s.htm#signal">signal</a>, usually a single <a href="lex_g.htm#glider">glider</a>, that collides with a
<a href="lex_s.htm#seed">seed</a> <a href="lex_c.htm#constellation">constellation</a> to produce a relatively rare still life or
oscillator, or an output <a href="lex_s.htm#spaceship">spaceship</a> or other signal. The
constellation is destroyed or damaged in the process; compare
<a href="lex_c.htm#circuit">circuit</a>, <a href="lex_r.htm#reflector">reflector</a>. Here a pair of trigger gliders strike a
<a href="lex_d.htm#dirty">dirty</a> seed constellation assembled by Chris Cain in March 2015, to
launch a three-engine <a href="lex_c.htm#cordership">Cordership</a>:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....................................................OO.$................................................OO..OO.$................................................OO.....$.......................................................$.......................................................$.......................................................$........................................OO.............$........................................OO.............$...................................................OO..$..................................O................O.O.$.................................O.O...........OO...O.O$..................................OO..........O.O....O.$...............................................O.......$.......................................................$..................................O.................OOO$.................................O.O................O..$..................................OO.................O.$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$.......................................................$...........................O...........................$..........................O.O..........................$...........................OO..........................$.......................................................$.......................................................$...........................O...........................$..........................O.O..........................$...........................OO..........................$.......................................................$.......................................................$.......................................................$.......................................................$.......O....O..........................................$......O.O..O.O.........................................$.......OO...OO.........................................$.......................................................$.......................................................$.......................................................$.......................................................$OO.....................................................$O.O....................................................$.O.O...................................................$..O....................................................$.......................................................$.......................................................$.......................................................$.............O.........................................$............OO.........................................$............O.O........................................$"
>....................................................OO.
................................................OO..OO.
................................................OO.....
.......................................................
.......................................................
.......................................................
........................................OO.............
........................................OO.............
...................................................OO..
..................................O................O.O.
.................................O.O...........OO...O.O
..................................OO..........O.O....O.
...............................................O.......
.......................................................
..................................O.................OOO
.................................O.O................O..
..................................OO.................O.
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
.......................................................
...........................O...........................
..........................O.O..........................
...........................OO..........................
.......................................................
.......................................................
...........................O...........................
..........................O.O..........................
...........................OO..........................
.......................................................
.......................................................
.......................................................
.......................................................
.......O....O..........................................
......O.O..O.O.........................................
.......OO...OO.........................................
.......................................................
.......................................................
.......................................................
.......................................................
OO.....................................................
O.O....................................................
.O.O...................................................
..O....................................................
.......................................................
.......................................................
.......................................................
.............O.........................................
............OO.........................................
............O.O........................................
</a></pre></td></tr></table></center>
<p>"Trigger" is also used when a spaceship reacts with another object
to cause a reaction to occur whenever desired (but perhaps only at
particular intervals). The object being triggered lies <a href="lex_d.htm#dormant">dormant</a>
until the reaction is required. All <a href="#turner">turners</a> and <a href="lex_f.htm#freezedried">freeze-dried</a>
constellations are triggerable.
<p>In some cases the object is not destroyed so that the reaction can
be repeated after some <a href="lex_r.htm#repeattime">repeat time</a>. See for example <a href="lex_c.htm#converter">converter</a>
and <a href="lex_r.htm#reflector">reflector</a>, and more specifically <a href="lex_m.htm#mwssoutoftheblue">MWSS out of the blue</a> and
<a href="lex_q.htm#queenbeeshuttlepair">queen bee shuttle pair</a>.
<p><a name=triomino>:</a><b>triomino</b> Either of the two 3-cell <a href="lex_p.htm#polyomino">polyominoes</a>. The term is rarely
used in Life, since the two objects in question are simply the
<a href="lex_b.htm#blinker">blinker</a> and the <a href="lex_p.htm#preblock">pre-block</a>.
<p><a name=triplecaterer>:</a><b>triple caterer</b> (p3) Found by Dean Hickerson, October 1989. Compare
<a href="lex_c.htm#caterer">caterer</a> and <a href="lex_d.htm#doublecaterer">double caterer</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.....OO.........$....O..O..OO....$....OO.O...O....$......O.OOO....O$..OOO.O.O....OOO$.O..O..O....O...$O.O..O...O..OO..$.O..............$..OO.OO.OO.OO...$...O...O...O....$...O...O...O....$"
>.....OO.........
....O..O..OO....
....OO.O...O....
......O.OOO....O
..OOO.O.O....OOO
.O..O..O....O...
O.O..O...O..OO..
.O..............
..OO.OO.OO.OO...
...O...O...O....
...O...O...O....
</a></pre></td></tr></table></center>
<p><a name=triplepseudo>:</a><b>triple pseudo</b> The following pattern, found by Gabriel Nivasch in July
2001. It is unique among 32-bit <a href="lex_s.htm#stilllife">still lifes</a> in that it can be
broken down into three <a href="lex_s.htm#stable">stable</a> pieces but not into two. The term
may also refer to any larger <a href="lex_s.htm#stable">stable</a> pattern with the same property.
See also <a href="lex_q.htm#quadpseudo">quad pseudo</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......OO$..O.O..O$.O.OO.O.$.O....OO$OO.OO...$...OO.OO$OO....O.$.O.OO.O.$O..O.O..$OO......$"
>......OO
..O.O..O
.O.OO.O.
.O....OO
OO.OO...
...OO.OO
OO....O.
.O.OO.O.
O..O.O..
OO......
</a></pre></td></tr></table></center>
<p><a name=triplet>:</a><b>triplet</b> Any 3-cell <a href="lex_p.htm#polyplet">polyplet</a>. There are 5 such objects, shown
below. The first two are the two <a href="#triomino">triominoes</a>, and the other three
vanish in two generations.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..................O.......O.......O..$OO......OOO......OO.......O.O.......O.$.....................................O$"
>O..................O.......O.......O..
OO......OOO......OO.......O.O.......O.
.....................................O
</a></pre></td></tr></table></center>
<p><a name=tripole>:</a><b>tripole</b> (p2) The <a href="lex_b.htm#barberpole">barberpole</a> of length 3.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO....$O.O...$......$..O.O.$.....O$....OO$"
>OO....
O.O...
......
..O.O.
.....O
....OO
</a></pre></td></tr></table></center>
<p><a name=tritoad>:</a><b>tritoad</b> (p3) Found by Dave Buckingham, October 1977.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.........OO.......$.........O........$..........O..OO...$.......OOO.O..O...$......O....OO.O.OO$......O.OO..O.O.OO$...OO.O...OO..O...$...O..OO...O.OO...$OO.O.O..OO.O......$OO.O.OO....O......$...O..O.OOO.......$...OO..O..........$........O.........$.......OO.........$"
>.........OO.......
.........O........
..........O..OO...
.......OOO.O..O...
......O....OO.O.OO
......O.OO..O.O.OO
...OO.O...OO..O...
...O..OO...O.OO...
OO.O.O..OO.O......
OO.O.OO....O......
...O..O.OOO.......
...OO..O..........
........O.........
.......OO.........
</a></pre></td></tr></table></center>
<p><a name=trivial>:</a><b>trivial</b> A trivial period-<i>N</i> oscillator is one in which every cell
oscillates at some smaller factor of <i>N</i>. See <a href="lex_o.htm#omniperiodic">omniperiodic</a>. For
example, the joining of a period 3 and a period 4 <a href="lex_o.htm#oscillator">oscillator</a> as
shown below creates a single object which is a trivial oscillator of
period 12.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O.O.$...........O$.......O..O.$......O.O.O.$......O..O..$....OO.OO...$...O..O.....$....O.O.....$OO...O......$.O.OO.......$...O........$...O........$"
>........O.O.
...........O
.......O..O.
......O.O.O.
......O..O..
....OO.OO...
...O..O.....
....O.O.....
OO...O......
.O.OO.......
...O........
...O........
</a></pre></td></tr></table></center>
However, there are trivial oscillators that meet this requirement,
but may still be considered to be <a href="lex_n.htm#nontrivial">non-trivial</a> because the
different-period <a href="lex_r.htm#rotor">rotors</a> are not separated by <a href="lex_s.htm#stator">stator</a> cells. An
example is Dean Hickerson's <a href="#trivialp6">trivial p6</a>. Conversely, there are
oscillators formed by trivial combinations of high-period <a href="lex_g.htm#gun">guns</a> or
<a href="lex_s.htm#sparker">sparkers</a> that are only technically non-trivial, because the
lower-period components overlap but do not interact in any way.
<p>"Trivial" is also used to describe a <a href="lex_p.htm#parent">parent</a> of an object which
has groups of cells that can be removed without changing the result,
such as isolated faraway cells. For example, here is a trivial
parent of a block.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O......$.O....O$.O.....$O......$"
>O......
.O....O
.O.....
O......
</a></pre></td></tr></table></center>
<p><a name=trivialp6>:</a><b>trivial p6</b> (p6) An <a href="lex_o.htm#oscillator">oscillator</a> found by Dean Hickerson in December
1994. Every cell has period less than 6, so this is a <a href="#trivial">trivial</a>
oscillator. It is unusual because it has period-2 cells in contact
with period-3 cells.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:...........OO..............$...........O......OO.......$........OO.O......O..O.....$........O.O.OO.OO.O.OO..O..$.O........O..O.O..O..O.O.O.$.O.O.....OO..O.O.O.OO..O..O$.O.O.O........OO.O.O.OO.OO.$.......O.O.OOO...O....OO...$..O...O....O.OO........O...$....O...OOO..OO.OOO.O.O.OO.$OO..O......O..........O.O..$..O...........OO.OO...O.O..$........O.OOOOO...O....O...$........OO...O..O..O.......$...........OOOO.OOO........$........OOO....O...........$........O..O..O..OO........$..........OO...OO.O........$"
>...........OO..............
...........O......OO.......
........OO.O......O..O.....
........O.O.OO.OO.O.OO..O..
.O........O..O.O..O..O.O.O.
.O.O.....OO..O.O.O.OO..O..O
.O.O.O........OO.O.O.OO.OO.
.......O.O.OOO...O....OO...
..O...O....O.OO........O...
....O...OOO..OO.OOO.O.O.OO.
OO..O......O..........O.O..
..O...........OO.OO...O.O..
........O.OOOOO...O....O...
........OO...O..O..O.......
...........OOOO.OOO........
........OOO....O...........
........O..O..O..OO........
..........OO...OO.O........
</a></pre></td></tr></table></center>
<p><a name=tromboneslide>:</a><b>trombone slide</b> An arrangement of four 90-degree <a href="lex_r.htm#reflector">reflectors</a> that can
be placed into the path of a <a href="lex_g.htm#glider">glider</a> so as to delay it by an
adjustable number of generations, without changing its <a href="lex_l.htm#lane">lane</a>. More
generally, any combination of <a href="lex_c.htm#circuit">circuits</a> may be referred to as a
trombone slide, if the grouping can be moved as a single unit that
functions as a 180-degree glider <a href="lex_r.htm#reflector">reflector</a>.
<p>The smallest known trombone slides are made using <a href="lex_s.htm#snark">Snarks</a>. In the
trombone slide shown below, sample input and output gliders are
shown. The input glider will reach the same output location 128
generations sooner if the trombone slide is removed.
<p>If the top and left Snarks are moved together diagonally to the
upper left by <i>N</i> cells, then the glider delay is increased by 8<i>N</i>
generations since the glider has to travel <i>N</i> more cells in each
direction. This sliding action gives the trombone slide its name.
If only the final Snark is moved, then the output glider's path can
be altered by a number of full diagonals.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:......................OO...OO....................$......................OO..O.OOO..................$..........................O....O.................$......................OOOO.OO..O.................$......................O..O.O.O.OO................$.........................O.O.O.O.................$..........................OO.O.O.................$..............................O..................$.................................................$................OO...............................$.................O.......OO......................$.................O.O.....OO......................$..................OO.............................$.................................................$.................................................$.............................................O...$...........................................OOO...$..........................................O......$..........................................OO.....$............................OO...................$............................O....................$.............................OOO..............OOO$...............................O................O$...............................................O.$.................................................$................................OO...............$....O..........................O.O.....OO........$..OOOOO..............OO........O.......OO........$.O.....O.............O........OO.................$.O..OOO............O.O...........................$OO.O...............OO.......................O....$O..OOOO.................................OO.O.O...$.OO...O...OO...........................O.O.O.O...$...OOO....OO........................O..O.O.O.OO..$...O................................OOOO.OO..O...$OO.O....................................O....O...$OO.OO...............................OO..O.OOO....$....................................OO...OO......$.................................................$...........OO....................................$............O....................O...............$.........OOO...OO..............OOOOO.............$.........O......O.............O.....O............$................O.O............OOO..O............$.................OO...............O.OO...........$...............................OOOO..O...........$..........................OO...O...OO............$..........................OO....OOO..............$..................................O..............$..................................O.OO...........$.................................OO.OO...........$.................................................$.................................................$..............OOO........OO......................$................O........O.......................$...............O..........OOO....................$............................O....................$"
>......................OO...OO....................
......................OO..O.OOO..................
..........................O....O.................
......................OOOO.OO..O.................
......................O..O.O.O.OO................
.........................O.O.O.O.................
..........................OO.O.O.................
..............................O..................
.................................................
................OO...............................
.................O.......OO......................
.................O.O.....OO......................
..................OO.............................
.................................................
.................................................
.............................................O...
...........................................OOO...
..........................................O......
..........................................OO.....
............................OO...................
............................O....................
.............................OOO..............OOO
...............................O................O
...............................................O.
.................................................
................................OO...............
....O..........................O.O.....OO........
..OOOOO..............OO........O.......OO........
.O.....O.............O........OO.................
.O..OOO............O.O...........................
OO.O...............OO.......................O....
O..OOOO.................................OO.O.O...
.OO...O...OO...........................O.O.O.O...
...OOO....OO........................O..O.O.O.OO..
...O................................OOOO.OO..O...
OO.O....................................O....O...
OO.OO...............................OO..O.OOO....
....................................OO...OO......
.................................................
...........OO....................................
............O....................O...............
.........OOO...OO..............OOOOO.............
.........O......O.............O.....O............
................O.O............OOO..O............
.................OO...............O.OO...........
...............................OOOO..O...........
..........................OO...O...OO............
..........................OO....OOO..............
..................................O..............
..................................O.OO...........
.................................OO.OO...........
.................................................
.................................................
..............OOO........OO......................
................O........O.......................
...............O..........OOO....................
............................O....................
</a></pre></td></tr></table></center>
<p>Trombone slides made of the same type of component cannot alter the
glider path by half-diagonals, and can only change the timing by
multiples of 8 generations. For other timing changes, different
components are necessary. These may be stable like the
<a href="lex_s.htm#silverreflector">Silver reflector</a> or the <a href="lex_c.htm#colourchanging">colour-changing</a> example shown in the
<a href="lex_r.htm#reflector">reflector</a> article, or periodic like the various <a href="lex_b.htm#bumper">bumpers</a>.
<p><a name=true>:</a><b>true</b> Opposite of <a href="lex_p.htm#pseudo">pseudo</a>. A <a href="lex_g.htm#gun">gun</a> emitting a period <i>n</i> stream of
<a href="lex_s.htm#spaceship">spaceships</a> (or <a href="lex_r.htm#rake">rakes</a>) is said to be a true period <i>n</i> gun if its
mechanism oscillates with period <i>n</i>. The same distinction between
true and pseudo also exists for <a href="lex_p.htm#puffer">puffers</a>. An easy way to check that
a gun is true period <i>n</i> is to stop the output with an <a href="lex_e.htm#eater">eater</a>, and
check that the result is a period-<i>n</i> <a href="lex_o.htm#oscillator">oscillator</a>.
<p>True period <i>n</i> guns are known to exist for all periods greater than
61 (see <a href="lex_m.htm#myexperiencewithbheptominosinoscillators">My Experience with B-heptominos in Oscillators</a>), but only a
few smaller periods have been achieved, namely 20, 22, 24, 30, 36,
40, 44, 45, 46, 48, 50, and 54 through 61. See also <a href="lex_q.htm#quetzal">Quetzal</a> for
the 54-61 range.
<pre>
------------------------------------
Period Discoverers Date
------------------------------------
20 Matthias Merzenich May 2013
Noam Elkies
22 David Eppstein Aug 2000
Jason Summers
24 Noam Elkies Jun 1997
30 Bill Gosper Nov 1970
36 Jason Summers Jul 2004
40 Adam P. Goucher Mar 2013
Matthias Merzenich
Jason Summers
44 Dave Buckingham Apr 1992
45 Matthias Merzenich Apr 2010
46 Bill Gosper 1971
48 Noam Elkies Jun 1997
50 Dean Hickerson Oct 1996
Noam Elkies
Dave Buckingham
54 Dieter Leithner Jan 1998
Noam Elkies
Dave Buckingham
55 Stephen Silver Oct 1998
56 Dieter Leithner Jan 1998
Dave Buckingham
Noam Elkies
57 Matthias Merzenich Apr 2016
58 'thunk' Apr 2016
Matthias Merzenich
Chris Cain
59 Adam P. Goucher Dec 2009
Jason Summers
60 Bill Gosper Nov 1970
61 Luka Okanishi Apr 2016
------------------------------------
</pre>
<p><a name=ttetromino>:</a><b>T-tetromino</b> The following common <a href="lex_p.htm#predecessor">predecessor</a> of a <a href="#trafficlight">traffic light</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OOO$.O.$"
>OOO
.O.
</a></pre></td></tr></table></center>
<p><a name=tub>:</a><b>tub</b> (p1)
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.$O.O$.O.$"
>.O.
O.O
.O.
</a></pre></td></tr></table></center>
<p><a name=tubber>:</a><b>tubber</b> (p3) Found by Robert Wainwright before June 1972.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O.O......$....OO.O.....$.......OOO...$....OO....O..$OO.O..OO..O..$.O.O....O.OO.$O...O...O...O$.OO.O....O.O.$..O..OO..O.OO$..O....OO....$...OOO.......$.....O.OO....$......O.O....$"
>....O.O......
....OO.O.....
.......OOO...
....OO....O..
OO.O..OO..O..
.O.O....O.OO.
O...O...O...O
.OO.O....O.O.
..O..OO..O.OO
..O....OO....
...OOO.......
.....O.OO....
......O.O....
</a></pre></td></tr></table></center>
<p><a name=tubeater>:</a><b>tubeater</b> A pattern that consumes the output of a <a href="#tubstretcher">tubstretcher</a>. The
smallest known tubeater was found by Nicolay Beluchenko (September
2005), and is shown below in conjunction with the smallest known
tubstretcher.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:........O....................$.......OO....................$.......O.O...................$.............................$..........OO.................$..........OO.................$.......................OOO...$.O......OO...O.........O.....$OO.....O..O.O.O.........O....$O.O...OO.O...O.O..........OOO$....O.........O.O............$...O...........O.O.....OO....$...O..O.........O.O....O.O.O.$.................O.O...O...OO$..................O.....O....$...................O..OO..O..$.....................O.OOOO..$......................OOO...O$..........................OO.$...........................O.$...........................OO$..........................O..$...........................OO$"
>........O....................
.......OO....................
.......O.O...................
.............................
..........OO.................
..........OO.................
.......................OOO...
.O......OO...O.........O.....
OO.....O..O.O.O.........O....
O.O...OO.O...O.O..........OOO
....O.........O.O............
...O...........O.O.....OO....
...O..O.........O.O....O.O.O.
.................O.O...O...OO
..................O.....O....
...................O..OO..O..
.....................O.OOOO..
......................OOO...O
..........................OO.
...........................O.
...........................OO
..........................O..
...........................OO
</a></pre></td></tr></table></center>
<p><a name=tubstretcher>:</a><b>tubstretcher</b> Any <a href="lex_w.htm#wickstretcher">wickstretcher</a> in which the wick is two diagonal
lines of cells forming, successively, a <a href="#tub">tub</a>, a <a href="lex_b.htm#barge">barge</a>, a
<a href="lex_l.htm#longbarge">long barge</a>, etc. The first one was found by Hartmut Holzwart in
June 1993, although at the time this was considered to be a
boatstretcher (as it was shown with an extra cell, making the tub
into a <a href="lex_b.htm#boat">boat</a>). The following small example is by Nicolay Beluchenko
(August 2005), using a <a href="lex_q.htm#quarter">quarter</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......OOO.....$.......O.......$........O......$..........OO...$...........O...$...............$........OO...O.$OOO.....OO..O.O$O......O.O...O.$.O....OO.......$...OOOO.O......$....OO.........$"
>.......OOO.....
.......O.......
........O......
..........OO...
...........O...
...............
........OO...O.
OOO.....OO..O.O
O......O.O...O.
.O....OO.......
...OOOO.O......
....OO.........
</a></pre></td></tr></table></center>
<p>In October 2005, David Bell constructed an adjustable high-period
diagonal <i>c</i>/4 <a href="lex_r.htm#rake">rake</a> that <a href="lex_b.htm#burn">burns</a> tubstretcher wicks to create
<a href="lex_g.htm#glider">gliders</a>, which are then turned and duplicated by <a href="lex_c.htm#convoy">convoys</a> of
diagonal <a href="lex_c.htm#c4spaceship">c/4 spaceships</a> to re-ignite the stabilized ends of the
same wicks.
<p><a name=tubwithtail>:</a><b>tub with tail</b> (p1) The following 8-cell <a href="lex_s.htm#stilllife">still life</a>. See <a href="lex_e.htm#eater">eater</a>
for a use of this object.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O...$O.O..$.O.O.$...O.$...OO$"
>.O...
O.O..
.O.O.
...O.
...OO
</a></pre></td></tr></table></center>
<p><a name=tugalong>:</a><b>tugalong</b> = <a href="#tagalong">tagalong</a>
<p><a name=tumbler>:</a><b>tumbler</b> (p14) The smallest known p14 <a href="lex_o.htm#oscillator">oscillator</a>. Found by George
Collins in 1970. The oscillator generates <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#spark">sparks</a>, but
they are fragile and no use has been found for them to date. In each
domino, one cell is "held" (remains alive) for two generations, the
other for three. By contrast, useful domino sparks are usually alive
for only one tick per oscillator <a href="lex_p.htm#period">period</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O.....O.$O.O...O.O$O..O.O..O$..O...O..$..OO.OO..$"
>.O.....O.
O.O...O.O
O..O.O..O
..O...O..
..OO.OO..
</a></pre></td></tr></table></center>
<p><a name=tumblingttetson>:</a><b>tumbling T-tetson</b> (p8) A <a href="#ttetromino">T-tetromino</a> <a href="lex_h.htm#hassle">hassled</a> by two <a href="lex_f.htm#figure8">figure-8s</a>.
Found by Robert Wainwright.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO.................$O..................OO$O...O............O.OO$O..O.O..........O....$..O.O..O...........O.$...O...O.......OO.O..$.......O.......OO....$....OOO....O.........$.........OO..........$...........O.........$"
>.OOO.................
O..................OO
O...O............O.OO
O..O.O..........O....
..O.O..O...........O.
...O...O.......OO.O..
.......O.......OO....
....OOO....O.........
.........OO..........
...........O.........
</a></pre></td></tr></table></center>
<p><a name=turingmachine>:</a><b>Turing machine</b> See <a href="lex_u.htm#universalcomputer">universal computer</a>.
<p><a name=turner>:</a><b>turner</b> A <a href="lex_o.htm#onetime">one-time</a> <a href="lex_g.htm#glider">glider</a> <a href="lex_r.htm#reflector">reflector</a>, or in other words a
single-glider <a href="lex_s.htm#seed">seed</a> (the term is seldom or never used in relation to
spaceships other than gliders). One-time turners may be 90-degree or
180-degree, or they may be 0-degree with the output in the same
direction as the input. A reusable turner would instead be called a
reflector. Shown on the top row below are the four 90-degree turner
reactions that use common small <a href="lex_a.htm#ash">ash</a> objects: <a href="lex_b.htm#boat">boat</a>, <a href="lex_e.htm#eater1">eater1</a>,
<a href="lex_l.htm#longboat">long boat</a>, and <a href="#toad">toad</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.O..............O..............O..............O.........$..O..............O..............O..............O........$OOO............OOO............OOO............OOO........$........................................................$........................................................$........................................................$.....OO........OO...............O.......................$....O.O.......O.O..............O.O...............OOO....$.....O........O.................O.O...............OOO...$.............OO..................OO.....................$........................................................$........................................................$........................................................$........................................................$........................................................$.O..............O..............O..............O.........$..O..............O..............O....OO........O........$OOO............OOO............OOO....OO......OOO........$......................................................OO$......................................................OO$........................................................$...O...............OO...................................$..O.O.............O.O............OO..............OO.....$.O.O.............O.O.............OO..............OO.....$.OO..............OO.....................................$........................................................$........................................................$........................................................$........................................................$........................................................$.O......................................................$..O.....................................................$OOO.....................................................$........................................................$........................................................$........................................................$....OO..................................................$..O..O..................................................$..OO....................................................$"
>.O..............O..............O..............O.........
..O..............O..............O..............O........
OOO............OOO............OOO............OOO........
........................................................
........................................................
........................................................
.....OO........OO...............O.......................
....O.O.......O.O..............O.O...............OOO....
.....O........O.................O.O...............OOO...
.............OO..................OO.....................
........................................................
........................................................
........................................................
........................................................
........................................................
.O..............O..............O..............O.........
..O..............O..............O....OO........O........
OOO............OOO............OOO....OO......OOO........
......................................................OO
......................................................OO
........................................................
...O...............OO...................................
..O.O.............O.O............OO..............OO.....
.O.O.............O.O.............OO..............OO.....
.OO..............OO.....................................
........................................................
........................................................
........................................................
........................................................
........................................................
.O......................................................
..O.....................................................
OOO.....................................................
........................................................
........................................................
........................................................
....OO..................................................
..O..O..................................................
..OO....................................................
</a></pre></td></tr></table></center>
<p>Of the reactions on the first row, the glider output is the same
<a href="lex_p.htm#parity">parity</a> for all but the long boat. The three still lifes are all
<a href="lex_c.htm#colourchanging">colour-changing</a>, but the <a href="#toad">toad</a> happens to be a <a href="lex_c.htm#colourpreserving">colour-preserving</a>
turner. The third row shows an <a href="lex_a.htm#aircraftcarrier">aircraft carrier</a> serving as a
"0-degree turner" that is also colour-changing.
<p>Three of the simplest 180-degree turners are shown in the second
row. The <a href="lex_b.htm#blockic">Blockic</a> 180-degree turner is colour-preserving. The
<a href="lex_l.htm#longboat">long boat</a> and <a href="lex_l.htm#longship">long ship</a> are again colour-changing; this is
somewhat counterintuitive as the output glider is on exactly the same
<a href="lex_l.htm#lane">lane</a> as the input glider, but gliders travelling in opposite
directions on the same lane always have opposite colours.
<p>Many small one-time turner <a href="lex_c.htm#constellation">constellations</a> have also been
catalogued. The 90-degree two-block turner on the right, directly
below the toad, is also colour-changing but has the opposite parity.
<p>A one-time turner reaction can be used as part of a glider
<a href="lex_i.htm#inject">injection</a> mechanism, or as a switching mechanism for a <a href="lex_s.htm#signal">signal</a>.
If a previous reaction has created the sacrificial object, then a
later glider is turned onto a new path. Otherwise it passes through
the area unaffected. This is one way to create simple switching
systems or logic <a href="lex_c.htm#circuit">circuits</a>. An example is shown in <a href="lex_d.htm#demultiplexer">demultiplexer</a>.
<p><a name=turningtoads>:</a><b>turning toads</b> (p4 wick) Found by Dean Hickerson, October 1989.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..............OO.....OO.....OO.....OO.....OO..............$.......O.....O......O......O......O......O................$......OO...O....O.O....O.O....O.O....O.O....O.O.O.OO......$..OO.O.OOO.O..OO..O..OO..O..OO..O..OO..O..OO..O..O..O.OO..$O..O.OO.........................................OOOOO.O..O$OO.O..............................................OO..O.OO$...O..................................................O...$...OO................................................OO...$"
>..............OO.....OO.....OO.....OO.....OO..............
.......O.....O......O......O......O......O................
......OO...O....O.O....O.O....O.O....O.O....O.O.O.OO......
..OO.O.OOO.O..OO..O..OO..O..OO..O..OO..O..OO..O..O..O.OO..
O..O.OO.........................................OOOOO.O..O
OO.O..............................................OO..O.OO
...O..................................................O...
...OO................................................OO...
</a></pre></td></tr></table></center>
<p><a name=turtle>:</a><b>turtle</b> (<i>c</i>/3 orthogonally, p3) A <a href="lex_s.htm#spaceship">spaceship</a> found by Dean Hickerson
in August 1989 that produces a <a href="lex_d.htm#domino">domino</a> <a href="lex_s.htm#spark">spark</a> at the back.
Hickerson used this spark to convert an approaching <a href="lex_h.htm#hwss">HWSS</a> into a
<a href="lex_l.htm#loaf">loaf</a>, as part of the first <a href="lex_s.htm#sawtooth">sawtooth</a>. (Also see <a href="#tractorbeam">tractor beam</a>).
The shape of the back end of the turtle is distinctive. Very similar
but wider back ends have been found in other <i>c</i>/3 ships to produce
period 9 and 15 <a href="lex_s.htm#spaceship">spaceships</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OOO.......O$.OO..O.OO.OO$...OOO....O.$.O..O.O...O.$O....O....O.$O....O....O.$.O..O.O...O.$...OOO....O.$.OO..O.OO.OO$.OOO.......O$"
>.OOO.......O
.OO..O.OO.OO
...OOO....O.
.O..O.O...O.
O....O....O.
O....O....O.
.O..O.O...O.
...OOO....O.
.OO..O.OO.OO
.OOO.......O
</a></pre></td></tr></table></center>
<p><a name=twinbeesshuttle>:</a><b>twin bees shuttle</b> (p46) Found by Bill Gosper in 1971, this was the
basis of all known <a href="#true">true</a> p46 <a href="lex_g.htm#gun">guns</a>, and all known p46 oscillators
except for <a href="lex_g.htm#glider">glider</a> <a href="lex_s.htm#signal">signal</a> loops using <a href="lex_s.htm#snark">Snarks</a>, until the
discovery of <a href="#tannersp46">Tanner's p46</a> in 2017. See <a href="lex_n.htm#newgun">new gun</a> for an example.
There are numerous ways to stabilize the ends, two of which are shown
in the diagram. On the left is David Bell's <a href="lex_d.htm#doubleblockreaction">double block reaction</a>
(which results in a shorter, but wider, shuttle than usual), and on
the right is the stabilization by a single block. This latter method
produces the very large <a href="#twinbeesshuttlespark">twin bees shuttle spark</a> which is useful in
a number of ways. See <a href="lex_m.htm#metamorphosis">metamorphosis</a> for an example. Adding a
symmetrically placed block below this one suppresses the spark. See
also <a href="lex_p.htm#p54shuttle">p54 shuttle</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.OO........................$.OO........................$...........................$...............O...........$OO.............OO........OO$OO..............OO.......OO$...........OO..OO..........$...........................$...........................$...........................$...........OO..OO..........$OO..............OO.........$OO.............OO..........$...............O...........$...........................$.OO........................$.OO........................$"
>.OO........................
.OO........................
...........................
...............O...........
OO.............OO........OO
OO..............OO.......OO
...........OO..OO..........
...........................
...........................
...........................
...........OO..OO..........
OO..............OO.........
OO.............OO..........
...............O...........
...........................
.OO........................
.OO........................
</a></pre></td></tr></table></center>
<p><a name=twinbeesshuttlepair>:</a><b>twin bees shuttle pair</b> Any arrangement of two <a href="#twinbeesshuttle">twin bees shuttles</a>
such that they interact. There are many ways that the two shuttles
can be placed, either head-to-head, or else at right angles. Glider
guns can be constructed in at least five different ways. Here is one
by Bill Gosper in which the shuttles interact head-to-head:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.................O...............................$OO...............OO..............................$OO................OO.............................$.................OO...........OO.................$.............................O.O.................$.............................O...................$.............................OOO.................$.................OO..............................$..................OO.............................$.................OO..............................$.................O...........OOO.................$.............................O.................OO$.............................O.O...............OO$..............................OO.................$"
>.................O...............................
OO...............OO..............................
OO................OO.............................
.................OO...........OO.................
.............................O.O.................
.............................O...................
.............................OOO.................
.................OO..............................
..................OO.............................
.................OO..............................
.................O...........OOO.................
.............................O.................OO
.............................O.O...............OO
..............................OO.................
</a></pre></td></tr></table></center>
For other examples, see <a href="lex_n.htm#newgun">new gun</a>, <a href="lex_e.htm#edgeshooter">edge shooter</a>, <a href="lex_d.htm#doublebarrelled">double-barrelled</a>
and <a href="lex_n.htm#naturalheisenburp">natural Heisenburp</a>.
<p><a name=twinbeesshuttlespark>:</a><b>twin bees shuttle spark</b> The large and distinctive long-lived <a href="lex_s.htm#spark">spark</a>
produced, most commonly, by the <a href="#twinbeesshuttle">twin bees shuttle</a>. It starts off
as shown below.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..OO.$..OO.$.O..O$O.OO.$O.OO.$"
>..OO.
..OO.
.O..O
O.OO.
O.OO.
</a></pre></td></tr></table></center>
After 3 generations it becomes <a href="lex_s.htm#symmetric">symmetric</a> along the horizontal axis,
after 9 generations it becomes symmetric along the vertical axis
also, and finally dies after 18 generations.
<p>Since the spark is isolated and long-lived, there are many possible
<a href="lex_p.htm#perturbation">perturbations</a> that it can perform. One of the most useful is
demonstrated in <a href="lex_m.htm#metamorphosis">metamorphosis</a> where a glider is converted into a
<a href="lex_l.htm#lwss">LWSS</a>. Another useful one can turn a <a href="lex_l.htm#lwss">LWSS</a> by 90 degrees:
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:O..O.........$....O........$O...O.....O..$.OOOO....OOO.$........O...O$........OO.OO$........OO.OO$.............$........OO.OO$........OO.OO$........O...O$.........OOO.$..........O..$"
>O..O.........
....O........
O...O.....O..
.OOOO....OOO.
........O...O
........OO.OO
........OO.OO
.............
........OO.OO
........OO.OO
........O...O
.........OOO.
..........O..
</a></pre></td></tr></table></center>
<p><a name=twinhat>:</a><b>twinhat</b> (p1) See also <a href="lex_h.htm#hat">hat</a> and <a href="lex_s.htm#sesquihat">sesquihat</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:..O...O..$.O.O.O.O.$.O.O.O.O.$OO.O.O.OO$....O....$"
>..O...O..
.O.O.O.O.
.O.O.O.O.
OO.O.O.OO
....O....
</a></pre></td></tr></table></center>
<p><a name=twinpeaks>:</a><b>twin peaks</b> = <a href="#twinhat">twinhat</a>
<p><a name=twirlingttetsonsii>:</a><b>twirling T-tetsons II</b> (p60) Found by Robert Wainwright. This is a
<a href="lex_p.htm#prepulsar">pre-pulsar</a> <a href="lex_h.htm#hassle">hassled</a> by <a href="lex_k.htm#killertoads">killer toads</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:.......OO...OO..........$......O.......O.........$.........O.O............$.......OO...OO..........$........................$........................$........................$.....................OOO$....................OOO.$.............O..........$OOO.........OOO.........$.OOO....................$....................OOO.$.....................OOO$........................$.OOO....................$OOO.........OOO.........$.............O..........$........................$........................$..........OO...OO.......$............O.O.........$.........O.......O......$..........OO...OO.......$"
>.......OO...OO..........
......O.......O.........
.........O.O............
.......OO...OO..........
........................
........................
........................
.....................OOO
....................OOO.
.............O..........
OOO.........OOO.........
.OOO....................
....................OOO.
.....................OOO
........................
.OOO....................
OOO.........OOO.........
.............O..........
........................
........................
..........OO...OO.......
............O.O.........
.........O.......O......
..........OO...OO.......
</a></pre></td></tr></table></center>
<p><a name=twit>:</a><b>TWIT</b> = <a href="lex_e.htm#eater5">eater5</a>
<p><a name=twoarm>:</a><b>two-arm</b> The type of <a href="lex_u.htm#universalconstructor">universal constructor</a> exemplified by the
original <a href="lex_g.htm#gemini">Gemini</a> spaceship, where two independently programmed
<a href="lex_c.htm#constructionarm">construction arms</a> sent gliders in pairs on 90-degree paths to
collide with each other at the construction site. Construction
recipes for two-arm constructors are much more efficient in general,
but they require many more <a href="lex_c.htm#circuit">circuits</a> and multiple independent data
streams, which both tend to increase the complexity of
<a href="lex_s.htm#selfconstructing">self-constructing</a> circuitry. Compare <a href="lex_s.htm#singlearm">single-arm</a>.
<p><a name=twobitspark>:</a><b>two-bit spark</b> = <a href="lex_d.htm#duoplet">duoplet</a>.
<p><a name=twoeaters>:</a><b>two eaters</b> (p3) Found by Bill Gosper, September 1971.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:OO.......$.O.......$.O.O.....$..OO.....$.....OO..$.....O.O.$.......O.$.......OO$"
>OO.......
.O.......
.O.O.....
..OO.....
.....OO..
.....O.O.
.......O.
.......OO
</a></pre></td></tr></table></center>
<p><a name=twopulsarquadrants>:</a><b>two pulsar quadrants</b> (p3) Found by Dave Buckingham, July 1973.
Compare <a href="lex_p.htm#pulsarquadrant">pulsar quadrant</a>.
<center><table cellspacing=0 cellpadding=0><tr><td><pre><a href="lexpatt:....O....$....O....$...OO....$..O......$O..O..OOO$O...O.O..$O....O...$.........$..OOO....$"
>....O....
....O....
...OO....
..O......
O..O..OOO
O...O.O..
O....O...
.........
..OOO....
</a></pre></td></tr></table></center>
<hr>
<center>
<b>
<a href="lex_1.htm">1-9</a> |
<a href="lex_a.htm">A</a> |
<a href="lex_b.htm">B</a> |
<a href="lex_c.htm">C</a> |
<a href="lex_d.htm">D</a> |
<a href="lex_e.htm">E</a> |
<a href="lex_f.htm">F</a> |
<a href="lex_g.htm">G</a> |
<a href="lex_h.htm">H</a> |
<a href="lex_i.htm">I</a> |
<a href="lex_j.htm">J</a> |
<a href="lex_k.htm">K</a> |
<a href="lex_l.htm">L</a> |
<a href="lex_m.htm">M</a> |
<a href="lex_n.htm">N</a> |
<a href="lex_o.htm">O</a> |
<a href="lex_p.htm">P</a> |
<a href="lex_q.htm">Q</a> |
<a href="lex_r.htm">R</a> |
<a href="lex_s.htm">S</a> |
<a href="lex_t.htm">T</a> |
<a href="lex_u.htm">U</a> |
<a href="lex_v.htm">V</a> |
<a href="lex_w.htm">W</a> |
<a href="lex_x.htm">X</a> |
<a href="lex_y.htm">Y</a> |
<A href="lex_z.htm">Z</A></b>
</center>
<hr>
</body>
|