File: bounded.html

package info (click to toggle)
golly 3.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 20,176 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; javascript: 279; perl: 69
file content (540 lines) | stat: -rw-r--r-- 23,477 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
<html>
<body bgcolor="#FFFFCE">

<h2>Bounded Grids</h2>

<p>
Bounded grids with various topologies can be created by adding a
special suffix to the usual rule string.
For example, <b><a href="rule:B3/S23:T30,20">B3/S23:T30,20</a></b>
creates a toroidal Life universe 30 cells wide and 20 cells high.
The suffix syntax is best illustrated by these examples:

<p>
<dd>
<table cellspacing=0 cellpadding=0>
<tr>
   <td><b>:P30,20</b></td><td width=10> </td>
   <td> &mdash; plane with width 30 and height 20</td>
</tr>
<tr>
   <td><b>:P30,0</b></td><td width=10> </td>
   <td> &mdash; plane with width 30 and infinite height</td>
</tr>
<tr>
   <td><b>:T0,20</b></td><td width=10> </td>
   <td> &mdash; tube with infinite width and height 20</td>
</tr>
<tr>
   <td><b>:T30,20</b></td><td width=10> </td>
   <td> &mdash; torus with width 30 and height 20</td>
</tr>
<tr>
   <td><b>:T30+5,20</b></td><td width=10> </td>
   <td> &mdash; torus with a shift of +5 on the horizontal edges</td>
</tr>
<tr>
   <td><b>:T30,20-2</b></td><td width=10> </td>
   <td> &mdash; torus with a shift of -2 on the vertical edges</td>
</tr>
<tr>
   <td><b>:K30*,20</b></td><td width=10> </td>
   <td> &mdash; Klein bottle with the horizontal edges twisted</td>
</tr>
<tr>
   <td><b>:K30,20*</b></td><td width=10> </td>
   <td> &mdash; Klein bottle with the vertical edges twisted</td>
</tr>
<tr>
   <td><b>:K30*+1,20</b></td><td width=10> </td>
   <td> &mdash; Klein bottle with a shift on the horizontal edges</td>
</tr>
<tr>
   <td><b>:C30,20</b></td><td width=10> </td>
   <td> &mdash; cross-surface (horizontal and vertical edges are twisted)</td>
</tr>
<tr>
   <td><b>:S30</b></td><td width=10> </td>
   <td> &mdash; sphere with width 30 and height 30 (must be equal)</td>
</tr>
</table>
</dd>
</p>

<p>
Some notes:

<p>
<ul>
<li>
The first letter indicating the topology can be entered in lowercase but is
always uppercase in the canonical string returned by the getrule() script command.
<li>
If a bounded grid has width <i>w</i> and height <i>h</i> then the cell in
the top left corner has coordinates -int(<i>w</i>/2),-int(<i>h</i>/2).
<li>
The maximum width or height of a bounded grid is 2,000,000,000.
<li>
Use 0 to specify an infinite width or height (but not possible for a Klein bottle,
cross-surface or sphere).  Shifting is not allowed if either dimension is infinite.
<li>
Pattern generation in a bounded grid is slower than in an unbounded grid.
This is because all the current algorithms have been designed to work with
unbounded grids, so Golly has to do extra work to create the illusion
of a bounded grid.
</ul>

<p>
The different topologies are described in the following sections.

<p>
<font size=+1><b>Plane</b></font>

<p>
A bounded plane is a simple, flat surface with no curvature.
When generating patterns in a plane, Golly ensures that all the cells neighboring the edges
are set to state 0 before applying the transition rules, as in this example of a 4 by 3 plane:

<p>
<dd><table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;J&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;K&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;L&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td
><td align=center><tt>&nbsp;0&nbsp;</tt></td></tr
></table>
</td><td> &nbsp;&nbsp;&nbsp;rule suffix is <b>:P4,3</b></td></tr></table></dd>

<p>
<font size=+1><b>Torus</b></font>

<p>
If the opposite edges of a bounded plane are joined then the result is a
donut-shaped surface called a torus.
Before applying the transition rules at each generation, Golly copies the
states of edge cells into appropriate neighboring cells outside the grid.
The following diagram of a 4 by 3 torus shows how the edges are joined:

<p>
<dd><table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt>&nbsp;L&nbsp;</tt></td
><td align=center><tt>&nbsp;I&nbsp;</tt></td
><td align=center><tt>&nbsp;J&nbsp;</tt></td
><td align=center><tt>&nbsp;K&nbsp;</tt></td
><td align=center><tt>&nbsp;L&nbsp;</tt></td
><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;D&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;H&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
><td align=center><tt>&nbsp;E&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;L&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;J&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;K&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;L&nbsp;</tt></td
><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;D&nbsp;</tt></td
><td align=center><tt>&nbsp;A&nbsp;</tt></td
><td align=center><tt>&nbsp;B&nbsp;</tt></td
><td align=center><tt>&nbsp;C&nbsp;</tt></td
><td align=center><tt>&nbsp;D&nbsp;</tt></td
><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr
></table>
</td><td> &nbsp;&nbsp;&nbsp;rule suffix is <b>:T4,3</b></td></tr></table></dd>

<p>
A torus can have a shift on the horizontal edges or the vertical edges, but not both.
These two examples show how shifted edges are joined:

<p>
<dd>
<table cellspacing=0 cellpadding=0>
<tr>
   <td>
   <table cellspacing=0 cellpadding=0 cols=2><tr><td>
   <table cellspacing=0 border=1 cols=6><tr
   ><td align=center><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center><tt>&nbsp;E&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center><tt>&nbsp;B&nbsp;</tt></td></tr
   ></table>
   </td><td> &nbsp;&nbsp;&nbsp;<b>:T4+1,3</b></td></tr></table>
   </td>
   <td width=50> </td>
   <td>
   <table cellspacing=0 cellpadding=0 cols=2><tr><td>
   <table cellspacing=0 border=1 cols=6><tr
   ><td align=center><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;E&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;E&nbsp;</tt></td></tr
   ></table>
   </td><td> &nbsp;&nbsp;&nbsp;<b>:T4,3+1</b></td></tr></table>
   </td>
</tr>
</table>
</dd>
</p>

<p>
<font size=+1><b>Klein bottle</b></font>

<p>
If one pair of opposite edges are twisted 180 degrees (ie. reversed) before being
joined then the result is a Klein bottle.
Here are examples of a horizontal twist and a vertical twist:

<p>
<dd>
<table cellspacing=0 cellpadding=0>
<tr>
   <td>
   <table cellspacing=0 cellpadding=0 cols=2><tr><td>
   <table cellspacing=0 border=1 cols=6><tr
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center><tt>&nbsp;E&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td></tr
   ></table>
   </td><td> &nbsp;&nbsp;&nbsp;<b>:K4*,3&nbsp;&nbsp;&nbsp;</b></td></tr></table>
   </td>
   <td width=50> </td>
   <td>
   <table cellspacing=0 cellpadding=0 cols=2><tr><td>
   <table cellspacing=0 border=1 cols=6><tr
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center><tt>&nbsp;E&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr
   ></table>
   </td><td> &nbsp;&nbsp;&nbsp;<b>:K4,3*</b></td></tr></table>
   </td>
</tr>
</table>
</dd>
</p>

<p>
A Klein bottle can only have a shift on the twisted edges and only if that dimension
has an even number of cells.  Also, all shift amounts are equivalent to a shift of 1.
Here are two examples:

<p>
<dd>
<table cellspacing=0 cellpadding=0>
<tr>
   <td valign=top>
   <table cellspacing=0 cellpadding=0 cols=2><tr><td>
   <table cellspacing=0 border=1 cols=6><tr
   ><td align=center><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center><tt>&nbsp;E&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr
   ></table>
   </td><td> &nbsp;&nbsp;&nbsp;<b>:K4*+1,3</b></td></tr></table>
   </td>
   <td width=45> </td>
   <td valign=top>
   <table cellspacing=0 cellpadding=0 cols=2><tr><td>
   <table cellspacing=0 border=1 cols=5><tr
   ><td align=center><tt>&nbsp;F&nbsp;</tt></td
   ><td align=center><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
   ><td align=center><tt>&nbsp;J&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
   ><td align=center><tt>&nbsp;G&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;F&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;J&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;K&nbsp;</tt></td
   ><td align=center bgcolor="#CBCBCB"><tt>&nbsp;L&nbsp;</tt></td
   ><td align=center><tt>&nbsp;D&nbsp;</tt></td></tr><tr
   ><td align=center><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td
   ><td align=center><tt>&nbsp;B&nbsp;</tt></td
   ><td align=center><tt>&nbsp;C&nbsp;</tt></td
   ><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr
   ></table>
   </td><td> &nbsp;&nbsp;&nbsp;<b>:K3,4*+1</b></td></tr></table>
   </td>
</tr>
</table>
</dd>
</p>

<p>
<font size=+1><b>Cross-surface</b></font>

<p>
If both pairs of opposite edges are twisted and joined then the result is a cross-surface
(also known as a real projective plane, but Conway prefers the term cross-surface).
Here's an example showing how the edges are joined:

<p>
<dd><table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt>&nbsp;A&nbsp;</tt></td
><td align=center><tt>&nbsp;L&nbsp;</tt></td
><td align=center><tt>&nbsp;K&nbsp;</tt></td
><td align=center><tt>&nbsp;J&nbsp;</tt></td
><td align=center><tt>&nbsp;I&nbsp;</tt></td
><td align=center><tt>&nbsp;D&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;L&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;H&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
><td align=center><tt>&nbsp;E&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;D&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;J&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;K&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;L&nbsp;</tt></td
><td align=center><tt>&nbsp;A&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;I&nbsp;</tt></td
><td align=center><tt>&nbsp;D&nbsp;</tt></td
><td align=center><tt>&nbsp;C&nbsp;</tt></td
><td align=center><tt>&nbsp;B&nbsp;</tt></td
><td align=center><tt>&nbsp;A&nbsp;</tt></td
><td align=center><tt>&nbsp;L&nbsp;</tt></td></tr
></table>
</td><td> &nbsp;&nbsp;&nbsp;<b>:C4,3</b></td></tr></table></dd>

<p>
Note that the corner cells have themselves as one of their neighbors.
Shifting is not possible.

<p>
<font size=+1><b>Sphere</b></font>

<p>
If adjacent edges are joined rather than opposite edges then the result is a sphere.
By convention we join the top edge to the left edge and the right edge to the
bottom edge, as shown in this 3 by 3 example:

<p>
<dd><table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=5><tr
><td align=center><tt>&nbsp;A&nbsp;</tt></td
><td align=center><tt>&nbsp;A&nbsp;</tt></td
><td align=center><tt>&nbsp;D&nbsp;</tt></td
><td align=center><tt>&nbsp;G&nbsp;</tt></td
><td align=center><tt>&nbsp;C&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;A&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;A&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;B&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;C&nbsp;</tt></td
><td align=center><tt>&nbsp;G&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;B&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;D&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;E&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;F&nbsp;</tt></td
><td align=center><tt>&nbsp;H&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;C&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;G&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;H&nbsp;</tt></td
><td align=center bgcolor="#CBCBCB"><tt>&nbsp;I&nbsp;</tt></td
><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr><tr
><td align=center><tt>&nbsp;G&nbsp;</tt></td
><td align=center><tt>&nbsp;C&nbsp;</tt></td
><td align=center><tt>&nbsp;F&nbsp;</tt></td
><td align=center><tt>&nbsp;I&nbsp;</tt></td
><td align=center><tt>&nbsp;I&nbsp;</tt></td></tr
></table>
</td><td> &nbsp;&nbsp;&nbsp;<b>:S3</b></td></tr></table></dd>

<p>
Note that the cells in the top left and bottom right corners (the "poles") have
different neighborhoods to the cells in the top right and bottom left corners.
Shifting is not possible.

<p>
Example patterns using the above topologies can be found in the Open tab's
supplied patterns, especially in Generations and Life/Bounded-Grids.

</body>
</html>