1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
<html>
<body bgcolor="#FFFFCE">
<h2>Bounded Grids</h2>
<p>
Bounded grids with various topologies can be created by adding a
special suffix to the usual rule string.
For example, <b><a href="rule:B3/S23:T30,20">B3/S23:T30,20</a></b>
creates a toroidal Life universe 30 cells wide and 20 cells high.
The suffix syntax is best illustrated by these examples:
<p>
<dd>
<table cellspacing=0 cellpadding=0>
<tr>
<td><b>:P30,20</b></td><td width=10> </td>
<td> — plane with width 30 and height 20</td>
</tr>
<tr>
<td><b>:P30,0</b></td><td width=10> </td>
<td> — plane with width 30 and infinite height</td>
</tr>
<tr>
<td><b>:T0,20</b></td><td width=10> </td>
<td> — tube with infinite width and height 20</td>
</tr>
<tr>
<td><b>:T30,20</b></td><td width=10> </td>
<td> — torus with width 30 and height 20</td>
</tr>
<tr>
<td><b>:T30+5,20</b></td><td width=10> </td>
<td> — torus with a shift of +5 on the horizontal edges</td>
</tr>
<tr>
<td><b>:T30,20-2</b></td><td width=10> </td>
<td> — torus with a shift of -2 on the vertical edges</td>
</tr>
<tr>
<td><b>:K30*,20</b></td><td width=10> </td>
<td> — Klein bottle with the horizontal edges twisted</td>
</tr>
<tr>
<td><b>:K30,20*</b></td><td width=10> </td>
<td> — Klein bottle with the vertical edges twisted</td>
</tr>
<tr>
<td><b>:K30*+1,20</b></td><td width=10> </td>
<td> — Klein bottle with a shift on the horizontal edges</td>
</tr>
<tr>
<td><b>:C30,20</b></td><td width=10> </td>
<td> — cross-surface (horizontal and vertical edges are twisted)</td>
</tr>
<tr>
<td><b>:S30</b></td><td width=10> </td>
<td> — sphere with width 30 and height 30 (must be equal)</td>
</tr>
</table>
</dd>
</p>
<p>
Some notes:
<p>
<ul>
<li>
The first letter indicating the topology can be entered in lowercase but is
always uppercase in the canonical string returned by the getrule() script command.
<li>
If a bounded grid has width <i>w</i> and height <i>h</i> then the cell in
the top left corner has coordinates -int(<i>w</i>/2),-int(<i>h</i>/2).
<li>
The maximum width or height of a bounded grid is 2,000,000,000.
<li>
Use 0 to specify an infinite width or height (but not possible for a Klein bottle,
cross-surface or sphere). Shifting is not allowed if either dimension is infinite.
<li>
Pattern generation in a bounded grid is slower than in an unbounded grid.
This is because all the current algorithms have been designed to work with
unbounded grids, so Golly has to do extra work to create the illusion
of a bounded grid.
</ul>
<p>
The different topologies are described in the following sections.
<p>
<font size=+1><b>Plane</b></font>
<p>
A bounded plane is a simple, flat surface with no curvature.
When generating patterns in a plane, Golly ensures that all the cells neighboring the edges
are set to state 0 before applying the transition rules, as in this example of a 4 by 3 plane:
<p>
<dd><table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td></tr><tr
><td align=center><tt> 0 </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center><tt> 0 </tt></td></tr><tr
><td align=center><tt> 0 </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center><tt> 0 </tt></td></tr><tr
><td align=center><tt> 0 </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center bgcolor="#CBCBCB"><tt> J </tt></td
><td align=center bgcolor="#CBCBCB"><tt> K </tt></td
><td align=center bgcolor="#CBCBCB"><tt> L </tt></td
><td align=center><tt> 0 </tt></td></tr><tr
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td
><td align=center><tt> 0 </tt></td></tr
></table>
</td><td> rule suffix is <b>:P4,3</b></td></tr></table></dd>
<p>
<font size=+1><b>Torus</b></font>
<p>
If the opposite edges of a bounded plane are joined then the result is a
donut-shaped surface called a torus.
Before applying the transition rules at each generation, Golly copies the
states of edge cells into appropriate neighboring cells outside the grid.
The following diagram of a 4 by 3 torus shows how the edges are joined:
<p>
<dd><table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt> L </tt></td
><td align=center><tt> I </tt></td
><td align=center><tt> J </tt></td
><td align=center><tt> K </tt></td
><td align=center><tt> L </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> D </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> H </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center><tt> E </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center bgcolor="#CBCBCB"><tt> J </tt></td
><td align=center bgcolor="#CBCBCB"><tt> K </tt></td
><td align=center bgcolor="#CBCBCB"><tt> L </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> D </tt></td
><td align=center><tt> A </tt></td
><td align=center><tt> B </tt></td
><td align=center><tt> C </tt></td
><td align=center><tt> D </tt></td
><td align=center><tt> A </tt></td></tr
></table>
</td><td> rule suffix is <b>:T4,3</b></td></tr></table></dd>
<p>
A torus can have a shift on the horizontal edges or the vertical edges, but not both.
These two examples show how shifted edges are joined:
<p>
<dd>
<table cellspacing=0 cellpadding=0>
<tr>
<td>
<table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt> K </tt></td
><td align=center><tt> L </tt></td
><td align=center><tt> I </tt></td
><td align=center><tt> J </tt></td
><td align=center><tt> K </tt></td
><td align=center><tt> L </tt></td></tr><tr
><td align=center><tt> D </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> H </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center><tt> E </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center bgcolor="#CBCBCB"><tt> J </tt></td
><td align=center bgcolor="#CBCBCB"><tt> K </tt></td
><td align=center bgcolor="#CBCBCB"><tt> L </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> A </tt></td
><td align=center><tt> B </tt></td
><td align=center><tt> C </tt></td
><td align=center><tt> D </tt></td
><td align=center><tt> A </tt></td
><td align=center><tt> B </tt></td></tr
></table>
</td><td> <b>:T4+1,3</b></td></tr></table>
</td>
<td width=50> </td>
<td>
<table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt> H </tt></td
><td align=center><tt> I </tt></td
><td align=center><tt> J </tt></td
><td align=center><tt> K </tt></td
><td align=center><tt> L </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center><tt> E </tt></td></tr><tr
><td align=center><tt> D </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> H </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center bgcolor="#CBCBCB"><tt> J </tt></td
><td align=center bgcolor="#CBCBCB"><tt> K </tt></td
><td align=center bgcolor="#CBCBCB"><tt> L </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center><tt> A </tt></td
><td align=center><tt> B </tt></td
><td align=center><tt> C </tt></td
><td align=center><tt> D </tt></td
><td align=center><tt> E </tt></td></tr
></table>
</td><td> <b>:T4,3+1</b></td></tr></table>
</td>
</tr>
</table>
</dd>
</p>
<p>
<font size=+1><b>Klein bottle</b></font>
<p>
If one pair of opposite edges are twisted 180 degrees (ie. reversed) before being
joined then the result is a Klein bottle.
Here are examples of a horizontal twist and a vertical twist:
<p>
<dd>
<table cellspacing=0 cellpadding=0>
<tr>
<td>
<table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt> I </tt></td
><td align=center><tt> L </tt></td
><td align=center><tt> K </tt></td
><td align=center><tt> J </tt></td
><td align=center><tt> I </tt></td
><td align=center><tt> L </tt></td></tr><tr
><td align=center><tt> D </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> H </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center><tt> E </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center bgcolor="#CBCBCB"><tt> J </tt></td
><td align=center bgcolor="#CBCBCB"><tt> K </tt></td
><td align=center bgcolor="#CBCBCB"><tt> L </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> A </tt></td
><td align=center><tt> D </tt></td
><td align=center><tt> C </tt></td
><td align=center><tt> B </tt></td
><td align=center><tt> A </tt></td
><td align=center><tt> D </tt></td></tr
></table>
</td><td> <b>:K4*,3 </b></td></tr></table>
</td>
<td width=50> </td>
<td>
<table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt> D </tt></td
><td align=center><tt> I </tt></td
><td align=center><tt> J </tt></td
><td align=center><tt> K </tt></td
><td align=center><tt> L </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> H </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center><tt> E </tt></td></tr><tr
><td align=center><tt> D </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center bgcolor="#CBCBCB"><tt> J </tt></td
><td align=center bgcolor="#CBCBCB"><tt> K </tt></td
><td align=center bgcolor="#CBCBCB"><tt> L </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center><tt> A </tt></td
><td align=center><tt> B </tt></td
><td align=center><tt> C </tt></td
><td align=center><tt> D </tt></td
><td align=center><tt> I </tt></td></tr
></table>
</td><td> <b>:K4,3*</b></td></tr></table>
</td>
</tr>
</table>
</dd>
</p>
<p>
A Klein bottle can only have a shift on the twisted edges and only if that dimension
has an even number of cells. Also, all shift amounts are equivalent to a shift of 1.
Here are two examples:
<p>
<dd>
<table cellspacing=0 cellpadding=0>
<tr>
<td valign=top>
<table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt> J </tt></td
><td align=center><tt> I </tt></td
><td align=center><tt> L </tt></td
><td align=center><tt> K </tt></td
><td align=center><tt> J </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> D </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> H </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center><tt> E </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center bgcolor="#CBCBCB"><tt> J </tt></td
><td align=center bgcolor="#CBCBCB"><tt> K </tt></td
><td align=center bgcolor="#CBCBCB"><tt> L </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> B </tt></td
><td align=center><tt> A </tt></td
><td align=center><tt> D </tt></td
><td align=center><tt> C </tt></td
><td align=center><tt> B </tt></td
><td align=center><tt> A </tt></td></tr
></table>
</td><td> <b>:K4*+1,3</b></td></tr></table>
</td>
<td width=45> </td>
<td valign=top>
<table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=5><tr
><td align=center><tt> F </tt></td
><td align=center><tt> J </tt></td
><td align=center><tt> K </tt></td
><td align=center><tt> L </tt></td
><td align=center><tt> D </tt></td></tr><tr
><td align=center><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center><tt> J </tt></td></tr><tr
><td align=center><tt> I </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center><tt> G </tt></td></tr><tr
><td align=center><tt> F </tt></td
><td align=center bgcolor="#CBCBCB"><tt> J </tt></td
><td align=center bgcolor="#CBCBCB"><tt> K </tt></td
><td align=center bgcolor="#CBCBCB"><tt> L </tt></td
><td align=center><tt> D </tt></td></tr><tr
><td align=center><tt> C </tt></td
><td align=center><tt> A </tt></td
><td align=center><tt> B </tt></td
><td align=center><tt> C </tt></td
><td align=center><tt> A </tt></td></tr
></table>
</td><td> <b>:K3,4*+1</b></td></tr></table>
</td>
</tr>
</table>
</dd>
</p>
<p>
<font size=+1><b>Cross-surface</b></font>
<p>
If both pairs of opposite edges are twisted and joined then the result is a cross-surface
(also known as a real projective plane, but Conway prefers the term cross-surface).
Here's an example showing how the edges are joined:
<p>
<dd><table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=6><tr
><td align=center><tt> A </tt></td
><td align=center><tt> L </tt></td
><td align=center><tt> K </tt></td
><td align=center><tt> J </tt></td
><td align=center><tt> I </tt></td
><td align=center><tt> D </tt></td></tr><tr
><td align=center><tt> L </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> H </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center><tt> E </tt></td></tr><tr
><td align=center><tt> D </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center bgcolor="#CBCBCB"><tt> J </tt></td
><td align=center bgcolor="#CBCBCB"><tt> K </tt></td
><td align=center bgcolor="#CBCBCB"><tt> L </tt></td
><td align=center><tt> A </tt></td></tr><tr
><td align=center><tt> I </tt></td
><td align=center><tt> D </tt></td
><td align=center><tt> C </tt></td
><td align=center><tt> B </tt></td
><td align=center><tt> A </tt></td
><td align=center><tt> L </tt></td></tr
></table>
</td><td> <b>:C4,3</b></td></tr></table></dd>
<p>
Note that the corner cells have themselves as one of their neighbors.
Shifting is not possible.
<p>
<font size=+1><b>Sphere</b></font>
<p>
If adjacent edges are joined rather than opposite edges then the result is a sphere.
By convention we join the top edge to the left edge and the right edge to the
bottom edge, as shown in this 3 by 3 example:
<p>
<dd><table cellspacing=0 cellpadding=0 cols=2><tr><td>
<table cellspacing=0 border=1 cols=5><tr
><td align=center><tt> A </tt></td
><td align=center><tt> A </tt></td
><td align=center><tt> D </tt></td
><td align=center><tt> G </tt></td
><td align=center><tt> C </tt></td></tr><tr
><td align=center><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> A </tt></td
><td align=center bgcolor="#CBCBCB"><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> C </tt></td
><td align=center><tt> G </tt></td></tr><tr
><td align=center><tt> B </tt></td
><td align=center bgcolor="#CBCBCB"><tt> D </tt></td
><td align=center bgcolor="#CBCBCB"><tt> E </tt></td
><td align=center bgcolor="#CBCBCB"><tt> F </tt></td
><td align=center><tt> H </tt></td></tr><tr
><td align=center><tt> C </tt></td
><td align=center bgcolor="#CBCBCB"><tt> G </tt></td
><td align=center bgcolor="#CBCBCB"><tt> H </tt></td
><td align=center bgcolor="#CBCBCB"><tt> I </tt></td
><td align=center><tt> I </tt></td></tr><tr
><td align=center><tt> G </tt></td
><td align=center><tt> C </tt></td
><td align=center><tt> F </tt></td
><td align=center><tt> I </tt></td
><td align=center><tt> I </tt></td></tr
></table>
</td><td> <b>:S3</b></td></tr></table></dd>
<p>
Note that the cells in the top left and bottom right corners (the "poles") have
different neighborhoods to the cells in the top right and bottom left corners.
Shifting is not possible.
<p>
Example patterns using the above topologies can be found in the Open tab's
supplied patterns, especially in Generations and Life/Bounded-Grids.
</body>
</html>
|