1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
// This file is part of Golly.
// See docs/License.html for the copyright notice.
#include "ltlalgo.h"
#include "util.h"
#include <string.h> // for memset and memcpy
// -----------------------------------------------------------------------------
// A 256x256 pixmap is good for OpenGL and matches the size
// used in qlifedraw.cpp and hlifedraw.cpp.
// Note that logpmsize *must* be 8 in iOS 9.x to avoid drawing problems
// in my iPad (probably due to a bug in the OpenGL ES 2 driver).
const int logpmsize = 8; // 8=256x256
const int pmsize = (1<<logpmsize); // pixmap wd and ht, in pixels
const int bpp = 4; // bytes per pixel (RGBA)
const int rowoff = (pmsize*bpp); // row offset, in bytes
const int ibufsize = (pmsize*pmsize*bpp); // buffer size, in bytes
static unsigned char ipixbuf[ibufsize]; // shared buffer for pixels
static unsigned char *pixbuf = ipixbuf;
// RGBA view of pixbuf
static unsigned int *pixRGBAbuf = (unsigned int *)ipixbuf;
// arrays of RGB colors for each cell state (set by getcolors call)
static unsigned char* cellred;
static unsigned char* cellgreen;
static unsigned char* cellblue;
// alpha values for dead pixels and live pixels (also set by getcolors call)
static unsigned char deada;
static unsigned char livea;
static unsigned int cellRGBA[256]; // cell colors in RGBA format
// -----------------------------------------------------------------------------
// kill all cells in pixbuf
static void killpixels()
{
// pmag is 1 so pixblit assumes pixbuf contains 4 bytes (RGBA) for each pixel
if (deada == 0) {
// dead cells are 100% transparent so we can use fast method
// (RGB values are irrelevant if alpha is 0)
memset(pixbuf, 0, sizeof(ipixbuf));
} else {
// use slower method
unsigned int deadRGBA = cellRGBA[0];
unsigned int *rgbabuf = pixRGBAbuf;
// fill the first row with the dead pixel state
for (int i = 0; i < pmsize; i++) {
*rgbabuf++ = deadRGBA;
}
// copy 1st row to remaining rows
for (int i = rowoff; i < ibufsize; i += rowoff) {
memcpy(&pixbuf[i], pixbuf, rowoff);
}
}
}
// -----------------------------------------------------------------------------
// this is the top-level drawing routine
void ltlalgo::draw(viewport &view, liferender &renderer)
{
if (population == 0) return;
if (!renderer.justState()) {
// get cell colors and alpha values for dead and live pixels
renderer.getcolors(&cellred, &cellgreen, &cellblue, &deada, &livea);
// create RGBA view
unsigned char *rgbaptr = (unsigned char *)cellRGBA;
// create dead color
*rgbaptr++ = cellred[0];
*rgbaptr++ = cellgreen[0];
*rgbaptr++ = cellblue[0];
*rgbaptr++ = deada;
// create live colors
unsigned int livestates = NumCellStates() - 1;
for (unsigned int ui = 1; ui <= livestates; ui++) {
*rgbaptr++ = cellred[ui];
*rgbaptr++ = cellgreen[ui];
*rgbaptr++ = cellblue[ui];
*rgbaptr++ = livea;
}
}
int mag, pmag;
int vieww = view.getwidth();
int viewh = view.getheight();
if (view.getmag() > 0) {
pmag = 1 << view.getmag();
mag = 0;
} else {
pmag = 1;
mag = -view.getmag();
}
// get pixel position in view of grid's top left cell
pair<int,int> ltpxl = view.screenPosOf(gridleft, gridtop, this);
if (renderer.justState() || pmag > 1) {
if (unbounded) {
// simply display the entire grid -- ie. no need to use pixbuf
int x = ltpxl.first; // already multiplied by pmag
int y = ltpxl.second; // ditto
int wd = gwd * pmag;
int ht = ght * pmag;
if (renderer.justState())
renderer.stateblit(x, y, wd, ht, currgrid) ;
else
renderer.pixblit(x, y, wd, ht, currgrid, pmag);
} else {
// the universe is bounded so we need to include the outer border
bigint outerleft = gridleft;
bigint outertop = gridtop;
outerleft -= border;
outertop -= border;
ltpxl = view.screenPosOf(outerleft, outertop, this);
int x = ltpxl.first;
int y = ltpxl.second;
int wd = outerwd * pmag;
int ht = outerht * pmag;
if (renderer.justState())
renderer.stateblit(x, y, wd, ht, outergrid1) ;
else
renderer.pixblit(x, y, wd, ht, outergrid1, pmag);
}
} else {
// pmag is 1 so first fill pixbuf with dead cells
killpixels();
if (mag == 0) {
// divide grid into pmsize * pmsize blocks and draw them at scale 1:1
for (int row = 0; row < ght; row += pmsize) {
for (int col = 0; col < gwd; col += pmsize) {
// don't go beyond bottom/right edges of grid
int jmax = row + pmsize <= ght ? pmsize : pmsize - (row + pmsize - ght);
int imax = col + pmsize <= gwd ? pmsize : pmsize - (col + pmsize - gwd);
// check if this block is visible in view
int x = ltpxl.first + col;
int y = ltpxl.second + row;
if (x >= vieww || y >= viewh || x+imax <= 0 || y+jmax <= 0) {
// not visible
} else {
// get cell at top left corner of this block
unsigned char* cellptr = currgrid + row * outerwd + col;
// find live cells in this block and store their RGBA data in pixbuf
for (int j = 0; j < jmax; j++) {
unsigned char* p = cellptr;
int pixrow = j * pmsize;
for (int i = 0; i < imax; i++) {
if (*p > 0) pixRGBAbuf[pixrow + i] = cellRGBA[*p];
p++;
}
cellptr += outerwd;
}
// draw this block
renderer.pixblit(x, y, pmsize, pmsize, pixbuf, 1);
killpixels();
}
}
}
} else {
// mag > 0 (actually zoomed out);
// divide grid into pmsize*(2^mag) * pmsize*(2^mag) blocks, shrinking them down
// to pmsize * pmsize, and draw all non-zero cells using the state 1 color
unsigned int state1RGBA = cellRGBA[1];
// check if grid shrinks to 1 pixel
if ((gwd >> mag) == 0 && (ght >> mag) == 0) {
pixRGBAbuf[0] = state1RGBA; // there is at least 1 live cell in grid
int x = ltpxl.first;
int y = ltpxl.second;
renderer.pixblit(x, y, pmsize, pmsize, pixbuf, 1);
pixRGBAbuf[0] = cellRGBA[0];
return;
}
// above check should avoid overflow in blocksize calc, but play safe
if (mag > 20) mag = 20;
pmag = 1 << mag;
int blocksize = pmsize * pmag;
for (int row = 0; row < ght; row += blocksize) {
for (int col = 0; col < gwd; col += blocksize) {
// check if shrunken block is visible in view
int x = ltpxl.first + (col >> mag);
int y = ltpxl.second + (row >> mag);
if (x >= vieww || y >= viewh || x+pmsize <= 0 || y+pmsize <= 0) {
// not visible
} else {
// get cell at top left corner of this big block
unsigned char* cellptr = currgrid + row * outerwd + col;
// avoid going way beyond bottom/right edges of grid
int jmax = row + blocksize <= ght ? blocksize : blocksize - (row + blocksize - ght);
int imax = col + blocksize <= gwd ? blocksize : blocksize - (col + blocksize - gwd);
for (int j = 0; j < jmax; j += pmag) {
unsigned char* p = cellptr;
int sqtop = row + j;
for (int i = 0; i < imax; i += pmag) {
// shrink pmag*pmag cells in grid down to 1 pixel in pixbuf
int sqleft = col + i;
for (int r = 0; r < pmag; r++) {
if (sqtop + r < ght) {
unsigned char* topleft = p + r * outerwd;
for (int c = 0; c < pmag; c++) {
if (sqleft + c < gwd) {
unsigned char* q = topleft + c;
if (*q > 0) {
pixRGBAbuf[(j >> mag) * pmsize + (i >> mag)] = state1RGBA;
// no need to keep looking in this square
goto found1;
}
}
}
}
}
found1:
p += pmag;
}
cellptr += outerwd * pmag;
}
// draw the shrunken block
renderer.pixblit(x, y, pmsize, pmsize, pixbuf, 1);
killpixels();
}
}
}
}
}
}
// -----------------------------------------------------------------------------
void ltlalgo::findedges(bigint *ptop, bigint *pleft, bigint *pbottom, bigint *pright)
{
if (population == 0) {
// return impossible edges to indicate an empty pattern;
// not really a problem because caller should check first
*ptop = 1;
*pleft = 1;
*pbottom = 0;
*pright = 0;
return;
}
// the code in ltlalgo.cpp maintains a boundary of live cells in
// minx,miny,maxx,maxy but it might not be the minimal boundary
// (eg. if user deleted some live cells)
// find the top edge (miny)
for (int row = miny; row <= maxy; row++) {
unsigned char* cellptr = currgrid + row * outerwd + minx;
for (int col = minx; col <= maxx; col++) {
if (*cellptr > 0) {
miny = row;
goto found_top;
}
cellptr++;
}
}
// should never get here if population > 0
lifefatal("Bug detected in ltlalgo::findedges!");
found_top:
// find the bottom edge (maxy)
for (int row = maxy; row >= miny; row--) {
unsigned char* cellptr = currgrid + row * outerwd + minx;
for (int col = minx; col <= maxx; col++) {
if (*cellptr > 0) {
maxy = row;
goto found_bottom;
}
cellptr++;
}
}
found_bottom:
// find the left edge (minx)
for (int col = minx; col <= maxx; col++) {
unsigned char* cellptr = currgrid + miny * outerwd + col;
for (int row = miny; row <= maxy; row++) {
if (*cellptr > 0) {
minx = col;
goto found_left;
}
cellptr += outerwd;
}
}
found_left:
// find the right edge (maxx)
for (int col = maxx; col >= minx; col--) {
unsigned char* cellptr = currgrid + miny * outerwd + col;
for (int row = miny; row <= maxy; row++) {
if (*cellptr > 0) {
maxx = col;
goto found_right;
}
cellptr += outerwd;
}
}
found_right:
// set pattern edges (in cell coordinates)
*ptop = int(miny + gtop);
*pleft = int(minx + gleft);
*pbottom = int(maxy + gtop);
*pright = int(maxx + gleft);
}
// -----------------------------------------------------------------------------
void ltlalgo::fit(viewport &view, int force)
{
if (population == 0) {
view.center();
view.setmag(MAX_MAG);
return;
}
bigint top, left, bottom, right;
findedges(&top, &left, &bottom, &right);
if (!force) {
// if all four of the above dimensions are in the viewport, don't change
if (view.contains(left, top) && view.contains(right, bottom))
return;
}
bigint midx = right;
midx -= left;
midx += bigint::one;
midx.div2();
midx += left;
bigint midy = bottom;
midy -= top;
midy += bigint::one;
midy.div2();
midy += top;
int mag = MAX_MAG;
for (;;) {
view.setpositionmag(midx, midy, mag);
if (view.contains(left, top) && view.contains(right, bottom))
break;
mag--;
}
}
// -----------------------------------------------------------------------------
void ltlalgo::lowerRightPixel(bigint &x, bigint &y, int mag)
{
if (mag >= 0) return;
x >>= -mag;
x <<= -mag;
y -= 1;
y >>= -mag;
y <<= -mag;
y += 1;
}
|