File: qlifealgo.cpp

package info (click to toggle)
golly 3.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 20,220 kB
  • sloc: cpp: 72,638; ansic: 25,919; python: 7,921; sh: 4,245; objc: 3,721; java: 2,781; xml: 1,362; makefile: 530; perl: 69
file content (1258 lines) | stat: -rw-r--r-- 40,447 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
// This file is part of Golly.
// See docs/License.html for the copyright notice.

/*
 *   Inspired by Alan Hensel's Life applet and also by xlife.  Tries to
 *   improve the cache, TLB, and branching behavior for modern CPUs.
 */
#include "qlifealgo.h"
#include "liferules.h"
#include "util.h"
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <iostream>
using namespace std ;
/*
 *   The ai array is used to figure out the index number of the bit set in
 *   the set [1, 2, 4, 8, 16, 32, 64, 128].  Also, for the value 0, it
 *   returns the result 4, to eliminate a conditional in some obscure piece
 *   of code.
 */
static unsigned char ai[129] ;
/*
 *   This define is the size of memory to ask for at one time.  8K is a good
 *   size; we drop 16 bits because malloc overhead is probably near this.
 *
 *   Values much smaller than this will be impacted by malloc overhead (both
 *   speed and space); values much larger than this will occupy excessive
 *   memory for small universes.
 */
#define MEMCHUNK (8192-16)
/*
 *   When we need a bunch more structures of a particular size, we call this.
 *   This code allocates the memory, adds it to our universe memory allocated
 *   list, tries to maximize the cache alignment of the structures, and then
 *   links all the substructures together into a linked list which is then
 *   returned.
 */
/*
 *   This preprocessor directive is used to work around a bug in
 *   register allocation when using function inlining (-O3 or
 *   better) and gcc 3.4.2, which is very common having shipped with
 *   Fedora Core 3.
 */
#ifdef __GNUC__
__attribute__((noinline))
#endif
linkedmem *qlifealgo::filllist(int size) {
   usedmemory += MEMCHUNK ;
   if (maxmemory != 0 && usedmemory > maxmemory)
      lifefatal("exceeded user-specified memory limit") ;
   linkedmem *p, *safep, *r = (linkedmem *)calloc(MEMCHUNK, 1) ;
   int i = size & - size ;
   if (r == 0)
      lifefatal("No memory.") ;
   r->next = memused ;
   memused = r ;
   safep = p = (linkedmem *)((((g_uintptr_t)(r+1))+i-1)&-i) ;
   while (((g_uintptr_t)p) + 2 * size <= MEMCHUNK+(g_uintptr_t)r) {
      p->next = (linkedmem *)(size + (g_uintptr_t)p) ;
      p = (linkedmem *)(size + (g_uintptr_t)p) ;
   }
   return safep ;
}
#ifdef STATS
static int bricks, tiles, supertiles, rcc, dq, ds, rccs, dqs, dss ;
#define STAT(a) a
#else
#define STAT(a)
#endif
/*
 *   If we need a new empty brick, we call this.  This structure is guaranteed
 *   to be all zeros.
 */
brick *qlifealgo::newbrick() {
   brick *r ;
   if (bricklist == 0)
      bricklist = filllist(sizeof(brick)) ;
   r = (brick *)(bricklist) ;
   bricklist = bricklist->next ;
   memset(r, 0, sizeof(brick)) ;
   STAT(bricks++) ;
   return r ;
}
/*
 *   If we need a new tile, we call this.  The structure is also initialized
 *   appropriately, with all the pointers pointing to the empty brick.
 */
tile *qlifealgo::newtile() {
   tile *r ;
   if (tilelist == 0)
      tilelist = filllist(sizeof(tile)) ;
   r = (tile *)(tilelist) ;
   tilelist = tilelist->next ;
   r->b[0] = r->b[1] = r->b[2] = r->b[3] = emptybrick ;
   r->flags = -1 ;
   STAT(tiles++) ;
   return r ;
}
/*
 *   Finally, a new supertile is provided by this routine.  It initializes
 *   all the subtiles to point to the next level down's empty tile.
 */
supertile *qlifealgo::newsupertile(int lev) {
   supertile *r ;
   if (supertilelist == 0)
      supertilelist = filllist(sizeof(supertile)) ;
   r = (supertile *)supertilelist ;
   supertilelist = supertilelist->next ;
   r->d[0] = r->d[1] = r->d[2] = r->d[3] = r->d[4] = r->d[5] =
                                 r->d[6] = r->d[7] = nullroots[lev-1] ;
   STAT(supertiles++) ;
   return r ;
}
/*
 *   This short little subroutine plays a very important role.  It takes bits
 *   set up according to the c01 or c10 fields of supertiles, and translates
 *   these bits into the impact on the next level up.  Essentially, it swaps
 *   the parallel bits (bits 9 through 16), any of them set, with the edge
 *   bit (bit 8), in a way that requires no conditional branches.  On a
 *   slower older processor without large branch penalties, it might be
 *   faster to use a conditional variation that executes fewer instructions,
 *   but actually this code is not totally performance critical.
 */
static int upchanging(int x) {
   int a = (x & 0x1feff) + 0x1feff ;
   return ((a >> 8) & 1) | ((a >> 16) & 2) | ((x << 1) & 0x200) |
          ((x >> 7) & 0x400) ;
}
/*
 *   If it is determined that the universe is not large enough, this
 *   subroutine adds another level to it, expanding it by a factor of 8
 *   in one dimension, depending on whether the level is even or odd.
 *
 *   It also allocates a new emptytile at the appropriate level.
 *
 *   The old root is always placed at position 4.  This allows expansion
 *   in both positive and negative directions.
 *
 *   The sequence of sizes is as follows:
 *
 *   0 31
 *   -128 127
 *   -1,152 895
 *   -9,344 7,039
 *   -74,880 56,191
 *   -599,168 449,407
 *   -4,793,472 3,595,135
 *   -38,347,904 28,760,959
 *   -306,783,360 230,087,551
 *   INT_MIN 1,840,700,287
 *   INT_MIN INT_MAX
 *
 *   Remember these are only relevant for set() calls and have nothing
 *   to do with rendering or generation.
 */
void qlifealgo::uproot() {
   if (min < -100000000)
      min = INT_MIN ;
   else
      min = 8 * min - 128 ;
   if (max > 500000000)
      max = INT_MAX ;
   else
      max = 8 * max - 121 ;
   bmin <<= 3 ;
   bmin -= 128 ;
   bmax <<= 3 ;
   bmax -= 121 ;
   minlow32 = 8 * minlow32 - 4 ;
   if (rootlev >= 38)
     lifefatal("internal:  push too deep for qlifealgo") ;
   for (int i=0; i<2; i++) {
     supertile *oroot = root ;
     rootlev++ ;
     root = newsupertile(rootlev) ;
     if (rootlev > 1)
       root->flags = 0xf0000000 |
         (upchanging(oroot->flags) << (3 + (generation.odd()))) ;
     root->d[4] = oroot ;
     if (oroot != nullroot) {
       nullroots[rootlev] = nullroot = newsupertile(rootlev) ;
     } else {
       nullroots[rootlev] = nullroot = root ;
     }
   }
   // Need to clear this because we don't have valid population values
   // in the new root.
   popValid = 0 ;
}
/*
 *   This subroutine allocates a new empty universe.  The universe starts
 *   out as a 256x256 universe.
 */
qlifealgo::qlifealgo() {
   int test = (INT_MAX != 0x7fffffff) ;
   if (test)
      lifefatal("bad platform for this program") ;
   memused = 0 ;
   maxmemory = 0 ;
   clearall() ;
}
/*
 *   Clear everything.  This one also frees memory.
 */
static int bc[256] ; // popcount
void qlifealgo::clearall() {
   poller->bailIfCalculating() ;
   while (memused) {
      linkedmem *nu = memused->next ;
      free(memused) ;
      memused = nu ;
   }
   generation = 0 ;
   increment = 1 ;
   tilelist = 0 ;
   supertilelist = 0 ;
   bricklist = 0 ;
   rootlev = 0 ;
   cleandowncounter = 63 ;
   usedmemory = 0 ;
   deltaforward = 0 ;
   ai[0] = 4 ; ai[1] = 0 ; ai[2] = 1 ; ai[4] = 2 ; ai[8] = 3 ;
   ai[16] = 4 ; ai[32] = 5 ; ai[64] = 6 ; ai[128] = 7 ;
   minlow32 = min = 0 ;
   max = 31 ;
   bmin = 0 ;
   bmax = 31 ;
   emptybrick = newbrick() ;
   nullroots[0] = nullroot = root = (supertile *)(emptytile = newtile()) ;
   uproot() ;
   popValid = 0 ;
   llxb = 0 ;
   llyb = 0 ;
   llbits = 0 ;
   llsize = 0 ;
   if (bc[255] == 0)
     for (int i=1; i<256; i++)
       bc[i] = bc[i & (i-1)] + 1 ;
}
/*
 *   This subroutine frees a universe.
 */
qlifealgo::~qlifealgo() {
   while (memused) {
      linkedmem *nu = memused->next ;
      free(memused) ;
      memused = nu ;
   }
}
/*
 *   Set the max memory
 */
void qlifealgo::setMaxMemory(int newmemlimit) {
   // AKT: allow setting maxmemory to 0
   if (newmemlimit == 0) {
      maxmemory = 0 ;
      return;
   }
   if (newmemlimit < 10)
      newmemlimit = 10 ;
#ifndef GOLLY64BIT
   else if (newmemlimit > 4000)
      newmemlimit = 4000 ;
#endif
   g_uintptr_t newlimit = ((g_uintptr_t)newmemlimit) << 20 ;
   if (usedmemory > newlimit) {
      lifewarning("Sorry, more memory currently used than allowed.") ;
      return ;
   }
   maxmemory = newlimit ;
}
/*
 *   Finally, our first generation subroutine!  This one handles supertiles
 *   for even to odd generation (0->1).  What is passed in is the universe
 *   itself, the tile (this) to focus on, its three neighbor tiles (the
 *   one `parallel' to it [by the way the subtiles are stacked], the one
 *   past it, and the corner one.
 *
 *   The way we walk down the tree in this subroutine is one of the major
 *   keys to cache and TLB performance.  We walk the universe in a
 *   spatially local way, always doing an entire 32x32 tile before
 *   moving on, always doing a 256x32 supertile before moving on, always
 *   doing a 256x256 supertile, etc.  That is, if we need to access a
 *   particular brick four times in recomputing four bricks, chances are
 *   good that those four times will occur closely in time since we do
 *   spatially adjacent bricks near each other.
 *
 *   Another trick is to do the universe from bottom to top in phase 0->1
 *   and from top to bottom in phase 1->0; this also helps cut down on
 *   those cache misses.
 */
int qlifealgo::doquad01(supertile *zis, supertile *edge,
                        supertile *par, supertile *cor, int lev) {
/*
 *   First we figure out which subtiles we need to recalculate.  There will
 *   always be at least one if we got into this subroutine (except for the
 *   case of a static universe and at the root level).  To do this, we
 *   use the edge bits from the parallel supertile, and one bit each from
 *   the other two neighbor tiles, blending them into a single 8-bit
 *   recalculate int.
 *
 *   Note that the parallel and corner have already been recomputed so
 *   their changing bits are shifted up 10 positions in c.
 */
   poller->poll() ;
   int changing = (zis->flags | (par->flags >> 19) |
                   (((edge->flags >> 18) | (cor->flags >> 27)) & 1)) & 0xff ;
   int x, b, nchanging = (zis->flags & 0x3ff00) << 10 ;
   supertile *p, *pf, *pu, *pfu ;
   STAT(ds++) ;
/*
 *   Only if the first subtile needs to be recomputed do we actually need to
 *   `visit' the edge and corner neighbors.  We always keep track of the
 *   subtiles one level down.
 */
   if (changing & 1) {
      x = 7 ;
      b = 1 ;
      pf = edge->d[0] ;
      pfu = cor->d[0] ;
   } else {
/*
 *   Otherwise, we compute which tile we need to examine first with the help
 *   of the ai array.
 */
      b = (changing & - changing) ;
      x = 7 - ai[b] ;
      pf = zis->d[x + 1] ;
      pfu = par->d[x + 1] ;
   }
   for (;;) {
      p = zis->d[x] ;
      pu = par->d[x] ;
/*
 *   Do we need to recompute this subtile?
 */
      if (changing & b) {
/*
 *   If so, is it the canonical empty supertile for this level?  If so,
 *   allocate a new empty supertile and set the void bits appropriately.
 */
         if (zis->d[x] == nullroots[lev-1])
            p = zis->d[x] = (lev == 1 ? (supertile *)newtile() :
                                                      newsupertile(lev-1)) ;
/*
 *   If it's level 1, call the tile handler, else call the next level down of
 *   the supertile handler.  The return value is the changing indicators that
 *   should be propogated up.
 */
         nchanging |= ((lev == 1) ? p01((tile *)p, (tile *)pf,
                                        (tile *)pu, (tile *)pfu) :
                                    doquad01(p, pu, pf, pfu, lev-1)) << x ;
         changing -= b ;
      } else if (changing == 0)
         break ;
      b <<= 1 ;
      x-- ;
      pfu = pu ;
      pf = p ;
   }
   zis->flags = nchanging | 0xf0000000 ;
   return upchanging(nchanging) ;
}
/*
 *   This is for odd to even generations, and the documentation is pretty
 *   much the same as for the previous subroutine.
 */
int qlifealgo::doquad10(supertile *zis, supertile *edge,
                        supertile *par, supertile *cor, int lev) {
   poller->poll() ;
   int changing = (zis->flags | (par->flags >> 19) |
                   (((edge->flags >> 18) | (cor->flags >> 27)) & 1)) & 0xff ;
   int x, b, nchanging = (zis->flags & 0x3ff00) << 10 ;
   supertile *p, *pf, *pu, *pfu ;
   STAT(ds++) ;
   if (changing & 1) {
      x = 0 ;
      b = 1 ;
      pf = edge->d[7] ;
      pfu = cor->d[7] ;
   } else {
      b = (changing & - changing) ;
      x = ai[b] ;
      pf = zis->d[x - 1] ;
      pfu = par->d[x - 1] ;
   }
   for (;;) {
      p = zis->d[x] ;
      pu = par->d[x] ;
      if (changing & b) {
         if (zis->d[x] == nullroots[lev-1])
            p = zis->d[x] = (lev == 1 ? (supertile *)newtile() :
                                                     newsupertile(lev-1)) ;
         nchanging |= ((lev == 1) ? p10((tile *)pfu, (tile *)pu,
                                       (tile *)pf, (tile *)p) :
                                  doquad10(p, pu, pf, pfu, lev-1)) << (7-x) ;
         changing -= b ;
      } else if (changing == 0)
         break ;
      b <<= 1 ;
      x++ ;
      pfu = pu ;
      pf = p ;
   }
   zis->flags = nchanging | 0xf0000000 ;
   return upchanging(nchanging) ;
}
/*
 *   This is our monster subroutine that, with its mirror below, accounts for
 *   about 90% of the runtime.  It handles recomputation for a 32x32 tile.
 *   Passed in are the neighbor tiles:  pr (to the right), pd (down), and
 *   prd (down and to the right).
 */
int qlifealgo::p01(tile *p, tile *pr, tile *pd, tile *prd) {
   brick *db = pd->b[0], *rdb = prd->b[0] ;
/*
 *   Do we need to recompute the fourth brick?  This happens here because its
 *   the only place we need to pull in changing from the down and corner
 *   neighbor.
 */
   int i, recomp = (p->c[4] | pd->c[0] | (pr->c[4] >> 9) | (prd->c[0] >> 8)) & 0xff ;
   STAT(dq++) ;
   p->c[5] = 0 ;
   p->flags |= 0xfff00000 ;
/*
 *   For each brick . . .
 */
   for (i=3; i>=0; i--) {
      brick *b = p->b[i], *rb = pr->b[i] ;
/*
 *   Do we need to recompute?
 */
      if (recomp) {
         unsigned int traildata, trailunderdata ;
         int j, cdelta = 0, maska, maskb, maskprev = 0 ;
/*
 *   If so, set the dirty bit.  Also, if this brick is the canonical empty
 *   brick, get a new one.
 */
         p->flags |= 1 << i ;
         if (b == emptybrick)
            p->b[i] = b = newbrick() ;
/*
 *   If we need to recompute the end slice, now is a good time to get the
 *   right neighbor's data.
 */
         if (recomp & 1) {
            j = 7 ;
            traildata = rb->d[0] ;
            trailunderdata = rdb->d[0] ;
         } else {
/*
 *   Otherwise we use the ai[] array to figure out where to begin in this
 *   brick.
 */
            j = ai[recomp & - recomp] ;
            recomp >>= j ;
            j = 7 - j ;
            traildata = b->d[j+1] ;
            trailunderdata = db->d[j+1] ;
         }
         trailunderdata = (traildata << 8) + (trailunderdata >> 24) ;
         for (;;) {
/*
 *   At all times here, we have traildata (the data from the slice to the
 *   right) and trailunderdata (24 bits of traildata and eight bits from
 *   the slice under and to the right).
 *
 *   Do we need  to recompute this slice?
 */
            if (recomp & 1) {
/*
 *   Our main recompute chunk recomputes a single slice.
 */
               unsigned int zisdata = b->d[j] ;
               unsigned int underdata = (zisdata << 8) + (db->d[j] >> 24) ;
               unsigned int otherdata = ((zisdata << 2) & 0xcccccccc) +
                                        ((traildata >> 2) & 0x33333333) ;
               unsigned int otherunderdata = ((underdata << 2) & 0xcccccccc) +
                                    ((trailunderdata >> 2) & 0x33333333) ;
               int newv = (ruletable[zisdata >> 16] << 26) +
                          (ruletable[underdata >> 16] << 18) +
                          (ruletable[zisdata & 0xffff] << 10) +
                          (ruletable[underdata & 0xffff] << 2) +
                          (ruletable[otherdata >> 16] << 24) +
                          (ruletable[otherunderdata >> 16] << 16) +
                          (ruletable[otherdata & 0xffff] << 8) +
                           ruletable[otherunderdata & 0xffff] ;
/*
 *   Has anything changed?
 *   Keep track of what has changed in the entire cell, the rightmost
 *   two columns, the lowest two rows, and the lowest rightmost 2x2 cell, into
 *   the maskprev int.  Do all of this without conditionals.
 */
               int delta = (b->d[j + 8] ^ newv) | deltaforward ;
               STAT(rcc++) ;
               b->d[j + 8] = newv ;
               maska = cdelta | (delta & 0x33333333) ;
               maskb = maska | -maska ;
               maskprev = (maskprev << 1) |
                          ((maskb >> 9) & 0x400000) | (maskb & 0x80) ;
               cdelta = delta ;
               traildata = zisdata ;
               trailunderdata = underdata ;
            } else {
/*
 *   No need to recompute?  Well, maintain our necessary invariants and bail
 *   if we're done.
 */
               maskb = cdelta | -cdelta ;
               maskprev = (maskprev << 1) |
                          ((maskb >> 9) & 0x400000) | (maskb & 0x80) ;
               if (recomp == 0)
                  break ; ;
               cdelta = 0 ;
               traildata = b->d[j] ;
               trailunderdata = (traildata << 8) + (db->d[j] >> 24) ;
            }
            recomp >>= 1 ;
            j-- ;
         }
/*
 *   Finally done with that brick!  Update our changing for the next
 *   call to p10, and or-in any changes to the lower two rows that we saw
 *   into the next brick down's changing variable.
 */
         p->c[i+2] |= (maskprev >> (6 - j)) & 0x1ff ;
         p->c[i+1] =
           (short)(((p->c[i+1] & 0x100) << 1) | (maskprev >> (21 - j))) ;
      } else
         p->c[i+1] = 0 ;
/*
 *   Calculate recomp for the next row down.
 */
      recomp = (p->c[i] | (pr->c[i] >> 9)) & 0xff ;
      db = b ;
      rdb = rb ;
   }
/*
 *   Propogate the changing information for this tile to the supertile on
 *   the next level up.
 */
   recomp = p->c[5] ;
   i = recomp | p->c[0] | p->c[1] | p->c[2] | p->c[3] | p->c[4] ;
   if (recomp)
      return 0x201 | ((recomp & 0x100) << 2) | ((i & 0x100) >> 7) ;
   else
      return i ? ((i & 0x100) >> 7) | 1 : 0 ;
}
/*
 *   This subroutine is the mirror of the one above, used for odd to even
 *   generations.
 */
int qlifealgo::p10(tile *plu, tile *pu, tile *pl, tile *p) {
   brick *ub = pu->b[3], *lub = plu->b[3] ;
   int i, recomp = (p->c[1] | pu->c[5] | (pl->c[1] >> 9) | (plu->c[5] >> 8)) & 0xff ;
   STAT(dq++) ;
   p->c[0] = 0 ;
   p->flags |= 0x000fff00 ;
   for (i=0; i<=3; i++) {
      brick *b = p->b[i], *lb = pl->b[i] ;
      if (recomp) {
         int maska, maskprev = 0, j, cdelta = 0 ;
         unsigned int traildata, trailoverdata ;
         p->flags |= 1 << i ;
         if (b == emptybrick)
            p->b[i] = b = newbrick() ;
         if (recomp & 1) {
            j = 0 ;
            traildata = lb->d[15] ;
            trailoverdata = lub->d[15] ;
         } else {
            j = ai[recomp & - recomp] ;
            traildata = b->d[j+7] ;
            trailoverdata = ub->d[j+7] ;
            recomp >>= j ;
         }
         trailoverdata = (traildata >> 8) + (trailoverdata << 24) ;
         for (;;) {
            if (recomp & 1) {
               unsigned int zisdata = b->d[j + 8] ;
               unsigned int overdata = (zisdata >> 8) + (ub->d[j + 8] << 24) ;
               unsigned int otherdata = ((zisdata >> 2) & 0x33333333) +
                                        ((traildata << 2) & 0xcccccccc) ;
               unsigned int otheroverdata = ((overdata >> 2) & 0x33333333) +
                                    ((trailoverdata << 2) & 0xcccccccc) ;
               int newv = (ruletable[otheroverdata >> 16] << 26) +
                          (ruletable[otherdata >> 16] << 18) +
                          (ruletable[otheroverdata & 0xffff] << 10) +
                          (ruletable[otherdata & 0xffff] << 2) +
                          (ruletable[overdata >> 16] << 24) +
                          (ruletable[zisdata >> 16] << 16) +
                          (ruletable[overdata & 0xffff] << 8) +
                           ruletable[zisdata & 0xffff] ;
               int delta = (b->d[j] ^ newv) | deltaforward ;
               STAT(rcc++) ;
               maska = cdelta | (delta & 0xcccccccc) ;
               maskprev = (maskprev << 1) |
                          (((maska | - maska) >> 9) & 0x400000) |
                          ((((maska >> 24) | 0x100) - 1) & 0x100) ;
               b->d[j] = newv ;
               cdelta = delta ;
               traildata = zisdata ;
               trailoverdata = overdata ;
            } else {
               maskprev = (maskprev << 1) |
                          (((cdelta | - cdelta) >> 9) & 0x400000) |
                          ((((cdelta >> 24) | 0x100) - 1) & 0x100) ;
               if (recomp == 0)
                  break ;
               cdelta = 0 ;
               traildata = b->d[j + 8] ;
               trailoverdata = (traildata >> 8) + (ub->d[j + 8] << 24) ;
            }
            recomp >>= 1 ;
            j++ ;
         }
         p->c[i+1] =
           (short)(((p->c[i+1] & 0x100) << 1) | (maskprev >> (14 + j))) ;
         p->c[i] |= (maskprev >> j) & 0x1ff ;
      } else
         p->c[i+1] = 0 ;
      recomp = (p->c[i+2] | (pl->c[i+2] >> 9)) & 0xff ;
      ub = b ;
      lub = lb ;
   }
   recomp = p->c[0] ;
   i = recomp | p->c[1] | p->c[2] | p->c[3] | p->c[4] | p->c[5] ;
   if (recomp)
      return 0x201 | ((recomp & 0x100) << 2) | ((i & 0x100) >> 7) ;
   else
      return i ? ((i & 0x100) >> 7) | 1 : 0 ;
}
/**
 *   Mark a node and its subnodes as changed.  We really
 *   only mark those nodes that have any cells set at all.
 *   And we remove all empty nodes, to prevent quadratic
 *   expansion if setrule() or something similar is called
 *   too frequently.
 */
supertile *qlifealgo::markglobalchange(supertile *p, int lev, int &bits) {
   int i ;
   bits = 0 ;
   if (lev == 0) {
      tile *pp = (tile *)p ;
      if (pp != emptytile) {
        int s = 0 ;
        for (int i=0; i<4; i++)
          for (int j=0; j<16; j++)
            s |= pp->b[i]->d[j] ;
        if (s) {
          pp->c[0] = pp->c[5] = 0x1ff ;
          pp->c[1] = pp->c[2] = pp->c[3] = pp->c[4] = 0x3ff ;
          bits = 0x603 ;
          return p ;
        }
        bits = 0 ;
        for (int i=0; i<4; i++)
           if (pp->b[i] != emptybrick) {
               STAT(bricks--) ;
               ((linkedmem *)(pp->b[i]))->next = bricklist ;
               bricklist = (linkedmem *)(pp->b[i]) ;
           }
        STAT(tiles--) ;
        memset(pp, 0, sizeof(tile)) ;
        ((linkedmem *)pp)->next = tilelist ;
        tilelist = (linkedmem *)pp ;
        return (supertile *)emptytile ;
      }
      return p ;
   } else {
      if (p != nullroots[lev]) {
         int nchanging = 0 ;
         int nbits ;
         if (generation.odd()) {
           for (i=0; i<8; i++) {
              p->d[i] = markglobalchange(p->d[i], lev-1, nbits) ;
              nchanging |= nbits << i ;
           }
         } else {
           for (i=0; i<8; i++) {
             p->d[i] = markglobalchange(p->d[i], lev-1, nbits) ;
             nchanging |= nbits << (7-i) ;
           }
         }
         if (nchanging != 0 || p == root) {
            p->flags |= nchanging | 0xf0000000 ;
            bits = upchanging(nchanging) ;
            return p ;
         } else {
            STAT(supertiles--) ;
            memset(p, 0, sizeof(supertile)) ;
            ((linkedmem *)p)->next = supertilelist ;
            supertilelist = (linkedmem *)p ;
            return nullroots[lev] ;
         }
      }
      return p ;
   }
}
void qlifealgo::markglobalchange() {
   int bits = 0 ;
   markglobalchange(root, rootlev, bits) ;
   deltaforward = 0xffffffff ;
}
/*
 *   This subroutine sets a bit at a particular location.
 *
 *   We walk down the tree to the particular bit, setting changing flags as
 *   we go.
 */
int qlifealgo::setcell(int x, int y, int newstate) {
   if (newstate & ~1)
      return -1 ;
   y = - y ;
   supertile *b ;
   tile *p ;
   int lev ;
   int odd = generation.odd() ;
   if (odd) {
      x-- ;
      y-- ;
   }
   while (x < min || x > max || y < min || y > max)
      uproot() ;
   int xdel = (x >> 5) - minlow32 ;
   int ydel = (y >> 5) - minlow32 ;
   int xc = x - (minlow32 << 5) ;
   int yc = y - (minlow32 << 5) ;
   if (root == nullroot)
      root = newsupertile(rootlev) ;
   b = root ;
   lev = rootlev ;
   while (lev > 0) {
      int i, d = 1 ;
      if (lev & 1) {
         int s = (lev >> 1) + lev - 1 ;
         i = (xdel >> s) & 7 ;
         s = (1 << (s + 5)) - 2 ;
         if ((xc & s) == ((odd) ? s : 0))
            d += 2 ;
         if ((yc & s) == ((odd) ? s : 0))
            d += d << 9 ;
      } else {
         int s = (lev >> 1) + lev - 3 ;
         i = (ydel >> s) & 7 ;
         s = (1 << (s + 5)) - 2 ;
         if ((yc & s) == ((odd) ? s : 0))
            d += 2 ;
         s |= s << 3 ;
         if ((xc & s) == ((odd) ? s : 0))
            d += d << 9 ;
      }
      if (odd)
         b->flags |= (d << i) | 0xf0000000 ;
      else
         b->flags |= (d << (7 - i)) | 0xf0000000 ;
      if (b->d[i] == nullroots[lev-1])
         b->d[i] = (lev==1 ? (supertile *)newtile() :
                                                      newsupertile(lev-1)) ;
      lev -= 1 ;
      b = b->d[i] ;
   }
   x &= 31 ;
   y &= 31 ;
   p = (tile *)b ;
   if (p->b[(y >> 3) & 0x3] == emptybrick)
      p->b[(y >> 3) & 0x3] = newbrick() ;
   if (odd) {
      int mor = ((x & 2) ? 3 : 1) << ((x >> 2) & 0x7) ;
      p->c[((y >> 3) & 0x3) + 1] |= mor ;
      p->flags = -1 ;
      if ((y & 6) == 6)
         p->c[((y >> 3) & 0x3) + 2] |= mor ;
      if (newstate)
         p->b[(y >> 3) & 0x3]->d[8 + ((x >> 2) & 0x7)]
                                   |= (1 << (31 - (y & 7) * 4 - (x & 3))) ;
      else
         p->b[(y >> 3) & 0x3]->d[8 + ((x >> 2) & 0x7)]
                                  &= ~(1 << (31 - (y & 7) * 4 - (x & 3))) ;
   } else {
      int mor = ((x & 2) ? 1 : 3) << (7 - ((x >> 2) & 0x7)) ;
      p->c[((y >> 3) & 0x3) + 1] |= mor ;
      p->flags = -1 ;
      if ((y & 6) == 0)
         p->c[((y >> 3) & 0x3)] |= mor ;
      if (newstate)
         p->b[(y >> 3) & 0x3]->d[(x >> 2) & 0x7]
                                   |= (1 << (31 - (y & 7) * 4 - (x & 3))) ;
      else
         p->b[(y >> 3) & 0x3]->d[(x >> 2) & 0x7]
                                  &= ~(1 << (31 - (y & 7) * 4 - (x & 3))) ;
   }
   deltaforward = 0xffffffff ;
   return 0 ;
}
/*
 *   This subroutine gets a bit at a particular location.
 */
int qlifealgo::getcell(int x, int y) {
   y = - y ;
   supertile *b ;
   tile *p ;
   int lev ;
   int odd = generation.odd() ;
   if (odd) {
      x-- ;
      y-- ;
   }
   while (x < min || x > max || y < min || y > max)
      uproot() ;
   if (x < min || x > max || y < min || y > max)
      return 0 ;
   int xdel = (x >> 5) - minlow32 ;
   int ydel = (y >> 5) - minlow32 ;
   if (root == nullroot)
      return 0 ;
   b = root ;
   lev = rootlev ;
   while (lev > 0) {
      int i ;
      if (lev & 1) {
         int s = (lev >> 1) + lev - 1 ;
         i = (xdel >> s) & 7 ;
      } else {
         int s = (lev >> 1) + lev - 3 ;
         i = (ydel >> s) & 7 ;
      }
      if (b->d[i] == nullroots[lev-1])
         return 0 ;
      lev -= 1 ;
      b = b->d[i] ;
   }
   x &= 31 ;
   y &= 31 ;
   p = (tile *)b ;
   if (p->b[(y >> 3) & 0x3] == emptybrick)
      return 0 ;
   if (odd) {
      if (p->b[(y >> 3) & 0x3]->d[8 + ((x >> 2) & 0x7)] &
          (1 << (31 - (y & 7) * 4 - (x & 3))))
         return 1 ;
      else
         return 0 ;
   } else {
      if (p->b[(y >> 3) & 0x3]->d[(x >> 2) & 0x7] &
          (1 << (31 - (y & 7) * 4 - (x & 3))))
         return 1 ;
      else
         return 0 ;
   }
}
/**
 *   Similar but returns the distance to the next set cell horizontally.
 */
int qlifealgo::nextcell(int x, int y, int &v) {
   v = 1 ;
   y = - y ;
   int odd = generation.odd() ;
   if (odd) {
      x-- ;
      y-- ;
   }
   while (x < min || x > max || y < min || y > max)
      uproot() ;
   if (x > max || x < min || y < min || y > max)
      return -1 ;
   return nextcell(x, y, root, rootlev) ;
}
int qlifealgo::nextcell(int x, int y, supertile *n, int lev) {
   if (lev > 0) {
      if (n == nullroots[lev])
         return -1 ;
      int xdel = (x >> 5) - minlow32 ;
      int ydel = (y >> 5) - minlow32 ;
      int i ;
      if (lev & 1) {
         int s = (lev >> 1) + lev - 1 ;
         i = (xdel >> s) & 7 ;
         int r = 0 ;
         int off = (x & 31) + ((xdel & ((1 << s) - 1)) << 5) ;
         while (i < 8) {
            int t = nextcell(x, y, n->d[i], lev-1) ;
            if (t < 0) {
              r += (32 << s) - off ;
              x += (32 << s) - off ;
              off = 0 ;
            } else {
              return r + t ;
            }
            i++ ;
         }
         return -1 ;
      } else {
         int s = (lev >> 1) + lev - 3 ;
         i = (ydel >> s) & 7 ;
         return nextcell(x, y, n->d[i], lev-1) ;
      }
   }
   x &= 31 ;
   y &= 31 ;
   tile *p = (tile *)n ;
   brick *br = (brick *)(p->b[(y>>3) & 3]) ;
   if (br == emptybrick)
      return -1 ;
   int i = ((x >> 2) & 7) ;
   int add = (generation.odd() ? 8 : 0) ;
   int sh = (7 - (y & 7)) * 4 ;
   int r = 0 ;
   x &= 3 ;
   int m = 15 >> x ;
   while (i < 8) {
     int t = (br->d[i+add] >> sh) & m ;
     if (t) {
       if (t & 8) return r - x ;
       if (t & 4) return r + 1 - x ;
       if (t & 2) return r + 2 - x ;
       return r + 3 - x ;
     }
     r += (4 - x) ;
     x = 0 ;
     m = 15 ;
     i++ ;
   }
   return -1 ;
}
/*
 *   This subroutine calculates the population count of the universe.  It
 *   uses dirty bits number 1 and 2 of supertiles.
 */
G_INT64 qlifealgo::find_set_bits(supertile *p, int lev, int gm1) {
   G_INT64 pop = 0 ;
   int i, j, b ;
   if (lev == 0) {
      tile *pp = (tile *)p ;
      b = 8 + gm1 * 12 ;
      pop = (pp->flags >> b) & 0xfff ;
      if (pop > 0x800) {
         pop = 0 ;
         for (i=0; i<4; i++) {
            if (pp->b[i] != emptybrick) {
               for (j=0; j<8; j++) {
#ifdef FASTPOPCOUNT
                  pop += FASTPOPCOUNT(pp->b[i]->d[j+gm1*8]) ;
#else
                  int k = pp->b[i]->d[j+gm1*8] ;
                  if (k)
                    pop += bc[k & 255] + bc[(k >> 8) & 255] +
                      bc[(k >> 16) & 255] + bc[(k >> 24) & 255] ;
#endif
               }
            }
         }
         pp->flags = (long)((pp->flags & ~(0xfff << b)) | (pop << b)) ;
      }
   } else {
      if (p->flags & (0x20000000 << gm1)) {
         for (i=0; i<8; i++)
            if (p->d[i] != nullroots[lev-1])
               pop += find_set_bits(p->d[i], lev-1, gm1) ;
         if (pop < 500000000) {
            p->pop[gm1] = (int)pop ;
            p->flags &= ~(0x20000000 << gm1) ;
         } else {
            p->pop[gm1] = 0xfffffff ; // placeholder; *some* bits are set
         }
      } else {
         pop = p->pop[gm1] ;
      }
   }
   return pop ;
}
/**
 *   A variation that tries to quickly answer:  *any* bits set?
 */
int qlifealgo::isEmpty(supertile *p, int lev, int gm1) {
   int i, j, k, b ;
   if (lev == 0) {
      tile *pp = (tile *)p ;
      b = 8 + gm1 * 12 ;
      int pop = (pp->flags >> b) & 0xfff ;
      if (pop > 0x800) {
         pop = 0 ;
         for (i=0; i<4; i++) {
            if (pp->b[i] != emptybrick) {
               for (j=0; j<8; j++) {
                  k = pp->b[i]->d[j+gm1*8] ;
                  if (k)
                     return 0 ;
               }
            }
         }
      }
      return pop ? 0 : 1 ;
   } else {
      if (p->flags & (0x20000000 << gm1)) {
         for (i=0; i<8; i++)
            if (p->d[i] != nullroots[lev-1])
               if (!isEmpty(p->d[i], lev-1, gm1))
                  return 0 ;
         return 1 ;
      } else {
         return p->pop[gm1] ? 0 : 1 ;
      }
   }
}
/*
 *   Another critical subroutine, this one cleans up the empty bricks,
 *   tiles, and supertiles as the generations go by.  This speeds things
 *   up by not using too much memory (minimizing cache misses and TLB
 *   misses).  We only try to delete bricks, tiles, and supertiles from
 *   regions of the universe that have been active since we last attempted
 *   to delete tiles.  We delete all possible tiles, even those near active
 *   regions; if necessary, 
 *
 *   We use dirty bit number 0 of supertiles, and dirty bits 0..3 of
 *   tiles.
 */
supertile *qlifealgo::mdelete(supertile *p, int lev) {
   int i ;
   if (lev == 0) {
      tile *pp = (tile *)p ;
      if (pp->flags & 0xf) {
         int seen = 0 ;
         for (i=0; i<4; i++) {
            brick *b = pp->b[i] ;
            if (b != emptybrick) {
               if ((pp->flags & (1 << i))) {
                  if (b->d[0] | b->d[1] | b->d[2] | b->d[3] | b->d[4] |
                      b->d[5] | b->d[6] | b->d[7] | b->d[8] | b->d[9] |
                      b->d[10] | b->d[11] | b->d[12] | b->d[13] | b->d[14] |
                      b->d[15]) {
                     seen++ ;
                  } else {
                     STAT(bricks--) ;
                     ((linkedmem *)b)->next = bricklist ;
                     bricklist = (linkedmem *)b ;
                     pp->b[i] = emptybrick ;
                  }
               } else
                  seen++ ;
            }
         }
         if (seen || ((pp->c[1] | pp->c[2] | pp->c[3] | pp->c[4]) & 0xff) ||
                                 ((generation.odd()) ? pp->c[5] : pp->c[0]))
            pp->flags &= 0xfffffff0 ;
         else {
            STAT(tiles--) ;
            memset(pp, 0, sizeof(tile)) ;
            ((linkedmem *)pp)->next = tilelist ;
            tilelist = (linkedmem *)pp ;
            return nullroots[lev] ;
         }
      }
   } else {
      if (p->flags & 0x10000000) {
         int keep = 0 ;
         for (i=0; i<8; i++)
            if (p->d[i] != nullroots[lev-1])
               if ((p->d[i] = mdelete(p->d[i], lev-1)) !=
                                                       nullroots[lev-1])
                  keep++ ;
         if (keep || p == root || (p->flags & 0x3ffff))
            p->flags &= 0xefffffff ;
         else {
            STAT(supertiles--) ;
            memset(p, 0, sizeof(supertile)) ;
            ((linkedmem *)p)->next = supertilelist ;
            supertilelist = (linkedmem *)p ;
            return nullroots[lev] ;
         }
      }
   }
   return p ;
}
G_INT64 qlifealgo::popcount() {
   return find_set_bits(root, rootlev, generation.odd()) ;
}
const bigint &qlifealgo::getPopulation() {
   if (!popValid) {
      population = bigint(popcount()) ;
      popValid = 1 ;
      poller->reset_countdown() ;
   }
   return population ;
}
int qlifealgo::isEmpty() {
   return isEmpty(root, rootlev, generation.odd()) ;
}
/*
 *   Here we look at the root node and see if activity is getting
 *   uncomfortably close to the current edges.  If so, we add another
 *   level onto the top.
 */
int qlifealgo::uproot_needed() {
   int i ;
   if (root->d[0] != nullroots[rootlev-1] ||
       root->d[7] != nullroots[rootlev-1])
      return 1 ;
   for (i=1; i<7; i++)
      if (root->d[i]->d[0] != nullroots[rootlev-2] ||
          root->d[i]->d[7] != nullroots[rootlev-2])
         return 1 ;
   return 0 ;
}
/*
 *   The new generation code is simple.  We uproot if needed.  Then, we call
 *   the appropriate top-level slice code depending on the generation number.
 *   Finally, if we are generations 64, 128, 192, and so on, we clean up
 *   the tree.
 *
 *   Note that this 64 was carefully chosen to balance extraneous bricks left
 *   behind by gliders against the computational cost of deletion.
 */
void qlifealgo::dogen() {
   poller->reset_countdown() ;
#ifdef STATS
   ds = 0 ; dq = 0 ; rcc = 0 ;
#endif
   // AKT: if grid is bounded then we should never need to call uproot() here
   // because setrule() has already expanded the universe to enclose the grid
   if (gridwd == 0 || gridht == 0) {
      while (uproot_needed())
         uproot() ;
   }
   if (generation.odd())
      doquad10(root, nullroot, nullroot, nullroot, rootlev) ;
   else
      doquad01(root, nullroot, nullroot, nullroot, rootlev) ;
   deltaforward = 0 ;
   generation += bigint::one ;
   popValid = 0 ;
   if (--cleandowncounter == 0) {
      cleandowncounter = 63 ;
      mdelete(root, rootlev) ;
   }
#ifdef STATS
   dss += ds ; dqs += dq ; rccs += rcc ;
#endif
}
/**
 *   Step.  Do increment generations.
 */
void qlifealgo::step() {
   poller->bailIfCalculating() ;
   bigint t = increment ;
   while (t != 0) {
      if (qliferules.alternate_rules) {
         // emulate B0-not-Smax rule by changing rule table depending on gen parity
         if (generation.odd())
            ruletable = qliferules.rule1 ;
         else
            ruletable = qliferules.rule0 ;
      } else {
         ruletable = qliferules.rule0 ;
      }
      dogen() ;
      if (poller->isInterrupted())
         break ;
      t -= 1 ;
      if (t > increment) // might change; make it happen now
         t = increment ;
   }
}

// Flip bits in given rule table.
// This is a tad tricky because we want to turn both the input
// and the output of this table upside down.
static void fliprule(char *rptr) {
   for (int i=0; i<65536; i++) {
      int j = ((i & 0xf) << 12) +
               ((i & 0xf0) << 4) + ((i & 0xf00) >> 4) + ((i & 0xf000) >> 12) ;
      if (i <= j) {
         char fi = rptr[i] ;
         char fj = rptr[j] ;
         fi = ((fi & 0x30) >> 4) + ((fi & 0x3) << 4) ;
         fj = ((fj & 0x30) >> 4) + ((fj & 0x3) << 4) ;
         rptr[i] = fj ;
         rptr[j] = fi ;
      }
   }
}

/**
 *   If we change the rule we need to mark everything dirty.
 */
const char *qlifealgo::setrule(const char *s) {
   const char* err = qliferules.setrule(s, this);
   if (err) return err;

   markglobalchange() ;
   
   // AKT: qlifealgo has an opposite interpretation of the orientation of
   // a rule table assumed by qliferules.setrule.  For vertically symmetrical
   // rules such as the Moore or von Neumann neighborhoods this doesn't matter,
   // but for hexagonal rules and Wolfram rules we need to flip the rule table(s)
   // upside down.
   if ( qliferules.isHexagonal() || qliferules.isWolfram() ) {
      if (qliferules.alternate_rules) {
         // hex rule has B0 but not S6 so we'll be using rule1 for odd gens
         fliprule(qliferules.rule1);
      }
      fliprule(qliferules.rule0);
   }
   
   // ruletable is set in step(), but play safe
   ruletable = qliferules.rule0 ;
   
   if (qliferules.isHexagonal())
      grid_type = HEX_GRID;
   else if (qliferules.isVonNeumann())
      grid_type = VN_GRID;
   else
      grid_type = SQUARE_GRID;

   // AKT: if the grid is bounded then call uproot() if necessary so that
   // dogen() never needs to call it
   if (gridwd > 0 && gridht > 0) {
      // use the top left and bottom right corners of the grid, but expanded by 2
      // to allow for growth in the borders when the grid edges are joined
      int xmin = -int(gridwd/2) - 2;
      int ymin = -int(gridht/2) - 2;
      int xmax = xmin + gridwd + 3;
      int ymax = ymin + gridht + 3;
      // duplicate the expansion code in setcell()
      ymin = -ymin;
      ymax = -ymax;
      if (generation.odd()) {
         xmin--;
         ymin--;
         xmax--;
         ymax--;
      }
      // min is -ve, max is +ve, xmin is -ve, xmax is +ve, ymin is +ve, ymax is -ve
      while (xmin < min || xmax > max || ymin > max || ymax < min)
         uproot();
   }
   
   return 0;
}

static lifealgo *creator() { return new qlifealgo() ; }

void qlifealgo::doInitializeAlgoInfo(staticAlgoInfo &ai) {
   ai.setAlgorithmName("QuickLife") ;
   ai.setAlgorithmCreator(&creator) ;
   ai.setDefaultBaseStep(10) ;
   ai.setDefaultMaxMem(0) ;
   ai.minstates = 2 ;
   ai.maxstates = 2 ;
   // init default color scheme
   ai.defgradient = false;
   ai.defr1 = ai.defg1 = ai.defb1 = 255;        // start color = white
   ai.defr2 = ai.defg2 = ai.defb2 = 255;        // end color = white
   ai.defr[0] = ai.defg[0] = ai.defb[0] = 48;   // 0 state = dark gray
   ai.defr[1] = ai.defg[1] = ai.defb[1] = 255;  // 1 state = white
}