1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
// This file is part of Golly.
// See docs/License.html for the copyright notice.
#include "ruletreealgo.h"
#include "util.h" // for lifegetuserrules, lifegetrulesdir, lifewarning
#include <stdlib.h>
// for case-insensitive string comparison
#include <string.h>
#ifndef WIN32
#define stricmp strcasecmp
#endif
#include <vector>
#include <cstdio>
#include <string>
using namespace std ;
bool ruletreealgo::IsDefaultRule(const char* rulename)
{
// nicer to check for different versions of default rule
return (stricmp(rulename, "B3/S23") == 0 ||
stricmp(rulename, "B3S23") == 0 ||
strcmp(rulename, "23/3") == 0);
}
static FILE* static_rulefile = NULL;
static int static_lineno = 0;
static char static_endchar = 0;
const char* ruletreealgo::LoadTree(FILE* rulefile, int lineno, char endchar, const char* s)
{
// set static vars so setrule() will load tree data from .rule file
static_rulefile = rulefile;
static_lineno = lineno;
static_endchar = endchar;
const char* err = setrule(s);
// reset static vars
static_rulefile = NULL;
static_lineno = 0;
static_endchar = 0;
return err;
}
int ruletreealgo::NumCellStates() {
return num_states ;
}
const int MAXFILELEN = 4096 ;
/* provide the ability to load the default rule without requiring a file */
static const char *defaultRuleData[] = {
"num_states=2", "num_neighbors=8", "num_nodes=32",
"1 0 0", "2 0 0", "1 0 1", "2 0 2", "3 1 3", "1 1 1", "2 2 5", "3 3 6",
"4 4 7", "2 5 0", "3 6 9", "4 7 10", "5 8 11", "3 9 1", "4 10 13",
"5 11 14", "6 12 15", "3 1 1", "4 13 17", "5 14 18", "6 15 19",
"7 16 20", "4 17 17", "5 18 22", "6 19 23", "7 20 24", "8 21 25",
"5 22 22", "6 23 27", "7 24 28", "8 25 29", "9 26 30", 0 } ;
static FILE *OpenTreeFile(const char *rule, const char *dir, char *path)
{
// look for rule.tree in given dir and set path
if (strlen(dir) + strlen(rule) + 15 > (unsigned int)MAXFILELEN) {
lifewarning("Path too long") ;
return NULL ;
}
sprintf(path, "%s%s.tree", dir, rule) ;
// change "dangerous" characters to underscores
for (char *p=path + strlen(dir); *p; p++)
if (*p == '/' || *p == '\\') *p = '_' ;
return fopen(path, "r") ;
}
const char* ruletreealgo::setrule(const char* s) {
const char *colonptr = strchr(s, ':');
string rule_name(s);
if (colonptr)
rule_name.assign(s,colonptr);
char strbuf[MAXFILELEN+1] ;
FILE *f = 0 ;
linereader lr(0) ;
int lineno = 0 ;
bool isDefaultRule = IsDefaultRule(rule_name.c_str()) ;
if (isDefaultRule) {
// no need to read tree data from a file
} else if (static_rulefile) {
// read tree data from currently open .rule file
lr.setfile(static_rulefile);
lr.setcloseonfree();
lineno = static_lineno;
} else {
if (strlen(rule_name.c_str()) >= (unsigned int)MAXRULESIZE) {
return "Rule length too long" ;
}
// look for rule.tree in user's rules dir then in Golly's rules dir
f = OpenTreeFile(rule_name.c_str(), lifegetuserrules(), strbuf);
if (f == 0)
f = OpenTreeFile(rule_name.c_str(), lifegetrulesdir(), strbuf);
if (f == 0) {
return "File not found" ;
}
lr.setfile(f) ;
lr.setcloseonfree() ;
}
// check for rule suffix like ":T200,100" to specify a bounded universe
if (colonptr) {
const char* err = setgridsize(colonptr);
if (err) return err;
} else {
// universe is unbounded
gridwd = 0;
gridht = 0;
}
int mnum_states=-1, mnum_neighbors=-1, mnum_nodes=-1 ;
vector<int> dat ;
vector<state> datb ;
vector<int> noff ;
vector<int> nodelev ;
int lev = 1000 ;
for (;;) {
if (isDefaultRule) {
if (defaultRuleData[lineno] == 0)
break ;
strcpy(strbuf, defaultRuleData[lineno]) ;
} else {
if (lr.fgets(strbuf, MAXFILELEN) == 0)
break ;
if (static_rulefile && strbuf[0] == static_endchar)
break;
}
lineno++ ;
if (strbuf[0] != '#' && strbuf[0] != 0 &&
sscanf(strbuf, " num_states = %d", &mnum_states) != 1 &&
sscanf(strbuf, " num_neighbors = %d", &mnum_neighbors) != 1 &&
sscanf(strbuf, " num_nodes = %d", &mnum_nodes) != 1) {
if (mnum_states < 2 || mnum_states > 256 ||
(mnum_neighbors != 4 && mnum_neighbors != 8) ||
mnum_nodes < mnum_neighbors || mnum_nodes > 100000000) {
return "Bad basic values" ;
}
if (strbuf[0] < '1' || strbuf[0] > '0' + 1 + mnum_neighbors) {
return "Bad line in tree data 1" ;
}
lev = strbuf[0] - '0' ;
int vcnt = 0 ;
char *p = strbuf + 1 ;
if (lev == 1)
noff.push_back((int)(datb.size())) ;
else
noff.push_back((int)(dat.size())) ;
nodelev.push_back(lev) ;
while (*p) {
while (*p && *p <= ' ')
p++ ;
int v = 0 ;
while (*p > ' ') {
if (*p < '0' || *p > '9') {
return "Bad line in tree data 2" ;
}
v = v * 10 + *p++ - '0' ;
}
if (lev == 1) {
if (v < 0 || v >= mnum_states) {
return "Bad state value in tree data" ;
}
datb.push_back((state)v) ;
} else {
if (v < 0 || ((unsigned int)v) >= noff.size()) {
return "Bad node value in tree data" ;
}
if (nodelev[v] != lev - 1) {
return "Bad node pointer does not point to one level down" ;
}
dat.push_back(noff[v]) ;
}
vcnt++ ;
}
if (vcnt != mnum_states) {
return "Bad number of values on tree data line" ;
}
}
}
if (dat.size() + datb.size() != (unsigned int)(mnum_nodes * mnum_states))
return "Bad count of values in tree data" ;
if (lev != mnum_neighbors + 1)
return "Bad last node (wrong level)" ;
int *na = (int*)calloc(sizeof(int), dat.size()) ;
state *nb = (state*)calloc(sizeof(state), datb.size()) ;
if (na == 0 || nb == 0)
return "Out of memory in tree allocation" ;
if (a)
free(a) ;
if (b)
free(b) ;
num_nodes = mnum_nodes ;
num_states = mnum_states ;
num_neighbors = mnum_neighbors ;
for (unsigned int i=0; i<dat.size(); i++)
na[i] = dat[i] ;
for (unsigned int i=0; i<datb.size(); i++)
nb[i] = datb[i] ;
a = na ;
b = nb ;
base = noff[noff.size()-1] ;
maxCellStates = num_states ;
ghashbase::setrule(rule_name.c_str()) ;
// set canonical rule string returned by getrule()
strcpy(rule,rule_name.c_str()) ;
if (gridwd > 0 || gridht > 0) {
// setgridsize() was successfully called above, so append suffix
int len = (int)strlen(rule) ;
const char* bounds = canonicalsuffix() ;
int i = 0 ;
while (bounds[i]) rule[len++] = bounds[i++] ;
rule[len] = 0 ;
}
return 0 ;
}
const char* ruletreealgo::getrule() {
return rule ;
}
const char* ruletreealgo::DefaultRule() {
return "B3/S23" ;
}
ruletreealgo::ruletreealgo() : ghashbase(), a(0), base(0), b(0),
num_neighbors(0),
num_states(0), num_nodes(0) {
rule[0] = 0 ;
}
ruletreealgo::~ruletreealgo() {
if (a != 0) {
free(a) ;
a = 0 ;
}
if (b != 0) {
free(b) ;
b = 0 ;
}
}
state ruletreealgo::slowcalc(state nw, state n, state ne, state w, state c, state e,
state sw, state s, state se) {
if (num_neighbors == 4)
return b[a[a[a[a[base+n]+w]+e]+s]+c] ;
else
return b[a[a[a[a[a[a[a[a[base+nw]+ne]+sw]+se]+n]+w]+e]+s]+c] ;
}
static lifealgo *creator() { return new ruletreealgo() ; }
void ruletreealgo::doInitializeAlgoInfo(staticAlgoInfo &ai) {
ghashbase::doInitializeAlgoInfo(ai) ;
ai.setAlgorithmName("RuleTree") ;
ai.setAlgorithmCreator(&creator) ;
ai.minstates = 2 ;
ai.maxstates = 256 ;
// init default color scheme
ai.defgradient = true; // use gradient
ai.defr1 = 255; // start color = red
ai.defg1 = 0;
ai.defb1 = 0;
ai.defr2 = 255; // end color = yellow
ai.defg2 = 255;
ai.defb2 = 0;
// if not using gradient then set all states to white
for (int i=0; i<256; i++)
ai.defr[i] = ai.defg[i] = ai.defb[i] = 255;
}
|