1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
|
THE PROTO PROGRAMMING LANGUAGE
JONATHAN BACHRACH
MIT AI LAB
VERSION 0.102
SEP 20, 2001
0 Introduction
Proto is a new dynamic type-based object-oriented language. It
is meant to be simple, productive, powerful, extensible, dynamic,
efficient and real-time. It heavily leverages features from many
earlier languages. In particular, it attempts to be a simpler
lisp-syntaxed Dylan, an object-oriented Scheme, and a lispified Cecil.
This is a very preliminary document.
1 CORE SYNTAX
1.0 LEXICAL STRUCTURE
same as Scheme.
1.1 SPECIAL FORMS
IF (IF ,test ,then ,else)
SEQ (SEQ ,@forms)
SET (SET ,binding-clause) | (SET (,name ,@args) ,form)
FUN (FUN ,sig ,@body)
LET (LET ((,binding-clause) ...) ,@body)
LOC (LOC ((,name ,sig ,@body) ...) ,@body)
LAB (LAB ,name ,@body)
FIN (FIN ,protected-form ,@cleanup-forms)
DV (DV ,binding-clause)
DM (DM ,name ,sig ,@body)
DG (DG ,name ,sig)
DC (DC ,name (,@parents))
ISA (ISA ,type ,@slot-inits)
SLOT (SLOT ,owner ,var ,init)
DS (DS ,pattern ,@body)
CT (CT ,@body)
CT-ALSO (CT-ALSO ,@body)
MACRO-EXPAND (MACRO-EXPAND ,form)
NEXT-METHOD (NEXT-METHOD ,@args) | (APPLY-NEXT-METHOD ,args)
QUOTE (QUOTE ,form) with ',form == (QUOTE ,form)
USE (USE ,name)
EXPORT (EXPORT ,@names)
where
_ ,form | ,@forms
binding-clause ,var ,value | (TUP ,var ...) ,value
sig (,@vars) | (,@vars => ,type)
var ,name | (,name ,type)
pattern (QUASIQUOTE ...)
slot-init (SET ,name ,value)
handler (fun (,condition ,resume) ,@body)
1.2 MACROS
DF (DF ,name ,sig ,@body)
TRY (TRY ,try-options ,handler-function ,@body)
REP (REP ,name ((,var ,init) ...) ,@body)
== (LOC ((,name (,var ...) ,@body)) (,name ,init ...))
MIF (MIF (,pattern ,value) ,then ,else)
AND (AND ,@forms)
OR (OR ,@forms)
SELECT (SELECT ,value ((,@keys) ,@body) ...)
CASE (CASE (,test ,@body) ...)
INC (INC ,name) | (INC (,name ,@rest))
DEC (DEC ,name) | (DEC (,name ,@rest))
UNLESS (UNLESS ,test ,@body)
WHEN (WHEN ,test ,@body)
ASSERT (ASSERT ,test ,message ,@args)
PUSHF (PUSHF ,place ,expression)
POPF (POPF ,place)
where
,try-options ,condition-type-name | ,try-option-list
,try-option-list (,try-option* )
,try-option (,option-name ,@option-value)
1.3 READ MACROS
QQ (QUASIQUOTE ...)
with (UNQUOTE ,form) and (SPLICING-UNQUOTE ,form)
and `(...) == (QUASIQUOTE ...)
2 CORE SEMANTICS
2.1 SPECIAL FORMS
QUOTE (QUOTE ,form) with ',form == (QUOTE ,form)
(cf., Scheme's QUOTE)
IF (IF ,test ,then ,else)
evaluates either ,then if ,test is non-false otherwise evaluates ,else
(cf. Scheme's IF).
SEQ (SEQ)
returns false
(SEQ ,@forms)
evaluates forms sequentially and returns values of evaluating last
form (cf. Scheme's BEGIN)
SET (SET ,name ,form)
sets ,name binding to value of evaluating ,form (cf. Scheme's SET!)
(SET (,name ,@args) ,form)
equivalent to (,name ## -setter ,form ,@args)
FUN (FUN ,sig ,@body)
creates an anonymous method with signature ,sig and when called
evaluates ,@body as (SEQ ,@body) (cf. Scheme's LAMBDA).
LET (LET ((,var ,val) ...) ,@body)
sequentially binds ,var's to ,val's and evaluates (SEQ ,@body) in the
context of those bindings (cf. Scheme's LET*)
(LET (((TUP ,var ...) ,val) ...) ,@body)
parallel binding can also be specified using TUP on the lhs of a LET
binding. For example
(LET (((TUP x y) (TUP 1 2))) (lst x y)) => (1 2)
LOC (LOC ((,name ,sig ,@body) ...) ,@body)
introduces local functions that can recursively call each other
(cf. Scheme's LETREC). this is equivalent to:
(LET ((,name nul) ...)
(SET ,name (fun ,sig ,@body)) ...
,@body)
LAB (LAB ,name ,@body)
evaluates (SEQ ,@body) with a single argument exit function bound to
,name that if called will cause LAB to yield the argument value
(cf. Dylan's BLOCK/RETURN). It is illegal to call the exit function
after the execution of the creating LAB form (i.e., no upward
continuations).
FIN (FIN ,protected-form ,@cleanup-forms)
ensures that (SEQ ,@cleanup-forms) is evaluated if an exit evaluated
during the dynamic-extent of ,protected-form attempts to exit upwards
(cf. Dylan's BLOCK/CLEANUP form and CL's UNWIND-PROTECT).
DV (DV ,var ,form)
defines a variable named (var-name ,var) with an initial value
,form (cf. Scheme's DEFINE).
DG (DG ,name ,sig)
defines a binding with name ,name bound to a generic with signature ,sig.
DM (DM ,name ,sig ,@body)
first ensures that a generic exists named ,name and with a minimally
congruent to signature ,sig and then adds a method with signature
,sig and body ,@body (cf., Dylan's DEFINE METHOD).
DC (DC ,name (,@parents))
defines a class named ,name with direct parents ,@parents
ISA (ISA ,type ,@slot-inits)
creates an instance of type ,type and slot initialized as specified by
,@slot-inits. For example,
(ISA <point> (set point-x 1) (set point-y 2))
creates a point with x=1 and y=2.
SLOT (SLOT ,owner ,var [,init])
add's a slot to ,owner with getter being (var-name ,var),
setter named (make-setter-name (var-name ,var)), type being
(var-type ,var), and optionally initial value being ,init and
defaulting to nul. the initial value is evaluated lazily when slot's
value is first requested.
DS (DS ,pattern ,@body)
defines a macro matching pattern ,pattern and expanding according to
,@body. The pattern matching occurs as in MIF and makes available
pattern variables during the evaluation of (SEQ ,@body). For example,
(DS (when ,test ,@body) `(if (not ,test) (seq ,@body)))
defines the when macro in Proto.
CT (CT ,@body)
evaluates (SEQ ,@body) at compile-time allowing a user to make
available computations for the purpose of macro-expansion.
CT-ALSO (CT-ALSO ,@body)
equivalent to CT, but also includes a copy of ,@body in compiled
images. Similar to '(eval-when (:compile-toplevel :execute) ...)'
in Common LISP. The return value of CT-ALSO is undefined.
MACRO-EXPAND
(MACRO-EXPAND ,form)
recursively expands macros in expression ,form.
NEXT-METHOD
(NEXT-METHOD ,@args)
(APPLY-NEXT-METHOD ,args)
calls next most applicable method either as call or apply. N.B., all
arguments must be supplied.
USE (USE ,name)
Loads the module ,name (if it hasn't been loaded already) and aliases
all the exported bindings into the current namespace.
EXPORT (EXPORT ,name)
Makes the binding ,name available to code which uses this module in
the future.
2.2 MACROS
DF (DF ,name ,sig ,@body)
== (DV ,name (FUN ,sig ,@body))
TRY (TRY ,try-options ,handler-function ,@body)
installs ,handler-function as a condition handler for the
duration of (SEQ ,@body), using the instructions provided by ,try-options.
,try-options should either be the name of the condition type to
handle, or a ,try-option-list with zero or more of the following options:
(TYPE ,expr) => An expression returning the type of condition to handle.
(TEST ,@body) => Code which returns #t if the condition is applicable,
and #f otherwise. This may be called at arbitrary times by the runtime,
so it shouldn't do anything too alarming.
(DESCRIPTION ,message ,@arguments) => A human-readable description
of this handler. Used by the debugger.
The handler function should take two arguments: the ,condition to be
handled, and a ,resume function. if a matching condition is signaled
then the handler function is called with the signaled condition and a
resume function to be called if the handler wants to return a value to be
used as the result of the signaling SIG call. the handler has three
possibilities: (1) it can handle the condition by taking an exit using
LAB, (2) it can resume to the original SIG call using the resume function
called with the value to be returned, or (3) it can do neither, that is,
it can choose not to handle the condition by just falling through to the
end of the handler (cf., Dylan's BLOCK/EXCEPTION and LET HANDLER) and the
next available handler will be invoked.
Note that Proto DOES NOT UNWIND THE STACK before calling handlers!
REP (REP ,name ((,var ,init) ...) ,@body)
== (LOC ((,name (,var ...) ,@body)) (,name ,init ...))
defines a recursive loop (cf., Dylan's ITERATE or Scheme's LET ,var ...).
MIF (MIF (,pattern ,value) ,then [ ,else ])
evaluates ,then with pattern variables bound to matched parts of value
if matching succeeds and otherwise evaluates ,else. The pattern is
much the same as QUASIQUOTE and can contain either UNQUOTE'd variables
or UNQUOTE-SPLICING variables. For example,
(MIF ((,a ,b) '(1 2)) (lst a b)) => (1 2)
and
(MIF ((,a ,@b) '(1 2)) (lst a b)) => (1 (2))
AND (AND ,form)
== ,form
(AND ,form ,@forms)
== (IF ,form (AND ,@FORMS))
OR (OR ,form)
== ,form
(OR ,@forms)
== (LET ((x ,form)) (IF x x (OR ,@FORMS)))
SELECT (SELECT ,value ((,@keys) ,@body) ...)
evaluates ,value and then evaluates (SEQ ,@body) of first clause which
contains a matching key (cf. Dylan's SELECT and Scheme's CASE).
CASE (CASE (,test ,@body) ...)
evaluates (SEQ ,@body) of first clause whose ,test evaluates to
non-false (cf. Dylan's CASE and Scheme's COND).
INC (INC ,name)
== (SET ,name (+ ,name 1))
(INC (,name ,@rest))
== (SET (,name ,@rest) (+ (,name ,@rest) 1))
DEC (DEC ,name)
== (SET ,name (+ ,name 1))
(DEC (,name ,@rest))
== (SET (,name ,@rest) (+ (,name ,@rest) 1))
UNLESS (UNLESS ,test ,@body)
== (IF (NOT ,test) (SEQ ,@body))
WHEN (WHEN ,test ,@body)
== (IF ,test (SEQ ,@body))
ASSERT (ASSERT ,test ,message ,@args)
== (UNLESS ,test (ERROR ,message ,@args))
FOR (FOR (for-clause ...) ,@body)
where for-clause = (,val ,col) | ((tup ,key ,val) ,col)
parallel iteration over collections using collection iteration protocol.
PUSHF (PUSHF ,place ,expression)
pushes ,expression onto the front of the collection stored in ,place,
updates ,place to contain the new collection, and returns the new
collection.
POPF (POPF ,place)
pops a value from the front of the collection stored in ,place, replaces
the collection with an updated collection, and returns the value.
SWAPF (SWAPF ,x ,y)
== (LET ((tmp ,x)) (SET ,x ,y) (SET ,y tmp))
COLLECTING
(COLLECTING () ,@body)
(COLLECT ,x)
mechanism for accumulating lists of objects. COLLECTING returns
list all COLLECT'd objects in body.
2.3 READ MACROS
QQ (QUASIQUOTE ...)
with (UNQUOTE ,form) and (SPLICING-UNQUOTE ,form)
and `(...) == (QUASIQUOTE ...)
same as Lisp and Scheme's QUASIQUOTE.
3 LIBRARY
3.1 ANY
Class <any> (<any>)
is the top of the prototype inheritance hierarchy.
Generic as ((x <any>) (y <any>) => <any>)
coerces y to an instance of x.
Generic object-parents ((x <any>) => <lst>)
Generic object-slots ((x <any>) => <lst>)
3.2 COMPARABLES
Generic == ((x <any>) (y <any>) => <log>)
Generic = ((x <any>) (y <any>) => <log>)
Generic < ((x <any>) (y <any>) => <log>)
Generic ~= ((x <any>) (y <any>) => <log>)
Generic ~== ((x <any>) (y <any>) => <log>)
Generic > ((x <any>) (y <any>) => <log>)
Generic <= ((x <any>) (y <any>) => <log>)
Generic >= ((x <any>) (y <any>) => <log>)
Generic min ((x <any>) (y <any>) => <any>)
Generic max ((x <any>) (y <any>) => <any>)
3.3 NULL
Instance nul (isa <any>)
Function nul? (x => <log>)
3.4 BOOLEANS
Class <log> (<any>)
Instance #f
Instance #t
Method not ((x <any>) => <log>)
3.5 CHARACTERS
Class <chr> (<any>)
Generic lowercase? ((x <chr>) => <log>)
Generic uppercase? ((x <chr>) => <log>)
Generic as-lowercase ((x <chr>) => <chr>)
Generic as-uppercase ((x <chr>) => <chr>)
Generic alphabetic? ((x <chr>) => <log>))
Generic numeric? ((x <chr>) => <log>))
Generic to-digit ((x <chr>) => <int>)
Generic eof-object? ((x <chr>) => <log>)
3.6 NUMBERS (mostly same as Dylan)
Class <num> (<any>)
Generic + ((x <num>) (y <num>) => <num>)
Generic - ((x <num>) (y <num>) => <num>)
Generic * ((x <num>) (y <num>) => <num>)
Generic / ((x <num>) (y <num>) => <num>)
Generic floor ((x <num>) => (tup <int> (rem <num>)))
Generic ceiling ((x <num>) => (tup <int> (rem <num>)))
Generic round ((x <num>) => (tup <int> (rem <num>)))
Generic truncate ((x <num>) => (tup <int> (rem <num>)))
Generic floor/ ((x <num>) (y <num>) => (tup <int> (rem <num>)))
Generic ceiling/ ((x <num>) (y <num>) => (tup <int> (rem <num>)))
Generic round/ ((x <num>) (y <num>) => (tup <int> (rem <num>)))
Generic truncate/ ((x <num>) (y <num>) => (tup <int> (rem <num>)))
Generic modulo ((x <num>) (y <num>) => <num>)
Generic remainder ((x <num>) (y <num>) => <num>)
Generic pos? ((x <num>) => <log>)
Generic zero? ((x <num>) => <log>)
Generic neg? ((x <num>) => <log>)
Generic neg ((x <num>) => <num>)
Generic abs ((x <num>) => <num>)
Instance *print-base* (isa <int>)
Generic num-to-str ((x <num>) => <str>)
Generic str-to-num ((x <str>) => <num>)
3.6.1 INTEGERS (same as Dylan)
Class <int> (<num>)
Generic logior ((x <int>) (y <int>) => <int>)
Generic logxor ((x <int>) (y <int>) => <int>)
Generic logand ((x <int>) (y <int>) => <int>)
Generic lognot ((x <int>) => <int>)
Generic logbit? ((x <int>) (y <int>) => <log>)
Generic even? ((x <int>) => <log>)
Generic odd? ((x <int>) => <log>)
Generic gcd ((x <int>) (y <int>) => <int>) ;; NYI
Generic lcm ((x <int>) (y <int>) => <int>) ;; NYI
Generic ash ((x <int>) (y <int>) => <int>)
Generic lsh ((x <int>) (y <int>) => <int>)
3.6.2 FLOATS
Class <flo> (<num>)
Generic flo-bits ((x <flo>) => <int>)
3.6.3 LOCATIVES
Class <loc> (<num>)
Generic locative-value ((x <loc>) => <any>)
Generic locative-value-setter ((address <any>) (x <loc>))
Generic address-of ((x <any>) => <loc>)
3.7 COLLECTIONS (look at runtime.proto)
Class <col> (<any>)
Generic len ((x <col>) => <int>)
Generic elt ((x <col>) (k <any>) => <any>)
Generic elt-setter ((v <any>) (x <col>))
Generic keys ((x <col> => <seq>)
Generic empty? ((x <col>) => <log>)
Generic empty ((x <col>) => <col>)
Generic default ((x <col>) => <any>)
Generic fab ((x <col>) (size <int>) => <col>)
Generic fabs ((x <col>) (elts ...) => <col>)
Generic fill ((x <col>) (y <col>) => <col>)
Generic alter ((x <col>) (y <col>) => <col>)
Generic any? ((f <fun>) (x <col>) => <log>)
Generic all? ((f <fun>) (x <col>) => <log>)
Generic reduce ((combine <fun>) (init <any>) (x <col>) => <col>)
Generic reduce+ ((combine <fun>) (x <col>) => <col>)
Generic find-key ((f <fun>) (x <col>) => <any>)
Generic del-key ((x <col>) (y <col>) => <col>)
Generic del-keys ((x <col>) (y <col>) => <col>)
Generic do ((f <fun>) (x <col>) => (tup))
Generic do2 ((f <fun>) (x <col>) (y <col>) => (tup))
Generic map ((f <fun>) (x <col>) => <col>)
Generic map2 ((f <fun>) (x <col>) (y <col>) => <col>)
Generic do-keyed ((f <fun>) (x <col>) => (tup))
Generic map-keyed ((f <fun>) (x <col>) => <col>)
Generic mem? ((x <col>) (y <any>) => <log>)
3.7.1 ITERATION PROTOCOL (cf., Dylan's iteration protocol)
Generic ini-state ((x <col>) => <any>)
Generic fin-state? ((x <col>) (state <any>) => <log>)
Generic nxt-state ((x <col>) (state <any>) => <any>)
Generic now-elt ((x <col>) (state <any>) => <any>)
Generic now-elt-setter ((v <any>) (x <col>) (state <any>))
Generic now-key ((x <col>) (state <any>) => <any>)
Generic copy-state ((x <col>) (state <any>) => <any>)
3.7.2 MAPS
Class <map> (<col>)
(cf., Dylan's <explicit-key-collection>'s)
3.7.2.1 ASSOCIATIONS
Class <assocs> (<map>)
Slot assocs-test ((x <col>) (y <col>) => <col>) <= ==
3.7.2.2 TABLES
Class <tab> (<map>)
Slot table-growth-factor ((x <tab>) => <flo>) <= 2.0
Slot table-growth-threshold ((x <tab>) => <flo>) <= 0.8
Slot table-shrink-threshold ((x <tab>) => <flo>)) <= 0.5
Method fab ((_ <tab>) (size <int>) => <tab>)
Generic table-protocol ((x <tab>) => (tup (test-fun <fun>) (hash-fun <fun>)))
Instance $permanent-hash-state (isa <any>)
Generic current-gc-state ((x <tab>) => <any>)
Generic id-hash ((x <tab>) => (tup (hash <any>) (gc-state <any>)))
Class <str-tab> (<tab>)
Generic case-insensitive-string-hash
((x <tab>) => (tup (hash <any>) (gc-state <any>)))
Generic case-insensitive-string-equal
((x <tab>) (y <tab>) => <log>)
3.7.3 SEQUENCES
Class <seq> (<col>)
Generic add ((x <seq>) (y <any>) => <seq>) ;; NYI EXCEPT FOR LISTS
Generic 1st ((x <seq>) => <any>)
== (elt x 0)
Generic 2nd ((x <seq>) => <any>)
== (elt x 1)
Generic 3rd ((x <seq>) => <any>)
== (elt x 2)
Generic last ((x <seq>) => <any>)
== (elt x (- (len x) 1))
Generic pos ((x <seq>) (v <any>) => (union <int> nul))
finds position of v in x else returns nul.
Generic rev ((x <seq>) => <seq>)
returns reversed sequence.
Generic rev! ((x <seq>) => <seq>)
returns destructively reversed sequence.
Generic cat ((x <seq>) (more ...) => <seq>)
returns concatenated sequences.
Generic cat! ((x <seq>) (more ...) => <seq>)
returns destructively concatenated sequences.
Generic cat2 ((x <seq>) (y <seq>) => <seq>)
returns two sequences concatenated.
Generic sub ((x <seq>) (from <int>) (below <int>) => <seq>)
subsequence of x between from and below.
Generic sub-setter ((dst <seq>) (src <seq>) (from <int>) (below <int>))
replaces subsequence in range between from and below of dst with
contents of src.
Generic pick ((test <fun>) (x <seq>) => <seq>)
returns new sequence with elements corresponding to those where test
returns non-false.
Generic del ((x <seq>) (v <any>) => <seq>)
returns sequence with all v's deleted from x.
Generic del-dups ((x <seq>) => <seq>)
returns sequence with all duplicates removed.
3.7.4 TUPLES
Class <tup> (<seq>)
represents multiple values in Proto.
Generic tup ((elts ...) => <tup>)
creates a tuple with elements being elts.
3.7.5 LISTS
Class <lst> (<seq>)
Alias <list>
== <lst>
Slot head ((x <lst>) => <any>)
Slot tail ((x <lst>) => <lst>)
Generic lst ((elts ...) => <lst>)
Alias list
== lst
Generic pair ((x <any>) (y <lst>) => <lst>)
Generic push ((l <lst>) (x <any>) => <lst>)
Generic pop ((l <lst>) => (tup (new-col <lst>) value))
Instance nil (<lst>)
aka ().
3.7.5 OPTIONALS
Class <opts> (== <lst> <opts>)
represents type of optional arguments.
3.7.6 FLAT SEQUENCES
Class <flat> (<seq>)
represents sequences with constant access time.
3.7.6.1 VECTORS
Class <vec> (<flat>)
Generic vec ((elts ...) => <vec>)
3.7.6.2 STRINGS
Class <str> (<flat>)
Generic str ((elts ...) => <str>)
Generic to-str ((x <any>) => <str>)
returns string representation of object.
3.7.6.3 STRETCHY VECTORS
Class <buf> (<flat>)
Generic buf ((elts ...) => <sec>)
Generic push-last! ((c <buf>) (x <any>) => <buf>)
pushes element onto end of stretchy vector
Generic pop-last! ((c <buf>) => <any>)
pops element from end of stretchy vector
3.7.6 RANGES
Class <range> (<seq>)
represents series of numbers
Generic from ((from <num>) => <range>)
Generic from-by ((from <num>) (by <num>) => <range>)
Generic from-to ((from <num>) (to <num>) => <range>)
Generic from-to-by ((from <num>) (to <num>) (by <num>) => <range>)
Generic from-below ((from <num>) (below <num>) => <range>)
Generic from-below-by ((from <num>) (below <num>) (by <num>) => <range>)
Generic from-above ((from <num>) (above <num>) => <range>)
Generic from-above-by ((from <num>) (above <num>) (by <num>) => <range>)
3.7.7 STEPS
Class <step> (<seq>)
represents step function
Generic first-then ((first <any>) (then <any>) => <step>)
3.8 SYMBOLS
Class <sym> (<any>)
Method as ((_ <sym>) (x <str>) => <sym>)
Generic make-sym ((elts ...) => <sym>)
Generic gensym (=> <sym>)
Generic make-setter-name ((x <sym>) => <sym>)
Generic var-name ((x (union <sym> <lst>)) => <sym>)
Generic var-type ((x (union <sym> <lst>)) => <sym>)
3.9 TYPES
Class <type> (<any>)
Generic isa? ((x <any>) (y <type>) => <log>)
Generic subtype? ((x <type>) (y <type>) => <log>)
3.9.1 SINGLETONS
Class <singleton> (<type>)
Generic t= ((x <any>) => <singleton>)
Generic type-object ((x <singleton>) => <any>)
3.9.1 SUBCLASS
Class <subclass> (<type>)
Generic t< ((x <class>) => <subclass>)
Generic type-class ((x <subclass>) => <class>)
3.9.3 UNION
Class <union> (<type>)
Generic t+ ((types ...) => <union>)
Generic type-elts ((x <union>) => <seq>)
3.9.4 CLASSES
Class <class> (<type>)
Generic class-name ((x <class>) => <sym>)
Generic class-direct-parents ((x <class>) => <lst>)
Generic class-parents ((x <class>) => <lst>)
Generic class-direct-slots ((x <class>) => <lst>)
Generic class-slots ((x <class>) => <lst>)
Generic class-direct-children ((x <class>) => <lst>)
3.10 SLOTS
Class <slot> (<any>)
Slot slot-owner ((x <slot>) => <any>)
Slot slot-getter ((x <slot>) => <gen>)
Slot slot-setter ((x <slot>) => <gen>)
Slot slot-type ((x <slot>) => <any>)
Slot slot-init ((x <slot>) => <met>)
Generic find-getter ((owner <any>) (getter <gen>) => <met>)
Generic find-setter ((owner <any>) (setter <gen>) => <met>)
Method add-slot (owner (getter <gen>) (setter <gen>) type (init <fun>))
where init is a one parameter function that returns the initial
value for the slot and gets called lazily with the new instance as
the argument.
3.11 FUNCTIONS
Class <fun> (<any>)
Slot fun-name ((x <fun>) => (false-or <sym>))
returns the name of function or false if unavailable.
Slot fun-names ((x <fun>) => <lst>)
returns the names of parameters of x or () if unavailable.
Slot fun-specs ((x <fun>) => <lst>)
returns the specializers of x.
Slot fun-nary? ((x <fun>) => <log>)
determines whether the function takes optional arguments.
Slot fun-arity ((x <fun>) => <int>)
returns x's number of required arguments.
Slot fun-value ((x <fun>) => <any>)
returns x's return value.
Generic identity (=> <fun>)
returns a function (fun (x) x).
Generic compose ((x <fun>) (y <fun>) => <fun>)
returns a function that composes function's x and y.
Generic curry ((x <fun>) (curried ...) => <fun>)
== (fun ((args ...)) (apply f (cat curried args)))
Generic rcurry ((x <fun>) (curried ...) => <fun>)
== (fun ((args ...)) (apply f (cat args curried))))
Generic always ((x <any>) => <fun>)
creates a function that always returns x.
Generic apply ((x <fun>) (args <lst>) => <any>)
3.11.1 GENERICS
Class <gen> (<fun>)
Slot fun-mets ((x <gen>) => <lst>)
returns x's methods.
Generic gen-add-met ((x <gen>) (y <met>) => <gen>)
adds method y to generic x.
Generic sorted-app-mets
((x <gen>) (args <lst>)
=> (tup (ordered <lst>) (ambiguous <lst>)))
returns both the list of sorted applicable methods and any ambiguous
methods when generic x is called with arguments args.
3.11.2 METHODS
Class <met> (<fun>)
Generic met-app? ((x <met>) (args <lst>) => <log>)
determines whether x is applicable when called with args.
3.12 CONDITIONS
Class <condition> (<any>)
Generic default-handler ((x <condition>) => <fun>)
Generic default-handler-description ((c <condition>) => <str>)
Return a string describing an anonymous handler for this type of
condition.
Generic build-condition-interactively
((cond-type <condition>) in out => <condition>)
Construct a condition of the specified type and interactively prompt
the user to fill in any important slots. Called by the debugger.
Methods should call next-method to build the condition, then set the
slots for their own class.
Generic sig ((x <condition>) (args ...))
signals a condition with optional arguments args.
Class <simple-condition> (<condition>)
Slot condition-message ((x <simple-condition>) => <str>)
Slot condition-arguments ((x <simple-condition>) => <lst>)
Class <serious-condition> (<condition>)
Class <error> (<serious-condition>)
Generic error ((x <any>) (args ...))
Class <simple-error> (<error> <simple-condition>)
Class <restart> (<condition>)
Class <handler> (<any>)
Generic handler-function ((x <handler>) => <fun>)
Generic make-handler ((x <fun>) => <handler>)
Generic handler-matches? ((x <handler>) (y <condition>) => <log>)
3.13 PORTS
Class <port> (<any>)
3.13.1 INPUT PORTS
Class <input-port> (<port>)
Generic read-char ((x <input-port>) => <chr>)
Generic peek-char ((x <input-port>) => <chr>)
Generic char-ready? ((x <input-port>) => <chr>)
3.13.2 OUTPUT PORTS
Class <output-port> (<port>)
Generic newline ((x <output-port>))
Generic force-output ((x <output-port>))
Generic write-char ((x <output-port>))
Generic write-string ((x <output-port>))
3.13.3 FILE PORTS
Class <file-port> (<port>)
3.13.3.1 FILE INPUT PORTS
Class <file-input-port> (<file-port> <input-port>)
Generic open-input-file ((filename <str>) => <file-input-port>)
Generic close-input-port ((x <file-input-port>))
Generic call-with-input-file ((filename <str>) (f <fun>))
calls f with port created with open-input-file on filename and
ensures that port is closed after f returns.
Instance in (isa <file-input-port>)
standard input.
3.13.3.2 FILE OUTPUT PORTS
Class <file-output-port> (<file-port> <output-port>)
Generic open-output-file ((filename <str>) => <file-output-port>)
Generic close-output-port ((x <file-output-port>))
Generic call-with-output-file ((filename <str>) (f <fun>))
calls f with port created with open-output-file on filename and
ensures that port is closed after f returns.
Instance out (isa <file-output-port>)
standard output.
3.13.4 STRING PORTS
Class <string-port>
Generic port-contents ((x <string-port>) => <str>)
3.13.4.1 STRING INPUT PORTS
Class <string-input-port> (<string-port> <output-port>)
Slot port-index ((x <string-port>) => <int>)
Generic call-with-string-input-port ((x <str>) (f <fun>))
analogous to call-with-file-input-port.
3.13.4.2 STRING OUTPUT PORTS
Class <string-output-port> (<string-port> <input-port>)
Generic call-with-string-output-port ((f <fun>))
analogous to call-with-file-output-port.
3.14 INPUT
Generic read ((x <input-port>) => <any>)
returns sexpr result of parsing characters coming in on port x until
(eof-char? (read-char x)) returns true.
Generic read-from-string ((x <str>) => <any>)
Generic read-file ((filename <str>) => <any>)
3.14 OUTPUT
Generic write ((x <output-port>) (y <any>))
verbose printing. prints strings with double quotes etc.
Generic display ((x <output-port>) (y <any>))
non verbose printing. prints strings without double quotes etc.
Generic writeln ((x <output-port>) (y <any>))
(seq (write x y) (newline))
Generic write-to-string ((x <any>) => <str>)
Generic format ((message <output-port>) (args ...))
formatted output using special commands embedded in message.
supported commands are:
%= => (write x arg)
%s => (display x arg)
%d => (write x arg)
%% => (write-char x #\%)
which consume one argument at a time. otherwise subsequent message
characters are printed to port x (cf. Dylan's and CL's format).
3.16 SYSTEM
Method app-filename (=> <str>)
returns the filename of the application.
Method app-args (=> <lst>)
returns a list of argument strings with which the application was called.
3.17 TOP LEVEL
Functions which load code at runtime require a symbol specifying the module
name to use.
Generic load ((filename <str>) (modname <sym>) => <any>)
returns the result of evaluating the result of reading file named filename.
Generic eval ((x <any>) (modname <sym>) => <any>)
return's result of evaluating x.
Generic top ((modname <sym>))
runs top-level read-eval-print loop which reads from in and writes to out.
Generic do-stack-frames ((f <fun>))
calls f ((f <fun>) (args ...)) on all stack frames.
Generic backtrace ()
prints out called functions and their arguments.
4 USAGE
4.0 INSTALLATION
Unpack either a linux or windows version of proto into an appropriate
installation area. There are three directories: DOC, BIN, SRC, AND
EMACS.
4.0.1 SETTING UP PROTO_ROOT
Set up your OS environment variable named PROTO_ROOT to your top level
proto directory (i.e., containing the subdirectory named SRC). Make
sure to slash terminate the path. For example, my PROTO_ROOT on win32
is:
SET PROTO_ROOT=\jrb\ai\proto\
On linux of course you would use forward slashes and environment
variable setting depends on the shell you're using.
4.1 STARTING
Typing proto at your shell will start up a proto read-eval-print loop.
4.1.1 PATCHES FILE
During start up, Proto will load two patch files, one from
${PROTO_ROOT}\SRC\system-patches.proto
and one from
${PROTO_ROOT}\SRC\user-patches.proto
You can customize your proto by adding forms to user-patches.
4.2 STOPPING
Type (quit) at top level to exit from proto.
4.3 KEYBOARD INTERRUPTS
Type ^C at top level to invoke a recursive read-eval-print loop.
4.4 ERRORS
errors are reporting in recursive read-eval-print loops. you can pop
up a level by typing (up) at a particular level.
4.5 LOADING CODE
Use the load function to load a file of source into proto:
(load "\\jrb\\ai\\proto\\interpreters\\basic.proto")
make sure to use double backslashes on windows in pathnames. also you
probably need to use an absolute pathname for your file include the
".proto" suffix if appropriate.
4.6 EMACS SUPPORT
4.6.1 EMACS MODE
Put EMACS/proto.el in your emacs lisp directory. Add the following to
your .emacs file:
;; proto
(autoload 'proto-mode "proto" "Major mode for editing Proto source." t)
(setq auto-mode-alist
(cons '("\\.proto\\'" . proto-mode) auto-mode-alist))
Cool features:
* You can add "font-lock" mode by adding the following to your .emacs:
(global-font-lock-mode t)
In a given buffer, you can toggle font-lock with M-x font-lock-mode
* Check out the "Index" menu item in a proto buffer.
4.6.2 EMACS SHELL
Put EMACS/proto-shell.el in your emacs lisp directory. Add the
following to your .emacs:
(autoload 'run-proto "proto-shell" "Run an inferior Proto process." t)
(setq auto-mode-alist
(cons '("\\.proto\\'" . proto-mode) auto-mode-alist))
(setq proto-program-name "C:/proto/proto.exe") ; as appropriate
make sure to set up the proto-program-name to correspond to your
installation area.
Useful command / key-bindings are:
M-C-x proto-send-definition
C-c C-e proto-send-definition
C-c M-e proto-send-definition-and-go
C-c C-r proto-send-region
C-c M-r proto-send-region-and-go
C-c C-z switch-to-proto
Check out proto-shell.el for the complete list of command /
key-bindings. I doubt the compile commands do anything useful cause
there isn't a compiler.
5 CAVEATS
Proto is pretty slow at this point. I'm using an AST-based
interpreter. This will improve in coming releases.
There is not a large amount of debugging support. In particular,
there is no backtrace facilities. You must instead rely on
redefinition and print statements. Again, i will be adding this in
the next release.
Documentation is lacking. Please consult the runtime libraries in the
SRC directory. Also check out Scheme and Dylan's manuals for
information of their lexical structure and special form behavior
respectively.
The names of functions will probably change in the near future.
Please give me feedback on the current names.
There might be times when the interpreter gets confused. Please try
to figure out why if possible, but don't be surprised if you have to
exit proto and reload your program. I will try to make Proto a much
more livable place asap.
Please, please, please send bug reports to jrb@ai.mit.edu. I will fix
your bugs asap.
|