1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/*
* Copyright 2010 Google Inc.
* Author: Markus Gutschke
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* An earlier version of this file was originally released into the public
* domain by its authors. It has been modified to make the code compile and
* link as part of the Google Authenticator project. These changes are
* copyrighted by Google Inc. and released under the Apache License,
* Version 2.0.
*
* The previous authors' terms are included below:
*/
/*****************************************************************************
*
* File: sha1.c
*
* Purpose: Implementation of the SHA1 message-digest algorithm.
*
* NIST Secure Hash Algorithm
* Heavily modified by Uwe Hollerbach <uh@alumni.caltech edu>
* from Peter C. Gutmann's implementation as found in
* Applied Cryptography by Bruce Schneier
* Further modifications to include the "UNRAVEL" stuff, below
*
* This code is in the public domain
*
*****************************************************************************
*/
#define _BSD_SOURCE
#include <sys/types.h> // Defines BYTE_ORDER, iff _BSD_SOURCE is defined
#include <string.h>
#include "sha1.h"
#if !defined(BYTE_ORDER)
#if defined(_BIG_ENDIAN)
#define BYTE_ORDER 4321
#elif defined(_LITTLE_ENDIAN)
#define BYTE_ORDER 1234
#else
#error Need to define BYTE_ORDER
#endif
#endif
#ifndef TRUNC32
#define TRUNC32(x) ((x) & 0xffffffffL)
#endif
/* SHA f()-functions */
#define f1(x,y,z) ((x & y) | (~x & z))
#define f2(x,y,z) (x ^ y ^ z)
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
#define f4(x,y,z) (x ^ y ^ z)
/* SHA constants */
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
/* truncate to 32 bits -- should be a null op on 32-bit machines */
#define T32(x) ((x) & 0xffffffffL)
/* 32-bit rotate */
#define R32(x,n) T32(((x << n) | (x >> (32 - n))))
/* the generic case, for when the overall rotation is not unraveled */
#define FG(n) \
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \
E = D; D = C; C = R32(B,30); B = A; A = T
/* specific cases, for when the overall rotation is unraveled */
#define FA(n) \
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30)
#define FB(n) \
E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30)
#define FC(n) \
D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30)
#define FD(n) \
C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30)
#define FE(n) \
B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30)
#define FT(n) \
A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30)
static void
sha1_transform(SHA1_INFO *sha1_info)
{
int i;
uint8_t *dp;
uint32_t T, A, B, C, D, E, W[80], *WP;
dp = sha1_info->data;
#undef SWAP_DONE
#if BYTE_ORDER == 1234
#define SWAP_DONE
for (i = 0; i < 16; ++i) {
T = *((uint32_t *) dp);
dp += 4;
W[i] =
((T << 24) & 0xff000000) |
((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif
#if BYTE_ORDER == 4321
#define SWAP_DONE
for (i = 0; i < 16; ++i) {
T = *((uint32_t *) dp);
dp += 4;
W[i] = TRUNC32(T);
}
#endif
#if BYTE_ORDER == 12345678
#define SWAP_DONE
for (i = 0; i < 16; i += 2) {
T = *((uint32_t *) dp);
dp += 8;
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
T >>= 32;
W[i+1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
}
#endif
#if BYTE_ORDER == 87654321
#define SWAP_DONE
for (i = 0; i < 16; i += 2) {
T = *((uint32_t *) dp);
dp += 8;
W[i] = TRUNC32(T >> 32);
W[i+1] = TRUNC32(T);
}
#endif
#ifndef SWAP_DONE
#define SWAP_DONE
for (i = 0; i < 16; ++i) {
T = *((uint32_t *) dp);
dp += 4;
W[i] = TRUNC32(T);
}
#endif /* SWAP_DONE */
for (i = 16; i < 80; ++i) {
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
W[i] = R32(W[i], 1);
}
A = sha1_info->digest[0];
B = sha1_info->digest[1];
C = sha1_info->digest[2];
D = sha1_info->digest[3];
E = sha1_info->digest[4];
WP = W;
#ifdef UNRAVEL
FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
sha1_info->digest[0] = T32(sha1_info->digest[0] + E);
sha1_info->digest[1] = T32(sha1_info->digest[1] + T);
sha1_info->digest[2] = T32(sha1_info->digest[2] + A);
sha1_info->digest[3] = T32(sha1_info->digest[3] + B);
sha1_info->digest[4] = T32(sha1_info->digest[4] + C);
#else /* !UNRAVEL */
#ifdef UNROLL_LOOPS
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
#else /* !UNROLL_LOOPS */
for (i = 0; i < 20; ++i) { FG(1); }
for (i = 20; i < 40; ++i) { FG(2); }
for (i = 40; i < 60; ++i) { FG(3); }
for (i = 60; i < 80; ++i) { FG(4); }
#endif /* !UNROLL_LOOPS */
sha1_info->digest[0] = T32(sha1_info->digest[0] + A);
sha1_info->digest[1] = T32(sha1_info->digest[1] + B);
sha1_info->digest[2] = T32(sha1_info->digest[2] + C);
sha1_info->digest[3] = T32(sha1_info->digest[3] + D);
sha1_info->digest[4] = T32(sha1_info->digest[4] + E);
#endif /* !UNRAVEL */
}
/* initialize the SHA digest */
void
sha1_init(SHA1_INFO *sha1_info)
{
sha1_info->digest[0] = 0x67452301L;
sha1_info->digest[1] = 0xefcdab89L;
sha1_info->digest[2] = 0x98badcfeL;
sha1_info->digest[3] = 0x10325476L;
sha1_info->digest[4] = 0xc3d2e1f0L;
sha1_info->count_lo = 0L;
sha1_info->count_hi = 0L;
sha1_info->local = 0;
}
/* update the SHA digest */
void
sha1_update(SHA1_INFO *sha1_info, const uint8_t *buffer, int count)
{
int i;
uint32_t clo;
clo = T32(sha1_info->count_lo + ((uint32_t) count << 3));
if (clo < sha1_info->count_lo) {
++sha1_info->count_hi;
}
sha1_info->count_lo = clo;
sha1_info->count_hi += (uint32_t) count >> 29;
if (sha1_info->local) {
i = SHA1_BLOCKSIZE - sha1_info->local;
if (i > count) {
i = count;
}
memcpy(((uint8_t *) sha1_info->data) + sha1_info->local, buffer, i);
count -= i;
buffer += i;
sha1_info->local += i;
if (sha1_info->local == SHA1_BLOCKSIZE) {
sha1_transform(sha1_info);
} else {
return;
}
}
while (count >= SHA1_BLOCKSIZE) {
memcpy(sha1_info->data, buffer, SHA1_BLOCKSIZE);
buffer += SHA1_BLOCKSIZE;
count -= SHA1_BLOCKSIZE;
sha1_transform(sha1_info);
}
memcpy(sha1_info->data, buffer, count);
sha1_info->local = count;
}
static void
sha1_transform_and_copy(unsigned char digest[20], SHA1_INFO *sha1_info)
{
sha1_transform(sha1_info);
digest[ 0] = (unsigned char) ((sha1_info->digest[0] >> 24) & 0xff);
digest[ 1] = (unsigned char) ((sha1_info->digest[0] >> 16) & 0xff);
digest[ 2] = (unsigned char) ((sha1_info->digest[0] >> 8) & 0xff);
digest[ 3] = (unsigned char) ((sha1_info->digest[0] ) & 0xff);
digest[ 4] = (unsigned char) ((sha1_info->digest[1] >> 24) & 0xff);
digest[ 5] = (unsigned char) ((sha1_info->digest[1] >> 16) & 0xff);
digest[ 6] = (unsigned char) ((sha1_info->digest[1] >> 8) & 0xff);
digest[ 7] = (unsigned char) ((sha1_info->digest[1] ) & 0xff);
digest[ 8] = (unsigned char) ((sha1_info->digest[2] >> 24) & 0xff);
digest[ 9] = (unsigned char) ((sha1_info->digest[2] >> 16) & 0xff);
digest[10] = (unsigned char) ((sha1_info->digest[2] >> 8) & 0xff);
digest[11] = (unsigned char) ((sha1_info->digest[2] ) & 0xff);
digest[12] = (unsigned char) ((sha1_info->digest[3] >> 24) & 0xff);
digest[13] = (unsigned char) ((sha1_info->digest[3] >> 16) & 0xff);
digest[14] = (unsigned char) ((sha1_info->digest[3] >> 8) & 0xff);
digest[15] = (unsigned char) ((sha1_info->digest[3] ) & 0xff);
digest[16] = (unsigned char) ((sha1_info->digest[4] >> 24) & 0xff);
digest[17] = (unsigned char) ((sha1_info->digest[4] >> 16) & 0xff);
digest[18] = (unsigned char) ((sha1_info->digest[4] >> 8) & 0xff);
digest[19] = (unsigned char) ((sha1_info->digest[4] ) & 0xff);
}
/* finish computing the SHA digest */
void
sha1_final(SHA1_INFO *sha1_info, uint8_t digest[20])
{
int count;
uint32_t lo_bit_count, hi_bit_count;
lo_bit_count = sha1_info->count_lo;
hi_bit_count = sha1_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((uint8_t *) sha1_info->data)[count++] = 0x80;
if (count > SHA1_BLOCKSIZE - 8) {
memset(((uint8_t *) sha1_info->data) + count, 0, SHA1_BLOCKSIZE - count);
sha1_transform(sha1_info);
memset((uint8_t *) sha1_info->data, 0, SHA1_BLOCKSIZE - 8);
} else {
memset(((uint8_t *) sha1_info->data) + count, 0,
SHA1_BLOCKSIZE - 8 - count);
}
sha1_info->data[56] = (uint8_t)((hi_bit_count >> 24) & 0xff);
sha1_info->data[57] = (uint8_t)((hi_bit_count >> 16) & 0xff);
sha1_info->data[58] = (uint8_t)((hi_bit_count >> 8) & 0xff);
sha1_info->data[59] = (uint8_t)((hi_bit_count >> 0) & 0xff);
sha1_info->data[60] = (uint8_t)((lo_bit_count >> 24) & 0xff);
sha1_info->data[61] = (uint8_t)((lo_bit_count >> 16) & 0xff);
sha1_info->data[62] = (uint8_t)((lo_bit_count >> 8) & 0xff);
sha1_info->data[63] = (uint8_t)((lo_bit_count >> 0) & 0xff);
sha1_transform_and_copy(digest, sha1_info);
}
/***EOF***/
|