File: debugallocation.cc

package info (click to toggle)
google-perftools 2.7-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 7,284 kB
  • sloc: cpp: 27,869; ansic: 9,534; sh: 4,799; perl: 4,116; makefile: 1,101; asm: 128
file content (1583 lines) | stat: -rw-r--r-- 58,629 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
// Copyright (c) 2000, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
// Author: Urs Holzle <opensource@google.com>

#include "config.h"
#include <errno.h>
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif
// We only need malloc.h for struct mallinfo.
#ifdef HAVE_STRUCT_MALLINFO
// Malloc can be in several places on older versions of OS X.
# if defined(HAVE_MALLOC_H)
# include <malloc.h>
# elif defined(HAVE_MALLOC_MALLOC_H)
# include <malloc/malloc.h>
# elif defined(HAVE_SYS_MALLOC_H)
# include <sys/malloc.h>
# endif
#endif
#ifdef HAVE_PTHREAD
#include <pthread.h>
#endif
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#ifdef HAVE_MMAP
#include <sys/mman.h>
#endif
#include <sys/stat.h>
#include <sys/types.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif

#include <gperftools/malloc_extension.h>
#include <gperftools/malloc_hook.h>
#include <gperftools/stacktrace.h>
#include "addressmap-inl.h"
#include "base/commandlineflags.h"
#include "base/googleinit.h"
#include "base/logging.h"
#include "base/spinlock.h"
#include "malloc_hook-inl.h"
#include "symbolize.h"

// NOTE: due to #define below, tcmalloc.cc will omit tc_XXX
// definitions. So that debug implementations can be defined
// instead. We're going to use do_malloc, do_free and other do_XXX
// functions that are defined in tcmalloc.cc for actual memory
// management
#define TCMALLOC_USING_DEBUGALLOCATION
#include "tcmalloc.cc"

// __THROW is defined in glibc systems.  It means, counter-intuitively,
// "This function will never throw an exception."  It's an optional
// optimization tool, but we may need to use it to match glibc prototypes.
#ifndef __THROW    // I guess we're not on a glibc system
# define __THROW   // __THROW is just an optimization, so ok to make it ""
#endif

// On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old
// form of the name instead.
#ifndef MAP_ANONYMOUS
# define MAP_ANONYMOUS MAP_ANON
#endif

// ========================================================================= //

DEFINE_bool(malloctrace,
            EnvToBool("TCMALLOC_TRACE", false),
            "Enables memory (de)allocation tracing to /tmp/google.alloc.");
#ifdef HAVE_MMAP
DEFINE_bool(malloc_page_fence,
            EnvToBool("TCMALLOC_PAGE_FENCE", false),
            "Enables putting of memory allocations at page boundaries "
            "with a guard page following the allocation (to catch buffer "
            "overruns right when they happen).");
DEFINE_bool(malloc_page_fence_never_reclaim,
            EnvToBool("TCMALLOC_PAGE_FENCE_NEVER_RECLAIM", false),
            "Enables making the virtual address space inaccessible "
            "upon a deallocation instead of returning it and reusing later.");
#else
DEFINE_bool(malloc_page_fence, false, "Not usable (requires mmap)");
DEFINE_bool(malloc_page_fence_never_reclaim, false, "Not usable (required mmap)");
#endif
DEFINE_bool(malloc_reclaim_memory,
            EnvToBool("TCMALLOC_RECLAIM_MEMORY", true),
            "If set to false, we never return memory to malloc "
            "when an object is deallocated. This ensures that all "
            "heap object addresses are unique.");
DEFINE_int32(max_free_queue_size,
             EnvToInt("TCMALLOC_MAX_FREE_QUEUE_SIZE", 10*1024*1024),
             "If greater than 0, keep freed blocks in a queue instead of "
             "releasing them to the allocator immediately.  Release them when "
             "the total size of all blocks in the queue would otherwise exceed "
             "this limit.");

DEFINE_bool(symbolize_stacktrace,
            EnvToBool("TCMALLOC_SYMBOLIZE_STACKTRACE", true),
            "Symbolize the stack trace when provided (on some error exits)");

// If we are LD_PRELOAD-ed against a non-pthreads app, then
// pthread_once won't be defined.  We declare it here, for that
// case (with weak linkage) which will cause the non-definition to
// resolve to NULL.  We can then check for NULL or not in Instance.
extern "C" int pthread_once(pthread_once_t *, void (*)(void))
    ATTRIBUTE_WEAK;

// ========================================================================= //

// A safe version of printf() that does not do any allocation and
// uses very little stack space.
static void TracePrintf(int fd, const char *fmt, ...)
  __attribute__ ((__format__ (__printf__, 2, 3)));

// Round "value" up to next "alignment" boundary.
// Requires that "alignment" be a power of two.
static intptr_t RoundUp(intptr_t value, intptr_t alignment) {
  return (value + alignment - 1) & ~(alignment - 1);
}

// ========================================================================= //

class MallocBlock;

// A circular buffer to hold freed blocks of memory.  MallocBlock::Deallocate
// (below) pushes blocks into this queue instead of returning them to the
// underlying allocator immediately.  See MallocBlock::Deallocate for more
// information.
//
// We can't use an STL class for this because we need to be careful not to
// perform any heap de-allocations in any of the code in this class, since the
// code in MallocBlock::Deallocate is not re-entrant.
template <typename QueueEntry>
class FreeQueue {
 public:
  FreeQueue() : q_front_(0), q_back_(0) {}

  bool Full() {
    return (q_front_ + 1) % kFreeQueueSize == q_back_;
  }

  void Push(const QueueEntry& block) {
    q_[q_front_] = block;
    q_front_ = (q_front_ + 1) % kFreeQueueSize;
  }

  QueueEntry Pop() {
    RAW_CHECK(q_back_ != q_front_, "Queue is empty");
    const QueueEntry& ret = q_[q_back_];
    q_back_ = (q_back_ + 1) % kFreeQueueSize;
    return ret;
  }

  size_t size() const {
    return (q_front_ - q_back_ + kFreeQueueSize) % kFreeQueueSize;
  }

 private:
  // Maximum number of blocks kept in the free queue before being freed.
  static const int kFreeQueueSize = 1024;

  QueueEntry q_[kFreeQueueSize];
  int q_front_;
  int q_back_;
};

struct MallocBlockQueueEntry {
  MallocBlockQueueEntry() : block(NULL), size(0),
                            num_deleter_pcs(0), deleter_threadid(0) {}
  MallocBlockQueueEntry(MallocBlock* b, size_t s) : block(b), size(s) {
    if (FLAGS_max_free_queue_size != 0 && b != NULL) {
      // Adjust the number of frames to skip (4) if you change the
      // location of this call.
      num_deleter_pcs =
        MallocHook::GetCallerStackTrace(
          deleter_pcs,
          sizeof(deleter_pcs) / sizeof(deleter_pcs[0]),
          4);
      deleter_threadid = pthread_self();
    } else {
      num_deleter_pcs = 0;
      // Zero is an illegal pthread id by my reading of the pthread
      // implementation:
      deleter_threadid = 0;
    }
  }

  MallocBlock* block;
  size_t size;

  // When deleted and put in the free queue, we (flag-controlled)
  // record the stack so that if corruption is later found, we can
  // print the deleter's stack.  (These three vars add 144 bytes of
  // overhead under the LP64 data model.)
  void* deleter_pcs[16];
  int num_deleter_pcs;
  pthread_t deleter_threadid;
};

class MallocBlock {
 public:  // allocation type constants

  // Different allocation types we distinguish.
  // Note: The lower 4 bits are not random: we index kAllocName array
  // by these values masked with kAllocTypeMask;
  // the rest are "random" magic bits to help catch memory corruption.
  static const int kMallocType = 0xEFCDAB90;
  static const int kNewType = 0xFEBADC81;
  static const int kArrayNewType = 0xBCEADF72;

 private:  // constants

  // A mask used on alloc types above to get to 0, 1, 2
  static const int kAllocTypeMask = 0x3;
  // An additional bit to set in AllocType constants
  // to mark now deallocated regions.
  static const int kDeallocatedTypeBit = 0x4;

  // For better memory debugging, we initialize all storage to known
  // values, and overwrite the storage when it's deallocated:
  // Byte that fills uninitialized storage.
  static const int kMagicUninitializedByte = 0xAB;
  // Byte that fills deallocated storage.
  // NOTE: tcmalloc.cc depends on the value of kMagicDeletedByte
  //       to work around a bug in the pthread library.
  static const int kMagicDeletedByte = 0xCD;
  // A size_t (type of alloc_type_ below) in a deallocated storage
  // filled with kMagicDeletedByte.
  static const size_t kMagicDeletedSizeT =
      0xCDCDCDCD | (((size_t)0xCDCDCDCD << 16) << 16);
    // Initializer works for 32 and 64 bit size_ts;
    // "<< 16 << 16" is to fool gcc from issuing a warning
    // when size_ts are 32 bits.

  // NOTE: on Linux, you can enable malloc debugging support in libc by
  // setting the environment variable MALLOC_CHECK_ to 1 before you
  // start the program (see man malloc).

  // We use either do_malloc or mmap to make the actual allocation. In
  // order to remember which one of the two was used for any block, we store an
  // appropriate magic word next to the block.
  static const size_t kMagicMalloc = 0xDEADBEEF;
  static const size_t kMagicMMap = 0xABCDEFAB;

  // This array will be filled with 0xCD, for use with memcmp.
  static unsigned char kMagicDeletedBuffer[1024];
  static pthread_once_t deleted_buffer_initialized_;
  static bool deleted_buffer_initialized_no_pthreads_;

 private:  // data layout

                    // The four fields size1_,offset_,magic1_,alloc_type_
                    // should together occupy a multiple of 16 bytes. (At the
                    // moment, sizeof(size_t) == 4 or 8 depending on piii vs
                    // k8, and 4 of those sum to 16 or 32 bytes).
                    // This, combined with do_malloc's alignment guarantees,
                    // ensures that SSE types can be stored into the returned
                    // block, at &size2_.
  size_t size1_;
  size_t offset_;   // normally 0 unless memaligned memory
                    // see comments in memalign() and FromRawPointer().
  size_t magic1_;
  size_t alloc_type_;
  // here comes the actual data (variable length)
  // ...
  // then come the size2_ and magic2_, or a full page of mprotect-ed memory
  // if the malloc_page_fence feature is enabled.
  size_t size2_;
  size_t magic2_;

 private:  // static data and helpers

  // Allocation map: stores the allocation type for each allocated object,
  // or the type or'ed with kDeallocatedTypeBit
  // for each formerly allocated object.
  typedef AddressMap<int> AllocMap;
  static AllocMap* alloc_map_;
  // This protects alloc_map_ and consistent state of metadata
  // for each still-allocated object in it.
  // We use spin locks instead of pthread_mutex_t locks
  // to prevent crashes via calls to pthread_mutex_(un)lock
  // for the (de)allocations coming from pthreads initialization itself.
  static SpinLock alloc_map_lock_;

  // A queue of freed blocks.  Instead of releasing blocks to the allocator
  // immediately, we put them in a queue, freeing them only when necessary
  // to keep the total size of all the freed blocks below the limit set by
  // FLAGS_max_free_queue_size.
  static FreeQueue<MallocBlockQueueEntry>* free_queue_;

  static size_t free_queue_size_;  // total size of blocks in free_queue_
  // protects free_queue_ and free_queue_size_
  static SpinLock free_queue_lock_;

  // Names of allocation types (kMallocType, kNewType, kArrayNewType)
  static const char* const kAllocName[];
  // Names of corresponding deallocation types
  static const char* const kDeallocName[];

  static const char* AllocName(int type) {
    return kAllocName[type & kAllocTypeMask];
  }

  static const char* DeallocName(int type) {
    return kDeallocName[type & kAllocTypeMask];
  }

 private:  // helper accessors

  bool IsMMapped() const { return kMagicMMap == magic1_; }

  bool IsValidMagicValue(size_t value) const {
    return kMagicMMap == value  ||  kMagicMalloc == value;
  }

  static size_t real_malloced_size(size_t size) {
    return size + sizeof(MallocBlock);
  }

  /*
   * Here we assume size of page is kMinAlign aligned,
   * so if size is MALLOC_ALIGNMENT aligned too, then we could
   * guarantee return address is also kMinAlign aligned, because
   * mmap return address at nearby page boundary on Linux.
   */
  static size_t real_mmapped_size(size_t size) {
    size_t tmp = size + MallocBlock::data_offset();
    tmp = RoundUp(tmp, kMinAlign);
    return tmp;
  }

  size_t real_size() {
    return IsMMapped() ? real_mmapped_size(size1_) : real_malloced_size(size1_);
  }

  // NOTE: if the block is mmapped (that is, we're using the
  // malloc_page_fence option) then there's no size2 or magic2
  // (instead, the guard page begins where size2 would be).

  size_t* size2_addr() { return (size_t*)((char*)&size2_ + size1_); }
  const size_t* size2_addr() const {
    return (const size_t*)((char*)&size2_ + size1_);
  }

  size_t* magic2_addr() { return (size_t*)(size2_addr() + 1); }
  const size_t* magic2_addr() const { return (const size_t*)(size2_addr() + 1); }

 private:  // other helpers

  void Initialize(size_t size, int type) {
    RAW_CHECK(IsValidMagicValue(magic1_), "");
    // record us as allocated in the map
    alloc_map_lock_.Lock();
    if (!alloc_map_) {
      void* p = do_malloc(sizeof(AllocMap));
      alloc_map_ = new(p) AllocMap(do_malloc, do_free);
    }
    alloc_map_->Insert(data_addr(), type);
    // initialize us
    size1_ = size;
    offset_ = 0;
    alloc_type_ = type;
    if (!IsMMapped()) {
      bit_store(magic2_addr(), &magic1_);
      bit_store(size2_addr(), &size);
    }
    alloc_map_lock_.Unlock();
    memset(data_addr(), kMagicUninitializedByte, size);
    if (!IsMMapped()) {
      RAW_CHECK(memcmp(&size1_, size2_addr(), sizeof(size1_)) == 0, "should hold");
      RAW_CHECK(memcmp(&magic1_, magic2_addr(), sizeof(magic1_)) == 0, "should hold");
    }
  }

  size_t CheckAndClear(int type, size_t given_size) {
    alloc_map_lock_.Lock();
    CheckLocked(type);
    if (!IsMMapped()) {
      RAW_CHECK(memcmp(&size1_, size2_addr(), sizeof(size1_)) == 0, "should hold");
    }
    // record us as deallocated in the map
    alloc_map_->Insert(data_addr(), type | kDeallocatedTypeBit);
    alloc_map_lock_.Unlock();
    // clear us
    const size_t size = real_size();
    RAW_CHECK(!given_size || given_size == size1_,
              "right size must be passed to sized delete");
    memset(this, kMagicDeletedByte, size);
    return size;
  }

  void CheckLocked(int type) const {
    int map_type = 0;
    const int* found_type =
      alloc_map_ != NULL ? alloc_map_->Find(data_addr()) : NULL;
    if (found_type == NULL) {
      RAW_LOG(FATAL, "memory allocation bug: object at %p "
                     "has never been allocated", data_addr());
    } else {
      map_type = *found_type;
    }
    if ((map_type & kDeallocatedTypeBit) != 0) {
      RAW_LOG(FATAL, "memory allocation bug: object at %p "
                     "has been already deallocated (it was allocated with %s)",
                     data_addr(), AllocName(map_type & ~kDeallocatedTypeBit));
    }
    if (alloc_type_ == kMagicDeletedSizeT) {
      RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
                     "has been corrupted; or else the object has been already "
                     "deallocated and our memory map has been corrupted",
                     data_addr());
    }
    if (!IsValidMagicValue(magic1_)) {
      RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
                     "has been corrupted; "
                     "or else our memory map has been corrupted and this is a "
                     "deallocation for not (currently) heap-allocated object",
                     data_addr());
    }
    if (!IsMMapped()) {
      if (memcmp(&size1_, size2_addr(), sizeof(size1_))) {
        RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
                       "has been corrupted", data_addr());
      }
      size_t addr;
      bit_store(&addr, magic2_addr());
      if (!IsValidMagicValue(addr)) {
        RAW_LOG(FATAL, "memory stomping bug: a word after object at %p "
                "has been corrupted", data_addr());
      }
    }
    if (alloc_type_ != type) {
      if ((alloc_type_ != MallocBlock::kMallocType) &&
          (alloc_type_ != MallocBlock::kNewType)    &&
          (alloc_type_ != MallocBlock::kArrayNewType)) {
        RAW_LOG(FATAL, "memory stomping bug: a word before object at %p "
                       "has been corrupted", data_addr());
      }
      RAW_LOG(FATAL, "memory allocation/deallocation mismatch at %p: "
                     "allocated with %s being deallocated with %s",
                     data_addr(), AllocName(alloc_type_), DeallocName(type));
    }
    if (alloc_type_ != map_type) {
      RAW_LOG(FATAL, "memory stomping bug: our memory map has been corrupted : "
                     "allocation at %p made with %s "
                     "is recorded in the map to be made with %s",
                     data_addr(), AllocName(alloc_type_),  AllocName(map_type));
    }
  }

 public:  // public accessors

  void* data_addr() { return (void*)&size2_; }
  const void* data_addr() const { return (const void*)&size2_; }

  static size_t data_offset() { return OFFSETOF_MEMBER(MallocBlock, size2_); }

  size_t data_size() const { return size1_; }

  void set_offset(int offset) { this->offset_ = offset; }

 public:  // our main interface

  static MallocBlock* Allocate(size_t size, int type) {
    // Prevent an integer overflow / crash with large allocation sizes.
    // TODO - Note that for a e.g. 64-bit size_t, max_size_t may not actually
    // be the maximum value, depending on how the compiler treats ~0. The worst
    // practical effect is that allocations are limited to 4Gb or so, even if
    // the address space could take more.
    static size_t max_size_t = ~0;
    if (size > max_size_t - sizeof(MallocBlock)) {
      RAW_LOG(ERROR, "Massive size passed to malloc: %" PRIuS "", size);
      return NULL;
    }
    MallocBlock* b = NULL;
    const bool use_malloc_page_fence = FLAGS_malloc_page_fence;
#ifdef HAVE_MMAP
    if (use_malloc_page_fence) {
      // Put the block towards the end of the page and make the next page
      // inaccessible. This will catch buffer overrun right when it happens.
      size_t sz = real_mmapped_size(size);
      int pagesize = getpagesize();
      int num_pages = (sz + pagesize - 1) / pagesize + 1;
      char* p = (char*) mmap(NULL, num_pages * pagesize, PROT_READ|PROT_WRITE,
                             MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
      if (p == MAP_FAILED) {
        // If the allocation fails, abort rather than returning NULL to
        // malloc. This is because in most cases, the program will run out
        // of memory in this mode due to tremendous amount of wastage. There
        // is no point in propagating the error elsewhere.
        RAW_LOG(FATAL, "Out of memory: possibly due to page fence overhead: %s",
                strerror(errno));
      }
      // Mark the page after the block inaccessible
      if (mprotect(p + (num_pages - 1) * pagesize, pagesize, PROT_NONE)) {
        RAW_LOG(FATAL, "Guard page setup failed: %s", strerror(errno));
      }
      b = (MallocBlock*) (p + (num_pages - 1) * pagesize - sz);
    } else {
      b = (MallocBlock*) do_malloc(real_malloced_size(size));
    }
#else
    b = (MallocBlock*) do_malloc(real_malloced_size(size));
#endif

    // It would be nice to output a diagnostic on allocation failure
    // here, but logging (other than FATAL) requires allocating
    // memory, which could trigger a nasty recursion. Instead, preserve
    // malloc semantics and return NULL on failure.
    if (b != NULL) {
      b->magic1_ = use_malloc_page_fence ? kMagicMMap : kMagicMalloc;
      b->Initialize(size, type);
    }
    return b;
  }

  void Deallocate(int type, size_t given_size) {
    if (IsMMapped()) {  // have to do this before CheckAndClear
#ifdef HAVE_MMAP
      int size = CheckAndClear(type, given_size);
      int pagesize = getpagesize();
      int num_pages = (size + pagesize - 1) / pagesize + 1;
      char* p = (char*) this;
      if (FLAGS_malloc_page_fence_never_reclaim  ||
          !FLAGS_malloc_reclaim_memory) {
        mprotect(p - (num_pages - 1) * pagesize + size,
                 num_pages * pagesize, PROT_NONE);
      } else {
        munmap(p - (num_pages - 1) * pagesize + size, num_pages * pagesize);
      }
#endif
    } else {
      const size_t size = CheckAndClear(type, given_size);
      if (FLAGS_malloc_reclaim_memory) {
        // Instead of freeing the block immediately, push it onto a queue of
        // recently freed blocks.  Free only enough blocks to keep from
        // exceeding the capacity of the queue or causing the total amount of
        // un-released memory in the queue from exceeding
        // FLAGS_max_free_queue_size.
        ProcessFreeQueue(this, size, FLAGS_max_free_queue_size);
      }
    }
  }

  static size_t FreeQueueSize() {
    SpinLockHolder l(&free_queue_lock_);
    return free_queue_size_;
  }

  static void ProcessFreeQueue(MallocBlock* b, size_t size,
                               int max_free_queue_size) {
    // MallocBlockQueueEntry are about 144 in size, so we can only
    // use a small array of them on the stack.
    MallocBlockQueueEntry entries[4];
    int num_entries = 0;
    MallocBlockQueueEntry new_entry(b, size);
    free_queue_lock_.Lock();
    if (free_queue_ == NULL)
      free_queue_ = new FreeQueue<MallocBlockQueueEntry>;
    RAW_CHECK(!free_queue_->Full(), "Free queue mustn't be full!");

    if (b != NULL) {
      free_queue_size_ += size + sizeof(MallocBlockQueueEntry);
      free_queue_->Push(new_entry);
    }

    // Free blocks until the total size of unfreed blocks no longer exceeds
    // max_free_queue_size, and the free queue has at least one free
    // space in it.
    while (free_queue_size_ > max_free_queue_size || free_queue_->Full()) {
      RAW_CHECK(num_entries < arraysize(entries), "entries array overflow");
      entries[num_entries] = free_queue_->Pop();
      free_queue_size_ -=
          entries[num_entries].size + sizeof(MallocBlockQueueEntry);
      num_entries++;
      if (num_entries == arraysize(entries)) {
        // The queue will not be full at this point, so it is ok to
        // release the lock.  The queue may still contain more than
        // max_free_queue_size, but this is not a strict invariant.
        free_queue_lock_.Unlock();
        for (int i = 0; i < num_entries; i++) {
          CheckForDanglingWrites(entries[i]);
          do_free(entries[i].block);
        }
        num_entries = 0;
        free_queue_lock_.Lock();
      }
    }
    free_queue_lock_.Unlock();
    for (int i = 0; i < num_entries; i++) {
      CheckForDanglingWrites(entries[i]);
      do_free(entries[i].block);
    }
  }

  static void InitDeletedBuffer() {
    memset(kMagicDeletedBuffer, kMagicDeletedByte, sizeof(kMagicDeletedBuffer));
    deleted_buffer_initialized_no_pthreads_ = true;
  }

  static void CheckForDanglingWrites(const MallocBlockQueueEntry& queue_entry) {
    // Initialize the buffer if necessary.
    if (pthread_once)
      pthread_once(&deleted_buffer_initialized_, &InitDeletedBuffer);
    if (!deleted_buffer_initialized_no_pthreads_) {
      // This will be the case on systems that don't link in pthreads,
      // including on FreeBSD where pthread_once has a non-zero address
      // (but doesn't do anything) even when pthreads isn't linked in.
      InitDeletedBuffer();
    }

    const unsigned char* p =
        reinterpret_cast<unsigned char*>(queue_entry.block);

    static const size_t size_of_buffer = sizeof(kMagicDeletedBuffer);
    const size_t size = queue_entry.size;
    const size_t buffers = size / size_of_buffer;
    const size_t remainder = size % size_of_buffer;
    size_t buffer_idx;
    for (buffer_idx = 0; buffer_idx < buffers; ++buffer_idx) {
      CheckForCorruptedBuffer(queue_entry, buffer_idx, p, size_of_buffer);
      p += size_of_buffer;
    }
    CheckForCorruptedBuffer(queue_entry, buffer_idx, p, remainder);
  }

  static void CheckForCorruptedBuffer(const MallocBlockQueueEntry& queue_entry,
                                      size_t buffer_idx,
                                      const unsigned char* buffer,
                                      size_t size_of_buffer) {
    if (memcmp(buffer, kMagicDeletedBuffer, size_of_buffer) == 0) {
      return;
    }

    RAW_LOG(ERROR,
            "Found a corrupted memory buffer in MallocBlock (may be offset "
            "from user ptr): buffer index: %zd, buffer ptr: %p, size of "
            "buffer: %zd", buffer_idx, buffer, size_of_buffer);

    // The magic deleted buffer should only be 1024 bytes, but in case
    // this changes, let's put an upper limit on the number of debug
    // lines we'll output:
    if (size_of_buffer <= 1024) {
      for (int i = 0; i < size_of_buffer; ++i) {
        if (buffer[i] != kMagicDeletedByte) {
          RAW_LOG(ERROR, "Buffer byte %d is 0x%02x (should be 0x%02x).",
                  i, buffer[i], kMagicDeletedByte);
        }
      }
    } else {
      RAW_LOG(ERROR, "Buffer too large to print corruption.");
    }

    const MallocBlock* b = queue_entry.block;
    const size_t size = queue_entry.size;
    if (queue_entry.num_deleter_pcs > 0) {
      TracePrintf(STDERR_FILENO, "Deleted by thread %p\n",
                  reinterpret_cast<void*>(
                      PRINTABLE_PTHREAD(queue_entry.deleter_threadid)));

      // We don't want to allocate or deallocate memory here, so we use
      // placement-new.  It's ok that we don't destroy this, since we're
      // just going to error-exit below anyway.  Union is for alignment.
      union { void* alignment; char buf[sizeof(SymbolTable)]; } tablebuf;
      SymbolTable* symbolization_table = new (tablebuf.buf) SymbolTable;
      for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
        // Symbolizes the previous address of pc because pc may be in the
        // next function.  This may happen when the function ends with
        // a call to a function annotated noreturn (e.g. CHECK).
        char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
        symbolization_table->Add(pc - 1);
      }
      if (FLAGS_symbolize_stacktrace)
        symbolization_table->Symbolize();
      for (int i = 0; i < queue_entry.num_deleter_pcs; i++) {
        char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]);
        TracePrintf(STDERR_FILENO, "    @ %p %s\n",
                    pc, symbolization_table->GetSymbol(pc - 1));
      }
    } else {
      RAW_LOG(ERROR,
              "Skipping the printing of the deleter's stack!  Its stack was "
              "not found; either the corruption occurred too early in "
              "execution to obtain a stack trace or --max_free_queue_size was "
              "set to 0.");
    }

    RAW_LOG(FATAL,
            "Memory was written to after being freed.  MallocBlock: %p, user "
            "ptr: %p, size: %zd.  If you can't find the source of the error, "
            "try using ASan (http://code.google.com/p/address-sanitizer/), "
            "Valgrind, or Purify, or study the "
            "output of the deleter's stack printed above.",
            b, b->data_addr(), size);
  }

  static MallocBlock* FromRawPointer(void* p) {
    const size_t data_offset = MallocBlock::data_offset();
    // Find the header just before client's memory.
    MallocBlock *mb = reinterpret_cast<MallocBlock *>(
                reinterpret_cast<char *>(p) - data_offset);
    // If mb->alloc_type_ is kMagicDeletedSizeT, we're not an ok pointer.
    if (mb->alloc_type_ == kMagicDeletedSizeT) {
      RAW_LOG(FATAL, "memory allocation bug: object at %p has been already"
                     " deallocated; or else a word before the object has been"
                     " corrupted (memory stomping bug)", p);
    }
    // If mb->offset_ is zero (common case), mb is the real header.
    // If mb->offset_ is non-zero, this block was allocated by debug
    // memallign implementation, and mb->offset_ is the distance
    // backwards to the real header from mb, which is a fake header.
    if (mb->offset_ == 0) {
      return mb;
    }

    MallocBlock *main_block = reinterpret_cast<MallocBlock *>(
      reinterpret_cast<char *>(mb) - mb->offset_);

    if (main_block->offset_ != 0) {
      RAW_LOG(FATAL, "memory corruption bug: offset_ field is corrupted."
              " Need 0 but got %x",
              (unsigned)(main_block->offset_));
    }
    if (main_block >= p) {
      RAW_LOG(FATAL, "memory corruption bug: offset_ field is corrupted."
              " Detected main_block address overflow: %x",
              (unsigned)(mb->offset_));
    }
    if (main_block->size2_addr() < p) {
      RAW_LOG(FATAL, "memory corruption bug: offset_ field is corrupted."
              " It points below it's own main_block: %x",
              (unsigned)(mb->offset_));
    }

    return main_block;
  }

  static const MallocBlock* FromRawPointer(const void* p) {
    // const-safe version: we just cast about
    return FromRawPointer(const_cast<void*>(p));
  }

  void Check(int type) const {
    alloc_map_lock_.Lock();
    CheckLocked(type);
    alloc_map_lock_.Unlock();
  }

  static bool CheckEverything() {
    alloc_map_lock_.Lock();
    if (alloc_map_ != NULL)  alloc_map_->Iterate(CheckCallback, 0);
    alloc_map_lock_.Unlock();
    return true;  // if we get here, we're okay
  }

  static bool MemoryStats(int* blocks, size_t* total,
                          int histogram[kMallocHistogramSize]) {
    memset(histogram, 0, kMallocHistogramSize * sizeof(int));
    alloc_map_lock_.Lock();
    stats_blocks_ = 0;
    stats_total_ = 0;
    stats_histogram_ = histogram;
    if (alloc_map_ != NULL) alloc_map_->Iterate(StatsCallback, 0);
    *blocks = stats_blocks_;
    *total = stats_total_;
    alloc_map_lock_.Unlock();
    return true;
  }

 private:  // helpers for CheckEverything and MemoryStats

  static void CheckCallback(const void* ptr, int* type, int dummy) {
    if ((*type & kDeallocatedTypeBit) == 0) {
      FromRawPointer(ptr)->CheckLocked(*type);
    }
  }

  // Accumulation variables for StatsCallback protected by alloc_map_lock_
  static int stats_blocks_;
  static size_t stats_total_;
  static int* stats_histogram_;

  static void StatsCallback(const void* ptr, int* type, int dummy) {
    if ((*type & kDeallocatedTypeBit) == 0) {
      const MallocBlock* b = FromRawPointer(ptr);
      b->CheckLocked(*type);
      ++stats_blocks_;
      size_t mysize = b->size1_;
      int entry = 0;
      stats_total_ += mysize;
      while (mysize) {
        ++entry;
        mysize >>= 1;
      }
      RAW_CHECK(entry < kMallocHistogramSize,
                "kMallocHistogramSize should be at least as large as log2 "
                "of the maximum process memory size");
      stats_histogram_[entry] += 1;
    }
  }
};

void DanglingWriteChecker() {
  // Clear out the remaining free queue to check for dangling writes.
  MallocBlock::ProcessFreeQueue(NULL, 0, 0);
}

// ========================================================================= //

const size_t MallocBlock::kMagicMalloc;
const size_t MallocBlock::kMagicMMap;

MallocBlock::AllocMap* MallocBlock::alloc_map_ = NULL;
SpinLock MallocBlock::alloc_map_lock_(SpinLock::LINKER_INITIALIZED);

FreeQueue<MallocBlockQueueEntry>* MallocBlock::free_queue_ = NULL;
size_t MallocBlock::free_queue_size_ = 0;
SpinLock MallocBlock::free_queue_lock_(SpinLock::LINKER_INITIALIZED);

unsigned char MallocBlock::kMagicDeletedBuffer[1024];
pthread_once_t MallocBlock::deleted_buffer_initialized_ = PTHREAD_ONCE_INIT;
bool MallocBlock::deleted_buffer_initialized_no_pthreads_ = false;

const char* const MallocBlock::kAllocName[] = {
  "malloc",
  "new",
  "new []",
  NULL,
};

const char* const MallocBlock::kDeallocName[] = {
  "free",
  "delete",
  "delete []",
  NULL,
};

int MallocBlock::stats_blocks_;
size_t MallocBlock::stats_total_;
int* MallocBlock::stats_histogram_;

// ========================================================================= //

// The following cut-down version of printf() avoids
// using stdio or ostreams.
// This is to guarantee no recursive calls into
// the allocator and to bound the stack space consumed.  (The pthread
// manager thread in linuxthreads has a very small stack,
// so fprintf can't be called.)
static void TracePrintf(int fd, const char *fmt, ...) {
  char buf[64];
  int i = 0;
  va_list ap;
  va_start(ap, fmt);
  const char *p = fmt;
  char numbuf[25];
  if (fd < 0) {
    va_end(ap);
    return;
  }
  numbuf[sizeof(numbuf)-1] = 0;
  while (*p != '\0') {              // until end of format string
    char *s = &numbuf[sizeof(numbuf)-1];
    if (p[0] == '%' && p[1] != 0) {  // handle % formats
      int64 l = 0;
      unsigned long base = 0;
      if (*++p == 's') {                            // %s
        s = va_arg(ap, char *);
      } else if (*p == 'l' && p[1] == 'd') {        // %ld
        l = va_arg(ap, long);
        base = 10;
        p++;
      } else if (*p == 'l' && p[1] == 'u') {        // %lu
        l = va_arg(ap, unsigned long);
        base = 10;
        p++;
      } else if (*p == 'z' && p[1] == 'u') {        // %zu
        l = va_arg(ap, size_t);
        base = 10;
        p++;
      } else if (*p == 'u') {                       // %u
        l = va_arg(ap, unsigned int);
        base = 10;
      } else if (*p == 'd') {                       // %d
        l = va_arg(ap, int);
        base = 10;
      } else if (*p == 'p') {                       // %p
        l = va_arg(ap, intptr_t);
        base = 16;
      } else {
        write(STDERR_FILENO, "Unimplemented TracePrintf format\n", 33);
        write(STDERR_FILENO, p, 2);
        write(STDERR_FILENO, "\n", 1);
        abort();
      }
      p++;
      if (base != 0) {
        bool minus = (l < 0 && base == 10);
        uint64 ul = minus? -l : l;
        do {
          *--s = "0123456789abcdef"[ul % base];
          ul /= base;
        } while (ul != 0);
        if (base == 16) {
          *--s = 'x';
          *--s = '0';
        } else if (minus) {
          *--s = '-';
        }
      }
    } else {                        // handle normal characters
      *--s = *p++;
    }
    while (*s != 0) {
      if (i == sizeof(buf)) {
        write(fd, buf, i);
        i = 0;
      }
      buf[i++] = *s++;
    }
  }
  if (i != 0) {
    write(fd, buf, i);
  }
  va_end(ap);
}

// Return the file descriptor we're writing a log to
static int TraceFd() {
  static int trace_fd = -1;
  if (trace_fd == -1) {            // Open the trace file on the first call
    const char *val = getenv("TCMALLOC_TRACE_FILE");
    bool fallback_to_stderr = false;
    if (!val) {
      val = "/tmp/google.alloc";
      fallback_to_stderr = true;
    }
    trace_fd = open(val, O_CREAT|O_TRUNC|O_WRONLY, 0666);
    if (trace_fd == -1) {
      if (fallback_to_stderr) {
        trace_fd = 2;
        TracePrintf(trace_fd, "Can't open %s.  Logging to stderr.\n", val);
      } else {
        TracePrintf(2, "Can't open %s.  Logging disabled.\n", val);
      }
    }
    // Add a header to the log.
    TracePrintf(trace_fd, "Trace started: %lu\n",
                static_cast<unsigned long>(time(NULL)));
    TracePrintf(trace_fd,
                "func\tsize\tptr\tthread_id\tstack pcs for tools/symbolize\n");
  }
  return trace_fd;
}

// Print the hex stack dump on a single line.   PCs are separated by tabs.
static void TraceStack(void) {
  void *pcs[16];
  int n = GetStackTrace(pcs, sizeof(pcs)/sizeof(pcs[0]), 0);
  for (int i = 0; i != n; i++) {
    TracePrintf(TraceFd(), "\t%p", pcs[i]);
  }
}

// This protects MALLOC_TRACE, to make sure its info is atomically written.
static SpinLock malloc_trace_lock(SpinLock::LINKER_INITIALIZED);

#define MALLOC_TRACE(name, size, addr)                                  \
  do {                                                                  \
    if (FLAGS_malloctrace) {                                            \
      SpinLockHolder l(&malloc_trace_lock);                             \
      TracePrintf(TraceFd(), "%s\t%" PRIuS "\t%p\t%" GPRIuPTHREAD,      \
                  name, size, addr, PRINTABLE_PTHREAD(pthread_self())); \
      TraceStack();                                                     \
      TracePrintf(TraceFd(), "\n");                                     \
    }                                                                   \
  } while (0)

// ========================================================================= //

// Write the characters buf[0, ..., size-1] to
// the malloc trace buffer.
// This function is intended for debugging,
// and is not declared in any header file.
// You must insert a declaration of it by hand when you need
// to use it.
void __malloctrace_write(const char *buf, size_t size) {
  if (FLAGS_malloctrace) {
    write(TraceFd(), buf, size);
  }
}

// ========================================================================= //

// General debug allocation/deallocation

static inline void* DebugAllocate(size_t size, int type) {
  MallocBlock* ptr = MallocBlock::Allocate(size, type);
  if (ptr == NULL)  return NULL;
  MALLOC_TRACE("malloc", size, ptr->data_addr());
  return ptr->data_addr();
}

static inline void DebugDeallocate(void* ptr, int type, size_t given_size) {
  MALLOC_TRACE("free",
               (ptr != 0 ? MallocBlock::FromRawPointer(ptr)->data_size() : 0),
               ptr);
  if (ptr)  MallocBlock::FromRawPointer(ptr)->Deallocate(type, given_size);
}

// ========================================================================= //

// The following functions may be called via MallocExtension::instance()
// for memory verification and statistics.
class DebugMallocImplementation : public TCMallocImplementation {
 public:
  virtual bool GetNumericProperty(const char* name, size_t* value) {
    bool result = TCMallocImplementation::GetNumericProperty(name, value);
    if (result && (strcmp(name, "generic.current_allocated_bytes") == 0)) {
      // Subtract bytes kept in the free queue
      size_t qsize = MallocBlock::FreeQueueSize();
      if (*value >= qsize) {
        *value -= qsize;
      }
    }
    return result;
  }

  virtual bool VerifyNewMemory(const void* p) {
    if (p)  MallocBlock::FromRawPointer(p)->Check(MallocBlock::kNewType);
    return true;
  }

  virtual bool VerifyArrayNewMemory(const void* p) {
    if (p)  MallocBlock::FromRawPointer(p)->Check(MallocBlock::kArrayNewType);
    return true;
  }

  virtual bool VerifyMallocMemory(const void* p) {
    if (p)  MallocBlock::FromRawPointer(p)->Check(MallocBlock::kMallocType);
    return true;
  }

  virtual bool VerifyAllMemory() {
    return MallocBlock::CheckEverything();
  }

  virtual bool MallocMemoryStats(int* blocks, size_t* total,
                                 int histogram[kMallocHistogramSize]) {
    return MallocBlock::MemoryStats(blocks, total, histogram);
  }

  virtual size_t GetEstimatedAllocatedSize(size_t size) {
    return size;
  }

  virtual size_t GetAllocatedSize(const void* p) {
    if (p) {
      RAW_CHECK(GetOwnership(p) != MallocExtension::kNotOwned,
                "ptr not allocated by tcmalloc");
      return MallocBlock::FromRawPointer(p)->data_size();
    }
    return 0;
  }

  virtual MallocExtension::Ownership GetOwnership(const void* p) {
    if (!p) {
      // nobody owns NULL
      return MallocExtension::kNotOwned;
    }

    // FIXME: note that correct GetOwnership should not touch memory
    // that is not owned by tcmalloc. Main implementation is using
    // pagemap to discover if page in question is owned by us or
    // not. But pagemap only has marks for first and last page of
    // spans.  Note that if p was returned out of our memalign with
    // big alignment, then it will point outside of marked pages. Also
    // note that FromRawPointer call below requires touching memory
    // before pointer in order to handle memalign-ed chunks
    // (offset_). This leaves us with two options:
    //
    // * do FromRawPointer first and have possibility of crashing if
    //   we're given not owned pointer
    //
    // * return incorrect ownership for those large memalign chunks
    //
    // I've decided to choose later, which appears to happen rarer and
    // therefore is arguably a lesser evil

    MallocExtension::Ownership rv = TCMallocImplementation::GetOwnership(p);
    if (rv != MallocExtension::kOwned) {
      return rv;
    }

    const MallocBlock* mb = MallocBlock::FromRawPointer(p);
    return TCMallocImplementation::GetOwnership(mb);
  }

  virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
    static const char* kDebugFreeQueue = "debug.free_queue";

    TCMallocImplementation::GetFreeListSizes(v);

    MallocExtension::FreeListInfo i;
    i.type = kDebugFreeQueue;
    i.min_object_size = 0;
    i.max_object_size = numeric_limits<size_t>::max();
    i.total_bytes_free = MallocBlock::FreeQueueSize();
    v->push_back(i);
  }

 };

static union {
  char chars[sizeof(DebugMallocImplementation)];
  void *ptr;
} debug_malloc_implementation_space;

REGISTER_MODULE_INITIALIZER(debugallocation, {
#if (__cplusplus >= 201103L)
    COMPILE_ASSERT(alignof(debug_malloc_implementation_space) >= alignof(DebugMallocImplementation),
                   debug_malloc_implementation_space_is_not_properly_aligned);
#endif
  // Either we or valgrind will control memory management.  We
  // register our extension if we're the winner. Otherwise let
  // Valgrind use its own malloc (so don't register our extension).
  if (!RunningOnValgrind()) {
    DebugMallocImplementation *impl = new (debug_malloc_implementation_space.chars) DebugMallocImplementation();
    MallocExtension::Register(impl);
  }
});

REGISTER_MODULE_DESTRUCTOR(debugallocation, {
  if (!RunningOnValgrind()) {
    // When the program exits, check all blocks still in the free
    // queue for corruption.
    DanglingWriteChecker();
  }
});

// ========================================================================= //

struct debug_alloc_retry_data {
  size_t size;
  int new_type;
};

static void *retry_debug_allocate(void *arg) {
  debug_alloc_retry_data *data = static_cast<debug_alloc_retry_data *>(arg);
  return DebugAllocate(data->size, data->new_type);
}

// This is mostly the same a cpp_alloc in tcmalloc.cc.
// TODO(csilvers): change Allocate() above to call cpp_alloc, so we
// don't have to reproduce the logic here.  To make tc_new_mode work
// properly, I think we'll need to separate out the logic of throwing
// from the logic of calling the new-handler.
inline void* debug_cpp_alloc(size_t size, int new_type, bool nothrow) {
  void* p = DebugAllocate(size, new_type);
  if (p != NULL) {
    return p;
  }
  struct debug_alloc_retry_data data;
  data.size = size;
  data.new_type = new_type;
  return handle_oom(retry_debug_allocate, &data,
                    true, nothrow);
}

inline void* do_debug_malloc_or_debug_cpp_alloc(size_t size) {
  void* p = DebugAllocate(size, MallocBlock::kMallocType);
  if (p != NULL) {
    return p;
  }
  struct debug_alloc_retry_data data;
  data.size = size;
  data.new_type = MallocBlock::kMallocType;
  return handle_oom(retry_debug_allocate, &data,
                    false, true);
}

// Exported routines

// frame forcer and force_frame exist only to prevent tail calls to
// DebugDeallocate to be actually implemented as tail calls. This is
// important because stack trace capturing in MallocBlockQueueEntry
// relies on google_malloc section being on stack and tc_XXX functions
// are in that section. So they must not jump to DebugDeallocate but
// have to do call. frame_forcer call at the end of such functions
// prevents tail calls to DebugDeallocate.
static int frame_forcer;
static void force_frame() {
  int dummy = *(int volatile *)&frame_forcer;
  (void)dummy;
}

extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) PERFTOOLS_NOTHROW {
  if (ThreadCache::IsUseEmergencyMalloc()) {
    return tcmalloc::EmergencyMalloc(size);
  }
  void* ptr = do_debug_malloc_or_debug_cpp_alloc(size);
  MallocHook::InvokeNewHook(ptr, size);
  return ptr;
}

extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) PERFTOOLS_NOTHROW {
  if (tcmalloc::IsEmergencyPtr(ptr)) {
    return tcmalloc::EmergencyFree(ptr);
  }
  MallocHook::InvokeDeleteHook(ptr);
  DebugDeallocate(ptr, MallocBlock::kMallocType, 0);
  force_frame();
}

extern "C" PERFTOOLS_DLL_DECL void tc_free_sized(void *ptr, size_t size) PERFTOOLS_NOTHROW {
  MallocHook::InvokeDeleteHook(ptr);
  DebugDeallocate(ptr, MallocBlock::kMallocType, size);
  force_frame();
}

extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t count, size_t size) PERFTOOLS_NOTHROW {
  if (ThreadCache::IsUseEmergencyMalloc()) {
    return tcmalloc::EmergencyCalloc(count, size);
  }
  // Overflow check
  const size_t total_size = count * size;
  if (size != 0 && total_size / size != count) return NULL;

  void* block = do_debug_malloc_or_debug_cpp_alloc(total_size);
  MallocHook::InvokeNewHook(block, total_size);
  if (block)  memset(block, 0, total_size);
  return block;
}

extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) PERFTOOLS_NOTHROW {
  if (tcmalloc::IsEmergencyPtr(ptr)) {
    return tcmalloc::EmergencyFree(ptr);
  }
  MallocHook::InvokeDeleteHook(ptr);
  DebugDeallocate(ptr, MallocBlock::kMallocType, 0);
  force_frame();
}

extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* ptr, size_t size) PERFTOOLS_NOTHROW {
  if (tcmalloc::IsEmergencyPtr(ptr)) {
    return tcmalloc::EmergencyRealloc(ptr, size);
  }
  if (ptr == NULL) {
    ptr = do_debug_malloc_or_debug_cpp_alloc(size);
    MallocHook::InvokeNewHook(ptr, size);
    return ptr;
  }
  if (size == 0) {
    MallocHook::InvokeDeleteHook(ptr);
    DebugDeallocate(ptr, MallocBlock::kMallocType, 0);
    return NULL;
  }
  MallocBlock* old = MallocBlock::FromRawPointer(ptr);
  old->Check(MallocBlock::kMallocType);
  MallocBlock* p = MallocBlock::Allocate(size, MallocBlock::kMallocType);

  // If realloc fails we are to leave the old block untouched and
  // return null
  if (p == NULL)  return NULL;

  // if ptr was allocated via memalign, then old->data_size() is not
  // start of user data. So we must be careful to copy only user-data
  char *old_begin = (char *)old->data_addr();
  char *old_end = old_begin + old->data_size();

  ssize_t old_ssize = old_end - (char *)ptr;
  CHECK_CONDITION(old_ssize >= 0);

  size_t old_size = (size_t)old_ssize;
  CHECK_CONDITION(old_size <= old->data_size());

  memcpy(p->data_addr(), ptr, (old_size < size) ? old_size : size);
  MallocHook::InvokeDeleteHook(ptr);
  MallocHook::InvokeNewHook(p->data_addr(), size);
  DebugDeallocate(ptr, MallocBlock::kMallocType, 0);
  MALLOC_TRACE("realloc", p->data_size(), p->data_addr());
  return p->data_addr();
}

extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
  void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, false);
  MallocHook::InvokeNewHook(ptr, size);
  if (ptr == NULL) {
    RAW_LOG(FATAL, "Unable to allocate %" PRIuS " bytes: new failed.", size);
  }
  return ptr;
}

extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) PERFTOOLS_NOTHROW {
  void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, true);
  MallocHook::InvokeNewHook(ptr, size);
  return ptr;
}

extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) PERFTOOLS_NOTHROW {
  MallocHook::InvokeDeleteHook(p);
  DebugDeallocate(p, MallocBlock::kNewType, 0);
  force_frame();
}

extern "C" PERFTOOLS_DLL_DECL void tc_delete_sized(void* p, size_t size) PERFTOOLS_NOTHROW {
  MallocHook::InvokeDeleteHook(p);
  DebugDeallocate(p, MallocBlock::kNewType, size);
  force_frame();
}

// Some STL implementations explicitly invoke this.
// It is completely equivalent to a normal delete (delete never throws).
extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) PERFTOOLS_NOTHROW {
  MallocHook::InvokeDeleteHook(p);
  DebugDeallocate(p, MallocBlock::kNewType, 0);
  force_frame();
}

extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
  void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, false);
  MallocHook::InvokeNewHook(ptr, size);
  if (ptr == NULL) {
    RAW_LOG(FATAL, "Unable to allocate %" PRIuS " bytes: new[] failed.", size);
  }
  return ptr;
}

extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
    PERFTOOLS_NOTHROW {
  void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, true);
  MallocHook::InvokeNewHook(ptr, size);
  return ptr;
}

extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) PERFTOOLS_NOTHROW {
  MallocHook::InvokeDeleteHook(p);
  DebugDeallocate(p, MallocBlock::kArrayNewType, 0);
  force_frame();
}

extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_sized(void* p, size_t size) PERFTOOLS_NOTHROW {
  MallocHook::InvokeDeleteHook(p);
  DebugDeallocate(p, MallocBlock::kArrayNewType, size);
  force_frame();
}

// Some STL implementations explicitly invoke this.
// It is completely equivalent to a normal delete (delete never throws).
extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) PERFTOOLS_NOTHROW {
  MallocHook::InvokeDeleteHook(p);
  DebugDeallocate(p, MallocBlock::kArrayNewType, 0);
  force_frame();
}

// This is mostly the same as do_memalign in tcmalloc.cc.
static void *do_debug_memalign(size_t alignment, size_t size, int type) {
  // Allocate >= size bytes aligned on "alignment" boundary
  // "alignment" is a power of two.
  void *p = 0;
  RAW_CHECK((alignment & (alignment-1)) == 0, "must be power of two");
  const size_t data_offset = MallocBlock::data_offset();
  // Allocate "alignment-1" extra bytes to ensure alignment is possible, and
  // a further data_offset bytes for an additional fake header.
  size_t extra_bytes = data_offset + alignment - 1;
  if (size + extra_bytes < size) return NULL;         // Overflow
  p = DebugAllocate(size + extra_bytes, type);
  if (p != 0) {
    intptr_t orig_p = reinterpret_cast<intptr_t>(p);
    // Leave data_offset bytes for fake header, and round up to meet
    // alignment.
    p = reinterpret_cast<void *>(RoundUp(orig_p + data_offset, alignment));
    // Create a fake header block with an offset_ that points back to the
    // real header.  FromRawPointer uses this value.
    MallocBlock *fake_hdr = reinterpret_cast<MallocBlock *>(
                reinterpret_cast<char *>(p) - data_offset);
    // offset_ is distance between real and fake headers.
    // p is now end of fake header (beginning of client area),
    // and orig_p is the end of the real header, so offset_
    // is their difference.
    //
    // Note that other fields of fake_hdr are initialized with
    // kMagicUninitializedByte
    fake_hdr->set_offset(reinterpret_cast<intptr_t>(p) - orig_p);
  }
  return p;
}

struct memalign_retry_data {
  size_t align;
  size_t size;
  int type;
};

static void *retry_debug_memalign(void *arg) {
  memalign_retry_data *data = static_cast<memalign_retry_data *>(arg);
  return do_debug_memalign(data->align, data->size, data->type);
}

ATTRIBUTE_ALWAYS_INLINE
inline void* do_debug_memalign_or_debug_cpp_memalign(size_t align,
                                                     size_t size,
                                                     int type,
                                                     bool from_operator,
                                                     bool nothrow) {
  void* p = do_debug_memalign(align, size, type);
  if (p != NULL) {
    return p;
  }

  struct memalign_retry_data data;
  data.align = align;
  data.size = size;
  data.type = type;
  return handle_oom(retry_debug_memalign, &data,
                    from_operator, nothrow);
}

extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, size_t size) PERFTOOLS_NOTHROW {
  void *p = do_debug_memalign_or_debug_cpp_memalign(align, size, MallocBlock::kMallocType, false, true);
  MallocHook::InvokeNewHook(p, size);
  return p;
}

// Implementation taken from tcmalloc/tcmalloc.cc
extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(void** result_ptr, size_t align, size_t size)
    PERFTOOLS_NOTHROW {
  if (((align % sizeof(void*)) != 0) ||
      ((align & (align - 1)) != 0) ||
      (align == 0)) {
    return EINVAL;
  }

  void* result = do_debug_memalign_or_debug_cpp_memalign(align, size, MallocBlock::kMallocType, false, true);
  MallocHook::InvokeNewHook(result, size);
  if (result == NULL) {
    return ENOMEM;
  } else {
    *result_ptr = result;
    return 0;
  }
}

extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) PERFTOOLS_NOTHROW {
  // Allocate >= size bytes starting on a page boundary
  void *p = do_debug_memalign_or_debug_cpp_memalign(getpagesize(), size, MallocBlock::kMallocType, false, true);
  MallocHook::InvokeNewHook(p, size);
  return p;
}

extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) PERFTOOLS_NOTHROW {
  // Round size up to a multiple of pages
  // then allocate memory on a page boundary
  int pagesize = getpagesize();
  size = RoundUp(size, pagesize);
  if (size == 0) {     // pvalloc(0) should allocate one page, according to
    size = pagesize;   // http://man.free4web.biz/man3/libmpatrol.3.html
  }
  void *p = do_debug_memalign_or_debug_cpp_memalign(pagesize, size, MallocBlock::kMallocType, false, true);
  MallocHook::InvokeNewHook(p, size);
  return p;
}

#if defined(ENABLE_ALIGNED_NEW_DELETE)

extern "C" PERFTOOLS_DLL_DECL void* tc_new_aligned(size_t size, std::align_val_t align) {
  void* result = do_debug_memalign_or_debug_cpp_memalign(static_cast<size_t>(align), size, MallocBlock::kNewType, true, false);
  MallocHook::InvokeNewHook(result, size);
  return result;
}

extern "C" PERFTOOLS_DLL_DECL void* tc_new_aligned_nothrow(size_t size, std::align_val_t align, const std::nothrow_t&) PERFTOOLS_NOTHROW {
  void* result = do_debug_memalign_or_debug_cpp_memalign(static_cast<size_t>(align), size, MallocBlock::kNewType, true, true);
  MallocHook::InvokeNewHook(result, size);
  return result;
}

extern "C" PERFTOOLS_DLL_DECL void tc_delete_aligned(void* p, std::align_val_t) PERFTOOLS_NOTHROW {
  tc_delete(p);
}

extern "C" PERFTOOLS_DLL_DECL void tc_delete_sized_aligned(void* p, size_t size, std::align_val_t align) PERFTOOLS_NOTHROW {
  // Reproduce actual size calculation done by do_debug_memalign
  const size_t alignment = static_cast<size_t>(align);
  const size_t data_offset = MallocBlock::data_offset();
  const size_t extra_bytes = data_offset + alignment - 1;

  tc_delete_sized(p, size + extra_bytes);
}

extern "C" PERFTOOLS_DLL_DECL void tc_delete_aligned_nothrow(void* p, std::align_val_t, const std::nothrow_t&) PERFTOOLS_NOTHROW {
  tc_delete(p);
}

extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_aligned(size_t size, std::align_val_t align) {
  void* result = do_debug_memalign_or_debug_cpp_memalign(static_cast<size_t>(align), size, MallocBlock::kArrayNewType, true, false);
  MallocHook::InvokeNewHook(result, size);
  return result;
}

extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_aligned_nothrow(size_t size, std::align_val_t align, const std::nothrow_t& nt) PERFTOOLS_NOTHROW {
  void* result = do_debug_memalign_or_debug_cpp_memalign(static_cast<size_t>(align), size, MallocBlock::kArrayNewType, true, true);
  MallocHook::InvokeNewHook(result, size);
  return result;
}

extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_aligned(void* p, std::align_val_t) PERFTOOLS_NOTHROW {
  tc_deletearray(p);
}

extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_sized_aligned(void* p, size_t size, std::align_val_t align) PERFTOOLS_NOTHROW {
  // Reproduce actual size calculation done by do_debug_memalign
  const size_t alignment = static_cast<size_t>(align);
  const size_t data_offset = MallocBlock::data_offset();
  const size_t extra_bytes = data_offset + alignment - 1;

  tc_deletearray_sized(p, size + extra_bytes);
}

extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_aligned_nothrow(void* p, std::align_val_t, const std::nothrow_t&) PERFTOOLS_NOTHROW {
  tc_deletearray(p);
}

#endif // defined(ENABLE_ALIGNED_NEW_DELETE)

// malloc_stats just falls through to the base implementation.
extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) PERFTOOLS_NOTHROW {
  do_malloc_stats();
}

extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) PERFTOOLS_NOTHROW {
  return do_mallopt(cmd, value);
}

#ifdef HAVE_STRUCT_MALLINFO
extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) PERFTOOLS_NOTHROW {
  return do_mallinfo();
}
#endif

extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) PERFTOOLS_NOTHROW {
  return MallocExtension::instance()->GetAllocatedSize(ptr);
}

extern "C" PERFTOOLS_DLL_DECL void* tc_malloc_skip_new_handler(size_t size) PERFTOOLS_NOTHROW {
  void* result = DebugAllocate(size, MallocBlock::kMallocType);
  MallocHook::InvokeNewHook(result, size);
  return result;
}