1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
|
#pragma once
/* A header-only implementation of the .ply file format.
* https://github.com/nmwsharp/happly
* By Nicholas Sharp - nsharp@cs.cmu.edu
*/
/*
MIT License
Copyright (c) 2018 Nick Sharp
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <array>
#include <cctype>
#include <fstream>
#include <iostream>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
// General namespace wrapping all Happly things.
namespace happly {
// Enum specifying binary or ASCII filetypes. Binary is always little-endian.
enum class DataFormat { ASCII, Binary };
// Type name strings
// clang-format off
template <typename T> std::string typeName() { return "unknown"; }
template<> inline std::string typeName<int8_t>() { return "char"; }
template<> inline std::string typeName<uint8_t>() { return "uchar"; }
template<> inline std::string typeName<int16_t>() { return "short"; }
template<> inline std::string typeName<uint16_t>() { return "ushort"; }
template<> inline std::string typeName<int32_t>() { return "int"; }
template<> inline std::string typeName<uint32_t>() { return "uint"; }
template<> inline std::string typeName<float>() { return "float"; }
template<> inline std::string typeName<double>() { return "double"; }
// clang-format on
// Template hackery that makes getProperty<T>() and friends pretty while automatically picking up smaller types
namespace {
// A pointer for the equivalent/smaller equivalent of a type (eg. when a double is requested a float works too, etc)
// long int is intentionally absent to avoid platform confusion
// clang-format off
template <class T> struct TypeChain { bool hasChildType = false; typedef T type; };
template <> struct TypeChain<int64_t> { bool hasChildType = true; typedef int32_t type; };
template <> struct TypeChain<int32_t> { bool hasChildType = true; typedef int16_t type; };
template <> struct TypeChain<int16_t> { bool hasChildType = true; typedef int8_t type; };
template <> struct TypeChain<uint64_t> { bool hasChildType = true; typedef uint32_t type; };
template <> struct TypeChain<uint32_t> { bool hasChildType = true; typedef uint16_t type; };
template <> struct TypeChain<uint16_t> { bool hasChildType = true; typedef uint8_t type; };
template <> struct TypeChain<double> { bool hasChildType = true; typedef float type; };
// clang-format on
// clang-format off
template <class T> struct CanonicalName { typedef T type; };
template <> struct CanonicalName<char> { typedef int8_t type; };
template <> struct CanonicalName<unsigned char> { typedef uint8_t type; };
template <> struct CanonicalName<size_t> { typedef std::conditional<std::is_same<std::make_signed<size_t>::type, int>::value, uint32_t, uint64_t>::type type; };
// clang-format on
} // namespace
/**
* @brief A generic property, which is associated with some element. Can be plain Property or a ListProperty, of some
* type. Generally, the user should not need to interact with these directly, but they are exposed in case someone
* wants to get clever.
*/
class Property {
public:
/**
* @brief Create a new Property with the given name.
*
* @param name_
*/
Property(const std::string& name_) : name(name_){};
virtual ~Property(){};
std::string name;
/**
* @brief Reserve memory.
*
* @param capacity Expected number of elements.
*/
virtual void reserve(size_t capacity) = 0;
/**
* @brief (ASCII reading) Parse out the next value of this property from a list of tokens.
*
* @param tokens The list of property tokens for the element.
* @param currEntry Index in to tokens, updated after this property is read.
*/
virtual void parseNext(const std::vector<std::string>& tokens, size_t& currEntry) = 0;
/**
* @brief (binary reading) Copy the next value of this property from a stream of bits.
*
* @param stream Stream to read from.
*/
virtual void readNext(std::ifstream& stream) = 0;
/**
* @brief (reading) Write a header entry for this property.
*
* @param outStream Stream to write to.
*/
virtual void writeHeader(std::ofstream& outStream) = 0;
/**
* @brief (ASCII writing) write this property for some element to a stream in plaintext
*
* @param outStream Stream to write to.
* @param iElement index of the element to write.
*/
virtual void writeDataASCII(std::ofstream& outStream, size_t iElement) = 0;
/**
* @brief (binary writing) copy the bits of this property for some element to a stream
*
* @param outStream Stream to write to.
* @param iElement index of the element to write.
*/
virtual void writeDataBinary(std::ofstream& outStream, size_t iElement) = 0;
/**
* @brief Number of element entries for this property
*
* @return
*/
virtual size_t size() = 0;
/**
* @brief A string naming the type of the property
*
* @return
*/
virtual std::string propertyTypeName() = 0;
};
/**
* @brief A property which takes a single value (not a list).
*/
template <class T>
class TypedProperty : public Property {
public:
/**
* @brief Create a new Property with the given name.
*
* @param name_
*/
TypedProperty(const std::string& name_) : Property(name_) {
if (typeName<T>() == "unknown") {
// TODO should really be a compile-time error
throw std::runtime_error("Attempted property type does not match any type defined by the .ply format.");
}
};
/**
* @brief Create a new property and initialize with data.
*
* @param name_
* @param data_
*/
TypedProperty(const std::string& name_, const std::vector<T>& data_) : Property(name_), data(data_) {
if (typeName<T>() == "unknown") {
throw std::runtime_error("Attempted property type does not match any type defined by the .ply format.");
}
};
virtual ~TypedProperty() override{};
/**
* @brief Reserve memory.
*
* @param capacity Expected number of elements.
*/
virtual void reserve(size_t capacity) override {
data.reserve(capacity);
}
/**
* @brief (ASCII reading) Parse out the next value of this property from a list of tokens.
*
* @param tokens The list of property tokens for the element.
* @param currEntry Index in to tokens, updated after this property is read.
*/
virtual void parseNext(const std::vector<std::string>& tokens, size_t& currEntry) override {
data.emplace_back();
std::istringstream iss(tokens[currEntry]);
iss >> data.back();
currEntry++;
};
/**
* @brief (binary reading) Copy the next value of this property from a stream of bits.
*
* @param stream Stream to read from.
*/
virtual void readNext(std::ifstream& stream) override {
data.emplace_back();
stream.read((char*)&data.back(), sizeof(T));
}
/**
* @brief (reading) Write a header entry for this property.
*
* @param outStream Stream to write to.
*/
virtual void writeHeader(std::ofstream& outStream) override {
outStream << "property " << typeName<T>() << " " << name << "\n";
}
/**
* @brief (ASCII writing) write this property for some element to a stream in plaintext
*
* @param outStream Stream to write to.
* @param iElement index of the element to write.
*/
virtual void writeDataASCII(std::ofstream& outStream, size_t iElement) override {
outStream.precision(std::numeric_limits<T>::max_digits10);
outStream << data[iElement];
}
/**
* @brief (binary writing) copy the bits of this property for some element to a stream
*
* @param outStream Stream to write to.
* @param iElement index of the element to write.
*/
virtual void writeDataBinary(std::ofstream& outStream, size_t iElement) override {
outStream.write((char*)&data[iElement], sizeof(T));
}
/**
* @brief Number of element entries for this property
*
* @return
*/
virtual size_t size() override { return data.size(); }
/**
* @brief A string naming the type of the property
*
* @return
*/
virtual std::string propertyTypeName() override { return typeName<T>(); }
/**
* @brief The actual data contained in the property
*/
std::vector<T> data;
};
// outstream doesn't do what we want with chars, these specializations supersede the general behavior to ensure chars
// get written correctly.
template <>
inline void TypedProperty<uint8_t>::writeDataASCII(std::ofstream& outStream, size_t iElement) {
outStream << (int)data[iElement];
}
template <>
inline void TypedProperty<int8_t>::writeDataASCII(std::ofstream& outStream, size_t iElement) {
outStream << (int)data[iElement];
}
template <>
inline void TypedProperty<uint8_t>::parseNext(const std::vector<std::string>& tokens, size_t& currEntry) {
std::istringstream iss(tokens[currEntry]);
int intVal;
iss >> intVal;
data.push_back((uint8_t)intVal);
currEntry++;
}
template <>
inline void TypedProperty<int8_t>::parseNext(const std::vector<std::string>& tokens, size_t& currEntry) {
std::istringstream iss(tokens[currEntry]);
int intVal;
iss >> intVal;
data.push_back((int8_t)intVal);
currEntry++;
}
/**
* @brief A property which is a list of value (eg, 3 doubles). Note that lists are always variable length per-element.
*/
template <class T>
class TypedListProperty : public Property {
public:
/**
* @brief Create a new Property with the given name.
*
* @param name_
*/
TypedListProperty(const std::string& name_, int listCountBytes_) : Property(name_), listCountBytes(listCountBytes_) {
if (typeName<T>() == "unknown") {
throw std::runtime_error("Attempted property type does not match any type defined by the .ply format.");
}
};
/**
* @brief Create a new property and initialize with data
*
* @param name_
* @param data_
*/
TypedListProperty(const std::string& name_, const std::vector<std::vector<T>>& data_) : Property(name_), data(data_) {
if (typeName<T>() == "unknown") {
throw std::runtime_error("Attempted property type does not match any type defined by the .ply format.");
}
};
virtual ~TypedListProperty() override{};
/**
* @brief Reserve memory.
*
* @param capacity Expected number of elements.
*/
virtual void reserve(size_t capacity) override {
data.reserve(capacity);
for (size_t i = 0; i < data.size(); i++) {
data[i].reserve(3); // optimize for triangle meshes
}
}
/**
* @brief (ASCII reading) Parse out the next value of this property from a list of tokens.
*
* @param tokens The list of property tokens for the element.
* @param currEntry Index in to tokens, updated after this property is read.
*/
virtual void parseNext(const std::vector<std::string>& tokens, size_t& currEntry) override {
std::istringstream iss(tokens[currEntry]);
size_t count;
iss >> count;
currEntry++;
data.emplace_back();
data.back().resize(count);
for (size_t iCount = 0; iCount < count; iCount++) {
std::istringstream iss(tokens[currEntry]);
iss >> data.back()[iCount];
currEntry++;
}
}
/**
* @brief (binary reading) Copy the next value of this property from a stream of bits.
*
* @param stream Stream to read from.
*/
virtual void readNext(std::ifstream& stream) override {
// Read the size of the list
size_t count = 0;
stream.read(((char*)&count), listCountBytes);
// Read list elements
data.emplace_back();
data.back().resize(count);
stream.read((char*)&data.back().front(), count*sizeof(T));
}
/**
* @brief (reading) Write a header entry for this property. Note that we already use "uchar" for the list count type.
*
* @param outStream Stream to write to.
*/
virtual void writeHeader(std::ofstream& outStream) override {
// NOTE: We ALWAYS use uchar as the list count output type
outStream << "property list uchar " << typeName<T>() << " " << name << "\n";
}
/**
* @brief (ASCII writing) write this property for some element to a stream in plaintext
*
* @param outStream Stream to write to.
* @param iElement index of the element to write.
*/
virtual void writeDataASCII(std::ofstream& outStream, size_t iElement) override {
std::vector<T>& elemList = data[iElement];
// Get the number of list elements as a uchar, and ensure the value fits
uint8_t count = elemList.size();
if(count != elemList.size()) {
throw std::runtime_error("List property has an element with more entries than fit in a uchar. See note in README.");
}
outStream << elemList.size();
outStream.precision(std::numeric_limits<T>::max_digits10);
for (size_t iEntry = 0; iEntry < elemList.size(); iEntry++) {
outStream << " " << elemList[iEntry];
}
}
/**
* @brief (binary writing) copy the bits of this property for some element to a stream
*
* @param outStream Stream to write to.
* @param iElement index of the element to write.
*/
virtual void writeDataBinary(std::ofstream& outStream, size_t iElement) override {
std::vector<T>& elemList = data[iElement];
// Get the number of list elements as a uchar, and ensure the value fits
uint8_t count = elemList.size();
if(count != elemList.size()) {
throw std::runtime_error("List property has an element with more entries than fit in a uchar. See note in README.");
}
outStream.write((char*)&count, sizeof(uint8_t));
for (size_t iEntry = 0; iEntry < elemList.size(); iEntry++) {
outStream.write((char*)&elemList[iEntry], sizeof(T));
}
}
/**
* @brief Number of element entries for this property
*
* @return
*/
virtual size_t size() override { return data.size(); }
/**
* @brief A string naming the type of the property
*
* @return
*/
virtual std::string propertyTypeName() override { return typeName<T>(); }
/**
* @brief The actualy data lists for the property
*/
std::vector<std::vector<T>> data;
/**
* @brief The number of bytes used to store the count for lists of data.
*/
int listCountBytes = -1;
};
// outstream doesn't do what we want with int8_ts, these specializations supersede the general behavior to ensure
// int8_ts get written correctly.
template <>
inline void TypedListProperty<uint8_t>::writeDataASCII(std::ofstream& outStream, size_t iElement) {
std::vector<uint8_t>& elemList = data[iElement];
outStream << elemList.size();
outStream.precision(std::numeric_limits<uint8_t>::max_digits10);
for (size_t iEntry = 0; iEntry < elemList.size(); iEntry++) {
outStream << " " << (int)elemList[iEntry];
}
}
template <>
inline void TypedListProperty<int8_t>::writeDataASCII(std::ofstream& outStream, size_t iElement) {
std::vector<int8_t>& elemList = data[iElement];
outStream << elemList.size();
outStream.precision(std::numeric_limits<int8_t>::max_digits10);
for (size_t iEntry = 0; iEntry < elemList.size(); iEntry++) {
outStream << " " << (int)elemList[iEntry];
}
}
template <>
inline void TypedListProperty<uint8_t>::parseNext(const std::vector<std::string>& tokens, size_t& currEntry) {
std::istringstream iss(tokens[currEntry]);
size_t count;
iss >> count;
currEntry++;
std::vector<uint8_t> thisVec;
for (size_t iCount = 0; iCount < count; iCount++) {
std::istringstream iss(tokens[currEntry]);
int intVal;
iss >> intVal;
thisVec.push_back((uint8_t)intVal);
currEntry++;
}
data.push_back(thisVec);
}
template <>
inline void TypedListProperty<int8_t>::parseNext(const std::vector<std::string>& tokens, size_t& currEntry) {
std::istringstream iss(tokens[currEntry]);
size_t count;
iss >> count;
currEntry++;
std::vector<int8_t> thisVec;
for (size_t iCount = 0; iCount < count; iCount++) {
std::istringstream iss(tokens[currEntry]);
int intVal;
iss >> intVal;
thisVec.push_back((int8_t)intVal);
currEntry++;
}
data.push_back(thisVec);
}
/**
* @brief Helper function to construct a new property of the appropriate type.
*
* @param name The name of the property to construct.
* @param typeStr A string naming the type according to the format.
* @param isList Is this a plain property, or a list property?
* @param listCountTypeStr If a list property, the type of the count varible.
*
* @return A new Property with the proper type.
*/
inline std::unique_ptr<Property> createPropertyWithType(const std::string& name, const std::string& typeStr, bool isList,
const std::string& listCountTypeStr) {
// == Figure out how many bytes the list count field has, if this is a list type
// Note: some files seem to use signed types here, we read the width but always parse as if unsigned
int listCountBytes = -1;
if (isList) {
if (listCountTypeStr == "uchar" || listCountTypeStr == "uint8" || listCountTypeStr == "char" ||
listCountTypeStr == "int8") {
listCountBytes = 1;
} else if (listCountTypeStr == "ushort" || listCountTypeStr == "uint16" || listCountTypeStr == "short" ||
listCountTypeStr == "int16") {
listCountBytes = 2;
} else if (listCountTypeStr == "uint" || listCountTypeStr == "uint32" || listCountTypeStr == "int" ||
listCountTypeStr == "int32") {
listCountBytes = 4;
} else {
throw std::runtime_error("Unrecognized list count type: " + listCountTypeStr);
}
}
// = Unsigned int
// 8 bit unsigned
if (typeStr == "uchar" || typeStr == "uint8") {
if (isList) {
return std::unique_ptr<Property>(new TypedListProperty<uint8_t>(name, listCountBytes));
} else {
return std::unique_ptr<Property>(new TypedProperty<uint8_t>(name));
}
}
// 16 bit unsigned
else if (typeStr == "ushort" || typeStr == "uint16") {
if (isList) {
return std::unique_ptr<Property>(new TypedListProperty<uint16_t>(name, listCountBytes));
} else {
return std::unique_ptr<Property>(new TypedProperty<uint16_t>(name));
}
}
// 32 bit unsigned
else if (typeStr == "uint" || typeStr == "uint32") {
if (isList) {
return std::unique_ptr<Property>(new TypedListProperty<uint32_t>(name, listCountBytes));
} else {
return std::unique_ptr<Property>(new TypedProperty<uint32_t>(name));
}
}
// = Signed int
// 8 bit signed
if (typeStr == "char" || typeStr == "int8") {
if (isList) {
return std::unique_ptr<Property>(new TypedListProperty<int8_t>(name, listCountBytes));
} else {
return std::unique_ptr<Property>(new TypedProperty<int8_t>(name));
}
}
// 16 bit signed
else if (typeStr == "short" || typeStr == "int16") {
if (isList) {
return std::unique_ptr<Property>(new TypedListProperty<int16_t>(name, listCountBytes));
} else {
return std::unique_ptr<Property>(new TypedProperty<int16_t>(name));
}
}
// 32 bit signed
else if (typeStr == "int" || typeStr == "int32") {
if (isList) {
return std::unique_ptr<Property>(new TypedListProperty<int32_t>(name, listCountBytes));
} else {
return std::unique_ptr<Property>(new TypedProperty<int32_t>(name));
}
}
// = Float
// 32 bit float
else if (typeStr == "float" || typeStr == "float32") {
if (isList) {
return std::unique_ptr<Property>(new TypedListProperty<float>(name, listCountBytes));
} else {
return std::unique_ptr<Property>(new TypedProperty<float>(name));
}
}
// 64 bit float
else if (typeStr == "double" || typeStr == "float64") {
if (isList) {
return std::unique_ptr<Property>(new TypedListProperty<double>(name, listCountBytes));
} else {
return std::unique_ptr<Property>(new TypedProperty<double>(name));
}
}
else {
throw std::runtime_error("Data type: " + typeStr + " cannot be mapped to .ply format");
}
}
/**
* @brief An element (more properly an element type) in the .ply object. Tracks the name of the elemnt type (eg,
* "vertices"), the number of elements of that type (eg, 1244), and any properties associated with that element (eg,
* "position", "color").
*/
class Element {
public:
/**
* @brief Create a new element type.
*
* @param name_ Name of the element type (eg, "vertices")
* @param count_ Number of instances of this element.
*/
Element(const std::string& name_, size_t count_) : name(name_), count(count_) {}
std::string name;
size_t count;
std::vector<std::unique_ptr<Property>> properties;
/**
* @brief Check if a property exists.
*
* @param target The name of the property to get.
*
* @return Whether the target property exists.
*/
bool hasProperty(const std::string& target) {
for (std::unique_ptr<Property>& prop : properties) {
if (prop->name == target) {
return true;
}
}
return false;
}
/**
* @brief Low-level method to get a pointer to a property. Users probably don't need to call this.
*
* @param target The name of the property to get.
*
* @return A (unique_ptr) pointer to the property.
*/
std::unique_ptr<Property>& getPropertyPtr(const std::string& target) {
for (std::unique_ptr<Property>& prop : properties) {
if (prop->name == target) {
return prop;
}
}
throw std::runtime_error("PLY parser: element " + name + " does not have property " + target);
}
/**
* @brief Add a new (plain, not list) property for this element type.
*
* @tparam T The type of the property
* @param propertyName The name of the property
* @param data The data for the property. Must have the same length as the number of elements.
*/
template <class T>
void addProperty(const std::string& propertyName, const std::vector<T>& data) {
if (data.size() != count) {
throw std::runtime_error("PLY write: new property " + propertyName + " has size which does not match element");
}
// If there is already some property with this name, remove it
for (size_t i = 0; i < properties.size(); i++) {
if (properties[i]->name == propertyName) {
properties.erase(properties.begin() + i);
i--;
}
}
// Copy to canonical type. Often a no-op, but takes care of standardizing widths across platforms.
std::vector<typename CanonicalName<T>::type> canonicalVec(data.begin(), data.end());
properties.push_back(
std::unique_ptr<Property>(new TypedProperty<typename CanonicalName<T>::type>(propertyName, canonicalVec)));
}
/**
* @brief Add a new list property for this element type.
*
* @tparam T The type of the property (eg, "double" for a list of doubles)
* @param propertyName The name of the property
* @param data The data for the property. Outer vector must have the same length as the number of elements.
*/
template <class T>
void addListProperty(const std::string& propertyName, const std::vector<std::vector<T>>& data) {
if (data.size() != count) {
throw std::runtime_error("PLY write: new property " + propertyName + " has size which does not match element");
}
// If there is already some property with this name, remove it
for (size_t i = 0; i < properties.size(); i++) {
if (properties[i]->name == propertyName) {
properties.erase(properties.begin() + i);
i--;
}
}
// Copy to canonical type. Often a no-op, but takes care of standardizing widths across platforms.
std::vector<std::vector<typename CanonicalName<T>::type>> canonicalListVec;
for (const std::vector<T>& subList : data) {
canonicalListVec.emplace_back(subList.begin(), subList.end());
}
properties.push_back(std::unique_ptr<Property>(
new TypedListProperty<typename CanonicalName<T>::type>(propertyName, canonicalListVec)));
}
/**
* @brief Get a vector of a data from a property for this element. Automatically promotes to larger types. Throws if
* requested data is unavailable.
*
* @tparam T The type of data requested
* @param propertyName The name of the property to get.
*
* @return The data.
*/
template <class T>
std::vector<T> getProperty(const std::string& propertyName) {
// Find the property
std::unique_ptr<Property>& prop = getPropertyPtr(propertyName);
// Get a copy of the data with auto-promoting type magic
return getDataFromPropertyRecursive<T, T>(prop.get());
}
/**
* @brief Get a vector of lists of data from a property for this element. Automatically promotes to larger types.
* Throws if requested data is unavailable.
*
* @tparam T The type of data requested
* @param propertyName The name of the property to get.
*
* @return The data.
*/
template <class T>
std::vector<std::vector<T>> getListProperty(const std::string& propertyName) {
// Find the property
std::unique_ptr<Property>& prop = getPropertyPtr(propertyName);
// Get a copy of the data with auto-promoting type magic
return getDataFromListPropertyRecursive<T, T>(prop.get());
}
/**
* @brief Get a vector of lists of data from a property for this element. Automatically promotes to larger types.
* Unlike getListProperty(), this method will additionally convert between types of different sign (eg, requesting and
* int32 would get data from a uint32); doing so naively converts between signed and unsigned types. This is typically
* useful for data representing indices, which might be stored as signed or unsigned numbers.
*
* @tparam T The type of data requested
* @param propertyName The name of the property to get.
*
* @return The data.
*/
template <class T>
std::vector<std::vector<T>> getListPropertyAnySign(const std::string& propertyName) {
// Find the property
std::unique_ptr<Property>& prop = getPropertyPtr(propertyName);
// Get a copy of the data with auto-promoting type magic
try {
// First, try the usual approach, looking for a version of the property with the same signed-ness and possibly
// smaller size
return getDataFromListPropertyRecursive<T, T>(prop.get());
} catch (std::runtime_error orig_e) {
// If the usual approach fails, look for a version with opposite signed-ness
try {
// This type has the oppopsite signeness as the input type
typedef typename CanonicalName<T>::type Tcan;
typedef typename std::conditional<std::is_signed<Tcan>::value, typename std::make_unsigned<Tcan>::type,
typename std::make_signed<Tcan>::type>::type OppsignType;
std::vector<std::vector<OppsignType>> oppSignedResult = getListProperty<OppsignType>(propertyName);
// Very explicitly convert while copying
std::vector<std::vector<T>> origSignResult;
for (std::vector<OppsignType>& l : oppSignedResult) {
std::vector<T> newL;
for (OppsignType& v : l) {
newL.push_back(static_cast<T>(v));
}
origSignResult.push_back(newL);
}
return origSignResult;
} catch (std::runtime_error new_e) {
throw orig_e;
}
throw orig_e;
}
}
/**
* @brief Performs sanity checks on the element, throwing if any fail.
*/
void validate() {
// Make sure no properties have duplicate names, and no names have whitespace
for (size_t iP = 0; iP < properties.size(); iP++) {
for (char c : properties[iP]->name) {
if (std::isspace(c)) {
throw std::runtime_error("Ply validate: illegal whitespace in name " + properties[iP]->name);
}
}
for (size_t jP = iP + 1; jP < properties.size(); jP++) {
if (properties[iP]->name == properties[jP]->name) {
throw std::runtime_error("Ply validate: multiple properties with name " + properties[iP]->name);
}
}
}
// Make sure all properties have right length
for (size_t iP = 0; iP < properties.size(); iP++) {
if (properties[iP]->size() != count) {
throw std::runtime_error("Ply validate: property has wrong size. " + properties[iP]->name +
" does not match element size.");
}
}
}
/**
* @brief Writes out this element's information to the file header.
*
* @param outStream The stream to use.
*/
void writeHeader(std::ofstream& outStream) {
outStream << "element " << name << " " << count << "\n";
for (std::unique_ptr<Property>& p : properties) {
p->writeHeader(outStream);
}
}
/**
* @brief (ASCII writing) Writes out all of the data for every element of this element type to the stream, including
* all contained properties.
*
* @param outStream The stream to write to.
*/
void writeDataASCII(std::ofstream& outStream) {
// Question: what is the proper output for an element with no properties? Here, we write a blank line, so there is
// one line per element no matter what.
for (size_t iE = 0; iE < count; iE++) {
for (size_t iP = 0; iP < properties.size(); iP++) {
properties[iP]->writeDataASCII(outStream, iE);
if (iP < properties.size() - 1) {
outStream << " ";
}
}
outStream << "\n";
}
}
/**
* @brief (binary writing) Writes out all of the data for every element of this element type to the stream, including
* all contained properties.
*
* @param outStream The stream to write to.
*/
void writeDataBinary(std::ofstream& outStream) {
for (size_t iE = 0; iE < count; iE++) {
for (size_t iP = 0; iP < properties.size(); iP++) {
properties[iP]->writeDataBinary(outStream, iE);
}
}
}
/**
* @brief Helper function which does the hard work to implement type promotion for data getters. Throws if type
* conversion fails.
*
* @tparam D The desired output type
* @tparam T The current attempt for the actual type of the property
* @param prop The property to get (does not delete nor share pointer)
*
* @return The data, with the requested type
*/
template <class D, class T>
std::vector<D> getDataFromPropertyRecursive(Property* prop) {
typedef typename CanonicalName<T>::type Tcan;
{ // Try to return data of type D from a property of type T
TypedProperty<Tcan>* castedProp = dynamic_cast<TypedProperty<Tcan>*>(prop);
if (castedProp) {
// Succeeded, return a buffer of the data (copy while converting type)
std::vector<D> castedVec;
for (Tcan& v : castedProp->data) {
castedVec.push_back(static_cast<D>(v));
}
return castedVec;
}
}
TypeChain<Tcan> chainType;
if (chainType.hasChildType) {
return getDataFromPropertyRecursive<D, typename TypeChain<Tcan>::type>(prop);
} else {
// No smaller type to try, failure
throw std::runtime_error("PLY parser: property " + prop->name + " cannot be coerced to requested type " +
typeName<D>() + ". Has type " + prop->propertyTypeName());
}
}
/**
* @brief Helper function which does the hard work to implement type promotion for list data getters. Throws if type
* conversion fails.
*
* @tparam D The desired output type
* @tparam T The current attempt for the actual type of the property
* @param prop The property to get (does not delete nor share pointer)
*
* @return The data, with the requested type
*/
template <class D, class T>
std::vector<std::vector<D>> getDataFromListPropertyRecursive(Property* prop) {
typedef typename CanonicalName<T>::type Tcan;
TypedListProperty<Tcan>* castedProp = dynamic_cast<TypedListProperty<Tcan>*>(prop);
if (castedProp) {
// Succeeded, return a buffer of the data (copy while converting type)
std::vector<std::vector<D>> castedListVec;
for (std::vector<Tcan>& l : castedProp->data) {
std::vector<D> newL;
for (Tcan& v : l) {
newL.push_back(static_cast<D>(v));
}
castedListVec.push_back(newL);
}
return castedListVec;
}
TypeChain<Tcan> chainType;
if (chainType.hasChildType) {
return getDataFromListPropertyRecursive<D, typename TypeChain<Tcan>::type>(prop);
} else {
// No smaller type to try, failure
throw std::runtime_error("PLY parser: list property " + prop->name +
" cannot be coerced to requested type list " + typeName<D>() + ". Has type list " +
prop->propertyTypeName());
}
}
};
// Some string helpers
namespace {
inline std::string trimSpaces(const std::string& input) {
size_t start = 0;
while (start < input.size() && input[start] == ' ') start++;
size_t end = input.size();
while (end > start && (input[end - 1] == ' ' || input[end - 1] == '\n' || input[end - 1] == '\r')) end--;
return input.substr(start, end - start);
}
inline std::vector<std::string> tokenSplit(const std::string& input) {
std::vector<std::string> result;
size_t curr = 0;
size_t found = 0;
while ((found = input.find_first_of(' ', curr)) != std::string::npos) {
std::string token = input.substr(curr, found - curr);
token = trimSpaces(token);
if (token.size() > 0) {
result.push_back(token);
}
curr = found + 1;
}
std::string token = input.substr(curr);
token = trimSpaces(token);
if (token.size() > 0) {
result.push_back(token);
}
return result;
}
inline bool startsWith(const std::string& input, const std::string& query) { return input.compare(0, query.length(), query) == 0; }
}; // namespace
/**
* @brief Primary class; represents a set of data in the .ply format.
*/
class PLYData {
public:
/**
* @brief Create an empty PLYData object.
*/
PLYData(){};
/**
* @brief Initialize a PLYData by reading from a file. Throws if any failures occur.
*
* @param filename The file to read from.
* @param verbose If true, print useful info about the file to stdout
*/
PLYData(const std::string& filename, bool verbose = false) {
using std::cout;
using std::endl;
using std::string;
using std::vector;
if (verbose) cout << "PLY parser: Reading ply file: " << filename << endl;
// Open a file in binary always, in case it turns out to have binary data.
std::ifstream inStream(filename, std::ios::binary);
if (inStream.fail()) {
throw std::runtime_error("PLY parser: Could not open file " + filename);
}
// == Process the header
parseHeader(inStream, verbose);
// === Parse data from a binary file
if (inputDataFormat == DataFormat::Binary) {
parseBinary(inStream, verbose);
}
// === Parse data from an ASCII file
else if (inputDataFormat == DataFormat::ASCII) {
parseASCII(inStream, verbose);
}
if (verbose) {
cout << " - Finished parsing file." << endl;
}
}
/**
* @brief Perform sanity checks on the file, throwing if any fail.
*/
void validate() {
for (size_t iE = 0; iE < elements.size(); iE++) {
for (char c : elements[iE].name) {
if (std::isspace(c)) {
throw std::runtime_error("Ply validate: illegal whitespace in element name " + elements[iE].name);
}
}
for (size_t jE = iE + 1; jE < elements.size(); jE++) {
if (elements[iE].name == elements[jE].name) {
throw std::runtime_error("Ply validate: duplcate element name " + elements[iE].name);
}
}
}
// Do a quick validation sanity check
for (Element& e : elements) {
e.validate();
}
}
/**
* @brief Write this data to a .ply file.
*
* @param filename The file to write to.
* @param format The format to use (binary or ascii?)
*/
void write(const std::string& filename, DataFormat format = DataFormat::ASCII) {
outputDataFormat = format;
validate();
// Open stream for writing
std::ofstream outStream(filename, std::ios::out | std::ios::binary);
if (!outStream.good()) {
throw std::runtime_error("Ply writer: Could not open output file " + filename + " for writing");
}
writeHeader(outStream);
// Write all elements
for (Element& e : elements) {
if (outputDataFormat == DataFormat::Binary) {
e.writeDataBinary(outStream);
} else if (outputDataFormat == DataFormat::ASCII) {
e.writeDataASCII(outStream);
}
}
}
/**
* @brief Get an element type by name ("vertices")
*
* @param target The name of the element type to get
*
* @return A reference to the element type.
*/
Element& getElement(const std::string& target) {
for (Element& e : elements) {
if (e.name == target) return e;
}
throw std::runtime_error("PLY parser: no element with name: " + target);
}
/**
* @brief Check if an element type exists
*
* @param target The name to check for.
*
* @return True if exists.
*/
bool hasElement(const std::string& target) {
for (Element& e : elements) {
if (e.name == target) return true;
}
return false;
}
/**
* @brief Add a new element type to the object
*
* @param name The name of the new element type ("vertices").
* @param count The number of elements of this type.
*/
void addElement(const std::string& name, size_t count) { elements.emplace_back(name, count); }
// === Common-case helpers
/**
* @brief Common-case helper get mesh vertex positions
*
* @param vertexElementName The element name to use (default: "vertex")
*
* @return A vector of vertex positions.
*/
std::vector<std::array<double, 3>> getVertexPositions(const std::string& vertexElementName = "vertex") {
std::vector<double> xPos = getElement(vertexElementName).getProperty<double>("x");
std::vector<double> yPos = getElement(vertexElementName).getProperty<double>("y");
std::vector<double> zPos = getElement(vertexElementName).getProperty<double>("z");
std::vector<std::array<double, 3>> result(xPos.size());
for (size_t i = 0; i < result.size(); i++) {
result[i][0] = xPos[i];
result[i][1] = yPos[i];
result[i][2] = zPos[i];
}
return result;
}
/**
* @brief Common-case helper get mesh vertex colors
*
* @param vertexElementName The element name to use (default: "vertex")
*
* @return A vector of vertex colors (unsigned chars [0,255]).
*/
std::vector<std::array<unsigned char, 3>> getVertexColors(const std::string& vertexElementName = "vertex") {
std::vector<unsigned char> r = getElement(vertexElementName).getProperty<unsigned char>("red");
std::vector<unsigned char> g = getElement(vertexElementName).getProperty<unsigned char>("green");
std::vector<unsigned char> b = getElement(vertexElementName).getProperty<unsigned char>("blue");
std::vector<std::array<unsigned char, 3>> result(r.size());
for (size_t i = 0; i < result.size(); i++) {
result[i][0] = r[i];
result[i][1] = g[i];
result[i][2] = b[i];
}
return result;
}
/**
* @brief Common-case helper to get face indices for a mesh. If not template type is given, size_t is used. Naively
* converts to requested signedness, which may lead to unexpected values if an unsigned type is used and file contains
* negative values.
*
* @return The indices into the vertex elements for each face. Usually 0-based, though there are no formal rules.
*/
template <typename T = size_t>
std::vector<std::vector<T>> getFaceIndices() {
for (const std::string& f : std::vector<std::string>{"face"}) {
for (const std::string& p : std::vector<std::string>{"vertex_indices", "vertex_index"}) {
try {
return getElement(f).getListPropertyAnySign<T>(p);
} catch (std::runtime_error e) {
// that's fine
}
}
}
throw std::runtime_error("PLY parser: could not find face vertex indices attribute under any common name.");
}
/**
* @brief Common-case helper set mesh vertex positons. Creates vertex element, if necessary.
*
* @param vertexPositions A vector of vertex positions
*/
void addVertexPositions(std::vector<std::array<double, 3>>& vertexPositions) {
std::string vertexName = "vertex";
size_t N = vertexPositions.size();
// Create the element
if (!hasElement(vertexName)) {
addElement(vertexName, N);
}
// De-interleave
std::vector<double> xPos(N);
std::vector<double> yPos(N);
std::vector<double> zPos(N);
for (size_t i = 0; i < vertexPositions.size(); i++) {
xPos[i] = vertexPositions[i][0];
yPos[i] = vertexPositions[i][1];
zPos[i] = vertexPositions[i][2];
}
// Store
getElement(vertexName).addProperty<double>("x", xPos);
getElement(vertexName).addProperty<double>("y", yPos);
getElement(vertexName).addProperty<double>("z", zPos);
}
/**
* @brief Common-case helper set mesh vertex colors. Creates a vertex element, if necessary.
*
* @param colors A vector of vertex colors (unsigned chars [0,255]).
*/
void addVertexColors(std::vector<std::array<unsigned char, 3>>& colors) {
std::string vertexName = "vertex";
size_t N = colors.size();
// Create the element
if (!hasElement(vertexName)) {
addElement(vertexName, N);
}
// De-interleave
std::vector<unsigned char> r(N);
std::vector<unsigned char> g(N);
std::vector<unsigned char> b(N);
for (size_t i = 0; i < colors.size(); i++) {
r[i] = colors[i][0];
g[i] = colors[i][1];
b[i] = colors[i][2];
}
// Store
getElement(vertexName).addProperty<unsigned char>("red", r);
getElement(vertexName).addProperty<unsigned char>("green", g);
getElement(vertexName).addProperty<unsigned char>("blue", b);
}
/**
* @brief Common-case helper set mesh vertex colors. Creates a vertex element, if necessary.
*
* @param colors A vector of vertex colors as floating point [0,1] values. Internally converted to [0,255] chars.
*/
void addVertexColors(std::vector<std::array<double, 3>>& colors) {
std::string vertexName = "vertex";
size_t N = colors.size();
// Create the element
if (!hasElement(vertexName)) {
addElement(vertexName, N);
}
auto toChar = [](double v) {
if (v < 0.0) v = 0.0;
if (v > 1.0) v = 1.0;
return static_cast<unsigned char>(v * 255.);
};
// De-interleave
std::vector<unsigned char> r(N);
std::vector<unsigned char> g(N);
std::vector<unsigned char> b(N);
for (size_t i = 0; i < colors.size(); i++) {
r[i] = toChar(colors[i][0]);
g[i] = toChar(colors[i][1]);
b[i] = toChar(colors[i][2]);
}
// Store
getElement(vertexName).addProperty<unsigned char>("red", r);
getElement(vertexName).addProperty<unsigned char>("green", g);
getElement(vertexName).addProperty<unsigned char>("blue", b);
}
/**
* @brief Common-case helper to set face indices. Creates a face element if needed. The input type will be casted to a
* 32 bit integer of the same signedness.
*
* @param indices The indices into the vertex list around each face.
*/
template <typename T>
void addFaceIndices(std::vector<std::vector<T>>& indices) {
std::string faceName = "face";
size_t N = indices.size();
// Create the element
if (!hasElement(faceName)) {
addElement(faceName, N);
}
// Cast to 32 bit
typedef typename std::conditional<std::is_signed<T>::value, int32_t, uint32_t>::type IndType;
std::vector<std::vector<IndType>> intInds;
for (std::vector<T>& l : indices) {
std::vector<IndType> thisInds;
for (T& val : l) {
IndType valConverted = static_cast<IndType>(val);
if (valConverted != val) {
throw std::runtime_error("Index value " + std::to_string(val) +
" could not be converted to a .ply integer without loss of data. Note that .ply "
"only supports 32-bit ints.");
}
thisInds.push_back(valConverted);
}
intInds.push_back(thisInds);
}
// Store
getElement(faceName).addListProperty<IndType>("vertex_indices", intInds);
}
/**
* @brief Comments for the file. When writing, each entry will be written as a sequential comment line.
*/
std::vector<std::string> comments;
private:
std::vector<Element> elements;
const int majorVersion = 1; // I'll buy you a drink if these ever get bumped
const int minorVersion = 0;
DataFormat inputDataFormat = DataFormat::ASCII; // set when reading from a file
DataFormat outputDataFormat = DataFormat::ASCII; // option for writing files
// === Reading ===
/**
* @brief Read the header for a file
*
* @param inStream
* @param verbose
*/
void parseHeader(std::ifstream& inStream, bool verbose) {
using std::cout;
using std::endl;
using std::string;
using std::vector;
// First two lines are predetermined
{ // First line is magic constant
string plyLine;
std::getline(inStream, plyLine);
if (trimSpaces(plyLine) != "ply") {
throw std::runtime_error("PLY parser: File does not appear to be ply file. First line should be 'ply'");
}
}
{ // second line is version
string styleLine;
std::getline(inStream, styleLine);
vector<string> tokens = tokenSplit(styleLine);
if (tokens.size() != 3) throw std::runtime_error("PLY parser: bad format line");
std::string formatStr = tokens[0];
std::string typeStr = tokens[1];
std::string versionStr = tokens[2];
// "format"
if (formatStr != "format") throw std::runtime_error("PLY parser: bad format line");
// ascii/binary
if (typeStr == "ascii") {
inputDataFormat = DataFormat::ASCII;
if (verbose) cout << " - Type: ascii" << endl;
} else if (typeStr == "binary_little_endian") {
inputDataFormat = DataFormat::Binary;
if (verbose) cout << " - Type: binary" << endl;
} else if (typeStr == "binary_big_endian") {
throw std::runtime_error("PLY parser: encountered scary big endian file. Don't know how to parse that");
} else {
throw std::runtime_error("PLY parser: bad format line");
}
// version
if (versionStr != "1.0") {
throw std::runtime_error("PLY parser: encountered file with version != 1.0. Don't know how to parse that");
}
if (verbose) cout << " - Version: " << versionStr << endl;
}
// Consume header line by line
while (inStream.good()) {
string line;
std::getline(inStream, line);
// Parse a comment
if (startsWith(line, "comment")) {
string comment = line.substr(7);
if (verbose) cout << " - Comment: " << comment << endl;
comments.push_back(comment);
continue;
}
// Parse an element
else if (startsWith(line, "element")) {
vector<string> tokens = tokenSplit(line);
if (tokens.size() != 3) throw std::runtime_error("PLY parser: Invalid element line");
string name = tokens[1];
size_t count;
std::istringstream iss(tokens[2]);
iss >> count;
elements.emplace_back(name, count);
if (verbose) cout << " - Found element: " << name << " (count = " << count << ")" << endl;
continue;
}
// Parse a property list
else if (startsWith(line, "property list")) {
vector<string> tokens = tokenSplit(line);
if (tokens.size() != 5) throw std::runtime_error("PLY parser: Invalid property list line");
if (elements.size() == 0) throw std::runtime_error("PLY parser: Found property list without previous element");
string countType = tokens[2];
string type = tokens[3];
string name = tokens[4];
elements.back().properties.push_back(createPropertyWithType(name, type, true, countType));
if (verbose)
cout << " - Found list property: " << name << " (count type = " << countType << ", data type = " << type
<< ")" << endl;
continue;
}
// Parse a property
else if (startsWith(line, "property")) {
vector<string> tokens = tokenSplit(line);
if (tokens.size() != 3) throw std::runtime_error("PLY parser: Invalid property line");
if (elements.size() == 0) throw std::runtime_error("PLY parser: Found property without previous element");
string type = tokens[1];
string name = tokens[2];
elements.back().properties.push_back(createPropertyWithType(name, type, false, ""));
if (verbose) cout << " - Found property: " << name << " (type = " << type << ")" << endl;
continue;
}
// Parse end of header
else if (startsWith(line, "end_header")) {
break;
}
// Error!
else {
throw std::runtime_error("Unrecognized header line: " + line);
}
}
}
/**
* @brief Read the actual data for a file, in ASCII
*
* @param inStream
* @param verbose
*/
void parseASCII(std::ifstream& inStream, bool verbose) {
using std::string;
using std::vector;
// Read all elements
for (Element& elem : elements) {
if (verbose) {
std::cout << " - Processing element: " << elem.name << std::endl;
}
for (size_t iP = 0; iP < elem.properties.size(); iP++) {
elem.properties[iP]->reserve(elem.count);
}
for (size_t iEntry = 0; iEntry < elem.count; iEntry++) {
string line;
std::getline(inStream, line);
vector<string> tokens = tokenSplit(line);
size_t iTok = 0;
for (size_t iP = 0; iP < elem.properties.size(); iP++) {
elem.properties[iP]->parseNext(tokens, iTok);
}
}
}
}
/**
* @brief Read the actual data for a file, in binary.
*
* @param inStream
* @param verbose
*/
void parseBinary(std::ifstream& inStream, bool verbose) {
using std::string;
using std::vector;
// Read all elements
for (Element& elem : elements) {
if (verbose) {
std::cout << " - Processing element: " << elem.name << std::endl;
}
for (size_t iP = 0; iP < elem.properties.size(); iP++) {
elem.properties[iP]->reserve(elem.count);
}
for (size_t iEntry = 0; iEntry < elem.count; iEntry++) {
for (size_t iP = 0; iP < elem.properties.size(); iP++) {
elem.properties[iP]->readNext(inStream);
}
}
}
}
// === Writing ===
/**
* @brief Write out a header for a file
*
* @param outStream
*/
void writeHeader(std::ofstream& outStream) {
// Magic line
outStream << "ply\n";
// Type line
outStream << "format ";
if (outputDataFormat == DataFormat::Binary) {
outStream << "binary_little_endian ";
} else if (outputDataFormat == DataFormat::ASCII) {
outStream << "ascii ";
}
// Version number
outStream << majorVersion << "." << minorVersion << "\n";
// Write comments
for (const std::string& comment : comments) {
outStream << "comment " << comment << "\n";
}
outStream << "comment "
<< "Written with hapPLY (https://github.com/nmwsharp/happly)"
<< "\n";
// Write elements (and their properties)
for (Element& e : elements) {
e.writeHeader(outStream);
}
// End header
outStream << "end_header\n";
}
};
} // namespace happly
|