1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
|
//
// Implementation for Yocto/BVH
//
//
// LICENSE:
//
// Copyright (c) 2016 -- 2019 Fabio Pellacini
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//
// -----------------------------------------------------------------------------
// INCLUDES
// -----------------------------------------------------------------------------
#include "yocto_bvh.h"
#include <algorithm>
#include <atomic>
#include <deque>
#include <future>
#include <thread>
#if YOCTO_EMBREE
#include <embree3/rtcore.h>
#endif
// -----------------------------------------------------------------------------
// IMPLEMENRTATION OF RAY-PRIMITIVE INTERSECTION FUNCTIONS
// -----------------------------------------------------------------------------
namespace yocto {
// Intersect a ray with a point (approximate)
bool intersect_point(
const ray3f& ray, const vec3f& p, float r, vec2f& uv, float& dist) {
// find parameter for line-point minimum distance
auto w = p - ray.o;
auto t = dot(w, ray.d) / dot(ray.d, ray.d);
// exit if not within bounds
if (t < ray.tmin || t > ray.tmax) return false;
// test for line-point distance vs point radius
auto rp = ray.o + ray.d * t;
auto prp = p - rp;
if (dot(prp, prp) > r * r) return false;
// intersection occurred: set params and exit
uv = {0, 0};
dist = t;
return true;
}
// Intersect a ray with a line
bool intersect_line(const ray3f& ray, const vec3f& p0, const vec3f& p1,
float r0, float r1, vec2f& uv, float& dist) {
// setup intersection params
auto u = ray.d;
auto v = p1 - p0;
auto w = ray.o - p0;
// compute values to solve a linear system
auto a = dot(u, u);
auto b = dot(u, v);
auto c = dot(v, v);
auto d = dot(u, w);
auto e = dot(v, w);
auto det = a * c - b * b;
// check determinant and exit if lines are parallel
// (could use EPSILONS if desired)
if (det == 0) return false;
// compute Parameters on both ray and segment
auto t = (b * e - c * d) / det;
auto s = (a * e - b * d) / det;
// exit if not within bounds
if (t < ray.tmin || t > ray.tmax) return false;
// clamp segment param to segment corners
s = clamp(s, (float)0, (float)1);
// compute segment-segment distance on the closest points
auto pr = ray.o + ray.d * t;
auto pl = p0 + (p1 - p0) * s;
auto prl = pr - pl;
// check with the line radius at the same point
auto d2 = dot(prl, prl);
auto r = r0 * (1 - s) + r1 * s;
if (d2 > r * r) return {};
// intersection occurred: set params and exit
uv = {s, sqrt(d2) / r};
dist = t;
return true;
}
// Intersect a ray with a triangle
bool intersect_triangle(const ray3f& ray, const vec3f& p0, const vec3f& p1,
const vec3f& p2, vec2f& uv, float& dist) {
// compute triangle edges
auto edge1 = p1 - p0;
auto edge2 = p2 - p0;
// compute determinant to solve a linear system
auto pvec = cross(ray.d, edge2);
auto det = dot(edge1, pvec);
// check determinant and exit if triangle and ray are parallel
// (could use EPSILONS if desired)
if (det == 0) return false;
auto inv_det = 1.0f / det;
// compute and check first bricentric coordinated
auto tvec = ray.o - p0;
auto u = dot(tvec, pvec) * inv_det;
if (u < 0 || u > 1) return false;
// compute and check second bricentric coordinated
auto qvec = cross(tvec, edge1);
auto v = dot(ray.d, qvec) * inv_det;
if (v < 0 || u + v > 1) return false;
// compute and check ray parameter
auto t = dot(edge2, qvec) * inv_det;
if (t < ray.tmin || t > ray.tmax) return false;
// intersection occurred: set params and exit
uv = {u, v};
dist = t;
return true;
}
// Intersect a ray with a quad.
bool intersect_quad(const ray3f& ray, const vec3f& p0, const vec3f& p1,
const vec3f& p2, const vec3f& p3, vec2f& uv, float& dist) {
if (p2 == p3) {
return intersect_triangle(ray, p0, p1, p3, uv, dist);
}
auto hit = false;
auto tray = ray;
if (intersect_triangle(tray, p0, p1, p3, uv, dist)) {
hit = true;
tray.tmax = dist;
}
if (intersect_triangle(tray, p2, p3, p1, uv, dist)) {
hit = true;
uv = 1 - uv;
tray.tmax = dist;
}
return hit;
}
// Intersect a ray with a axis-aligned bounding box
inline bool intersect_bbox(const ray3f& ray, const bbox3f& bbox) {
// determine intersection ranges
auto invd = 1.0f / ray.d;
auto t0 = (bbox.min - ray.o) * invd;
auto t1 = (bbox.max - ray.o) * invd;
// flip based on range directions
if (invd.x < 0.0f) swap(t0.x, t1.x);
if (invd.y < 0.0f) swap(t0.y, t1.y);
if (invd.z < 0.0f) swap(t0.z, t1.z);
auto tmin = max(t0.z, max(t0.y, max(t0.x, ray.tmin)));
auto tmax = min(t1.z, min(t1.y, min(t1.x, ray.tmax)));
tmax *= 1.00000024f; // for double: 1.0000000000000004
return tmin <= tmax;
}
// Intersect a ray with a axis-aligned bounding box
inline bool intersect_bbox(
const ray3f& ray, const vec3f& ray_dinv, const bbox3f& bbox) {
auto it_min = (bbox.min - ray.o) * ray_dinv;
auto it_max = (bbox.max - ray.o) * ray_dinv;
auto tmin = min(it_min, it_max);
auto tmax = max(it_min, it_max);
auto t0 = max(max(tmin), ray.tmin);
auto t1 = min(min(tmax), ray.tmax);
t1 *= 1.00000024f; // for double: 1.0000000000000004
return t0 <= t1;
}
} // namespace yocto
// -----------------------------------------------------------------------------
// IMPLEMENRTATION OF POINT-PRIMITIVE DISTANCE FUNCTIONS
// -----------------------------------------------------------------------------
namespace yocto {
// TODO: documentation
bool overlap_point(const vec3f& pos, float dist_max, const vec3f& p, float r,
vec2f& uv, float& dist) {
auto d2 = dot(pos - p, pos - p);
if (d2 > (dist_max + r) * (dist_max + r)) return false;
uv = {0, 0};
dist = sqrt(d2);
return true;
}
// TODO: documentation
float closestuv_line(const vec3f& pos, const vec3f& p0, const vec3f& p1) {
auto ab = p1 - p0;
auto d = dot(ab, ab);
// Project c onto ab, computing parameterized position d(t) = a + t*(b –
// a)
auto u = dot(pos - p0, ab) / d;
u = clamp(u, (float)0, (float)1);
return u;
}
// TODO: documentation
bool overlap_line(const vec3f& pos, float dist_max, const vec3f& p0,
const vec3f& p1, float r0, float r1, vec2f& uv, float& dist) {
auto u = closestuv_line(pos, p0, p1);
// Compute projected position from the clamped t d = a + t * ab;
auto p = p0 + (p1 - p0) * u;
auto r = r0 + (r1 - r0) * u;
auto d2 = dot(pos - p, pos - p);
// check distance
if (d2 > (dist_max + r) * (dist_max + r)) return false;
// done
uv = {u, 0};
dist = sqrt(d2);
return true;
}
// TODO: documentation
// this is a complicated test -> I probably "--"+prefix to use a sequence of
// test (triangle body, and 3 edges)
vec2f closestuv_triangle(
const vec3f& pos, const vec3f& p0, const vec3f& p1, const vec3f& p2) {
auto ab = p1 - p0;
auto ac = p2 - p0;
auto ap = pos - p0;
auto d1 = dot(ab, ap);
auto d2 = dot(ac, ap);
// corner and edge cases
if (d1 <= 0 && d2 <= 0) return {0, 0};
auto bp = pos - p1;
auto d3 = dot(ab, bp);
auto d4 = dot(ac, bp);
if (d3 >= 0 && d4 <= d3) return {1, 0};
auto vc = d1 * d4 - d3 * d2;
if ((vc <= 0) && (d1 >= 0) && (d3 <= 0)) return {d1 / (d1 - d3), 0};
auto cp = pos - p2;
auto d5 = dot(ab, cp);
auto d6 = dot(ac, cp);
if (d6 >= 0 && d5 <= d6) return {0, 1};
auto vb = d5 * d2 - d1 * d6;
if ((vb <= 0) && (d2 >= 0) && (d6 <= 0)) return {0, d2 / (d2 - d6)};
auto va = d3 * d6 - d5 * d4;
if ((va <= 0) && (d4 - d3 >= 0) && (d5 - d6 >= 0)) {
auto w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
return {1 - w, w};
}
// face case
auto denom = 1 / (va + vb + vc);
auto u = vb * denom;
auto v = vc * denom;
return {u, v};
}
// TODO: documentation
bool overlap_triangle(const vec3f& pos, float dist_max, const vec3f& p0,
const vec3f& p1, const vec3f& p2, float r0, float r1, float r2, vec2f& uv,
float& dist) {
auto cuv = closestuv_triangle(pos, p0, p1, p2);
auto p = p0 * (1 - cuv.x - cuv.y) + p1 * cuv.x + p2 * cuv.y;
auto r = r0 * (1 - cuv.x - cuv.y) + r1 * cuv.x + r2 * cuv.y;
auto dd = dot(p - pos, p - pos);
if (dd > (dist_max + r) * (dist_max + r)) return false;
uv = cuv;
dist = sqrt(dd);
return true;
}
// TODO: documentation
bool overlap_quad(const vec3f& pos, float dist_max, const vec3f& p0,
const vec3f& p1, const vec3f& p2, const vec3f& p3, float r0, float r1,
float r2, float r3, vec2f& uv, float& dist) {
if (p2 == p3) {
return overlap_triangle(pos, dist_max, p0, p1, p3, r0, r1, r2, uv, dist);
}
auto hit = false;
if (overlap_triangle(pos, dist_max, p0, p1, p3, r0, r1, r2, uv, dist)) {
hit = true;
dist_max = dist;
}
if (!overlap_triangle(pos, dist_max, p2, p3, p1, r2, r3, r1, uv, dist)) {
hit = true;
uv = 1 - uv;
// dist_max = dist;
}
return hit;
}
// TODO: documentation
inline bool distance_check_bbox(
const vec3f& pos, float dist_max, const bbox3f& bbox) {
// computing distance
auto dd = 0.0f;
// For each axis count any excess distance outside box extents
if (pos.x < bbox.min.x) dd += (bbox.min.x - pos.x) * (bbox.min.x - pos.x);
if (pos.x > bbox.max.x) dd += (pos.x - bbox.max.x) * (pos.x - bbox.max.x);
if (pos.y < bbox.min.y) dd += (bbox.min.y - pos.y) * (bbox.min.y - pos.y);
if (pos.y > bbox.max.y) dd += (pos.y - bbox.max.y) * (pos.y - bbox.max.y);
if (pos.z < bbox.min.z) dd += (bbox.min.z - pos.z) * (bbox.min.z - pos.z);
if (pos.z > bbox.max.z) dd += (pos.z - bbox.max.z) * (pos.z - bbox.max.z);
// check distance
return dd < dist_max * dist_max;
}
// TODO: doc
inline bool overlap_bbox(const bbox3f& bbox1, const bbox3f& bbox2) {
if (bbox1.max.x < bbox2.min.x || bbox1.min.x > bbox2.max.x) return false;
if (bbox1.max.y < bbox2.min.y || bbox1.min.y > bbox2.max.y) return false;
if (bbox1.max.z < bbox2.min.z || bbox1.min.z > bbox2.max.z) return false;
return true;
}
} // namespace yocto
// -----------------------------------------------------------------------------
// IMPLEMENTATION FOR BVH
// -----------------------------------------------------------------------------
namespace yocto {
#if YOCTO_EMBREE
// Cleanup
bvh_shape::~bvh_shape() {
if (embree_bvh) {
rtcReleaseScene((RTCScene)embree_bvh);
}
}
// Cleanup
bvh_scene::~bvh_scene() {
if (embree_bvh) {
rtcReleaseScene((RTCScene)embree_bvh);
}
}
static void embree_error(void* ctx, RTCError code, const char* str) {
switch (code) {
case RTC_ERROR_UNKNOWN:
throw std::runtime_error("RTC_ERROR_UNKNOWN: "s + str);
break;
case RTC_ERROR_INVALID_ARGUMENT:
throw std::runtime_error("RTC_ERROR_INVALID_ARGUMENT: "s + str);
break;
case RTC_ERROR_INVALID_OPERATION:
throw std::runtime_error("RTC_ERROR_INVALID_OPERATION: "s + str);
break;
case RTC_ERROR_OUT_OF_MEMORY:
throw std::runtime_error("RTC_ERROR_OUT_OF_MEMORY: "s + str);
break;
case RTC_ERROR_UNSUPPORTED_CPU:
throw std::runtime_error("RTC_ERROR_UNSUPPORTED_CPU: "s + str);
break;
case RTC_ERROR_CANCELLED:
throw std::runtime_error("RTC_ERROR_CANCELLED: "s + str);
break;
default: throw std::runtime_error("invalid error code"); break;
}
}
// Embree memory
std::atomic<ssize_t> embree_memory = 0;
static bool embree_memory_monitor(void* userPtr, ssize_t bytes, bool post) {
embree_memory += bytes;
return true;
}
// Get Embree device
static RTCDevice get_embree_device() {
static RTCDevice device = nullptr;
if (!device) {
device = rtcNewDevice("");
rtcSetDeviceErrorFunction(device, embree_error, nullptr);
rtcSetDeviceMemoryMonitorFunction(device, embree_memory_monitor, nullptr);
}
return device;
}
// Initialize Embree BVH
static void build_embree_bvh(bvh_shape& shape, const bvh_params& params) {
auto embree_device = get_embree_device();
auto embree_scene = rtcNewScene(embree_device);
if (params.embree_compact) {
rtcSetSceneFlags(embree_scene, RTC_SCENE_FLAG_COMPACT);
}
if (params.high_quality) {
rtcSetSceneBuildQuality(embree_scene, RTC_BUILD_QUALITY_HIGH);
}
shape.embree_bvh = embree_scene;
auto embree_geom = (RTCGeometry) nullptr;
if (!shape.points.empty()) {
throw std::runtime_error("embree does not support points");
} else if (!shape.lines.empty()) {
auto elines = vector<int>{};
auto epositions = vector<vec4f>{};
auto last_index = -1;
for (auto& l : shape.lines) {
if (last_index == l.x) {
elines.push_back((int)epositions.size() - 1);
epositions.push_back({shape.positions[l.y], shape.radius[l.y]});
} else {
elines.push_back((int)epositions.size());
epositions.push_back({shape.positions[l.x], shape.radius[l.x]});
epositions.push_back({shape.positions[l.y], shape.radius[l.y]});
}
last_index = l.y;
}
embree_geom = rtcNewGeometry(
get_embree_device(), RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
rtcSetGeometryVertexAttributeCount(embree_geom, 1);
auto embree_positions = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, 4 * 4, epositions.size());
auto embree_lines = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, 4, elines.size());
memcpy(embree_positions, epositions.data(), epositions.size() * 16);
memcpy(embree_lines, elines.data(), elines.size() * 4);
} else if (!shape.triangles.empty()) {
embree_geom = rtcNewGeometry(
get_embree_device(), RTC_GEOMETRY_TYPE_TRIANGLE);
rtcSetGeometryVertexAttributeCount(embree_geom, 1);
if (params.embree_compact) {
rtcSetSharedGeometryBuffer(embree_geom, RTC_BUFFER_TYPE_VERTEX, 0,
RTC_FORMAT_FLOAT3, shape.positions.data(), 0, 3 * 4,
shape.positions.size());
rtcSetSharedGeometryBuffer(embree_geom, RTC_BUFFER_TYPE_INDEX, 0,
RTC_FORMAT_UINT3, shape.triangles.data(), 0, 3 * 4,
shape.triangles.size());
} else {
auto embree_positions = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, 3 * 4,
shape.positions.size());
auto embree_triangles = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, 3 * 4,
shape.triangles.size());
memcpy(embree_positions, shape.positions.data(),
shape.positions.size() * 12);
memcpy(embree_triangles, shape.triangles.data(),
shape.triangles.size() * 12);
}
} else if (!shape.quads.empty()) {
embree_geom = rtcNewGeometry(get_embree_device(), RTC_GEOMETRY_TYPE_QUAD);
rtcSetGeometryVertexAttributeCount(embree_geom, 1);
if (params.embree_compact) {
rtcSetSharedGeometryBuffer(embree_geom, RTC_BUFFER_TYPE_VERTEX, 0,
RTC_FORMAT_FLOAT3, shape.positions.data(), 0, 3 * 4,
shape.positions.size());
rtcSetSharedGeometryBuffer(embree_geom, RTC_BUFFER_TYPE_INDEX, 0,
RTC_FORMAT_UINT4, shape.quads.data(), 0, 4 * 4, shape.quads.size());
} else {
auto embree_positions = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, 3 * 4,
shape.positions.size());
auto embree_quads = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT4, 4 * 4,
shape.quads.size());
memcpy(embree_positions, shape.positions.data(),
shape.positions.size() * 12);
memcpy(embree_quads, shape.quads.data(), shape.quads.size() * 16);
}
} else if (!shape.quadspos.empty()) {
embree_geom = rtcNewGeometry(get_embree_device(), RTC_GEOMETRY_TYPE_QUAD);
rtcSetGeometryVertexAttributeCount(embree_geom, 1);
if (params.embree_compact) {
rtcSetSharedGeometryBuffer(embree_geom, RTC_BUFFER_TYPE_VERTEX, 0,
RTC_FORMAT_FLOAT3, shape.positions.data(), 0, 3 * 4,
shape.positions.size());
rtcSetSharedGeometryBuffer(embree_geom, RTC_BUFFER_TYPE_INDEX, 0,
RTC_FORMAT_UINT4, shape.quadspos.data(), 0, 4 * 4,
shape.quadspos.size());
} else {
auto embree_positions = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, 3 * 4,
shape.positions.size());
auto embree_quads = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT4, 4 * 4,
shape.quadspos.size());
memcpy(embree_positions, shape.positions.data(),
shape.positions.size() * 12);
memcpy(embree_quads, shape.quadspos.data(), shape.quadspos.size() * 16);
}
}
rtcCommitGeometry(embree_geom);
rtcAttachGeometryByID(embree_scene, embree_geom, 0);
rtcCommitScene(embree_scene);
shape.embree_flattened = false;
}
// Build a BVH using Embree.
static void build_embree_bvh(bvh_scene& scene, const bvh_params& params) {
// scene bvh
auto embree_device = get_embree_device();
auto embree_scene = rtcNewScene(embree_device);
if (params.embree_compact) {
rtcSetSceneFlags(embree_scene, RTC_SCENE_FLAG_COMPACT);
}
if (params.high_quality) {
rtcSetSceneBuildQuality(embree_scene, RTC_BUILD_QUALITY_HIGH);
}
scene.embree_bvh = embree_scene;
if (scene.instances.empty()) {
rtcCommitScene(embree_scene);
return;
}
for (auto instance_id = 0; instance_id < scene.instances.size();
instance_id++) {
auto& instance = scene.instances[instance_id];
if (instance.shape < 0) throw std::runtime_error("empty instance");
auto& shape = scene.shapes[instance.shape];
if (!shape.embree_bvh) throw std::runtime_error("bvh not built");
auto embree_geom = rtcNewGeometry(
embree_device, RTC_GEOMETRY_TYPE_INSTANCE);
rtcSetGeometryInstancedScene(embree_geom, (RTCScene)shape.embree_bvh);
rtcSetGeometryTransform(
embree_geom, 0, RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR, &instance.frame);
rtcCommitGeometry(embree_geom);
rtcAttachGeometryByID(embree_scene, embree_geom, instance_id);
}
rtcCommitScene(embree_scene);
scene.embree_flattened = false;
}
// Initialize Embree BVH
static void build_embree_flattened_bvh(
bvh_scene& scene, const bvh_params& params) {
// scene bvh
auto embree_device = get_embree_device();
auto embree_scene = rtcNewScene(embree_device);
if (params.embree_compact) {
rtcSetSceneFlags(embree_scene, RTC_SCENE_FLAG_COMPACT);
}
if (params.high_quality) {
rtcSetSceneBuildQuality(embree_scene, RTC_BUILD_QUALITY_HIGH);
}
scene.embree_bvh = embree_scene;
if (scene.instances.empty()) {
rtcCommitScene(embree_scene);
return;
}
for (auto instance_id = 0; instance_id < scene.instances.size();
instance_id++) {
auto& instance = scene.instances[instance_id];
auto& shape = scene.shapes[instance.shape];
auto embree_geom = (RTCGeometry) nullptr;
if (shape.positions.empty()) continue;
auto transformed_positions = vector<vec3f>{
shape.positions.begin(), shape.positions.end()};
if (instance.frame != identity3x4f) {
for (auto& p : transformed_positions)
p = transform_point(instance.frame, p);
}
if (!shape.points.empty()) {
throw std::runtime_error("embree does not support points");
} else if (!shape.lines.empty()) {
auto elines = vector<int>{};
auto epositions = vector<vec4f>{};
auto last_index = -1;
for (auto& l : shape.lines) {
if (last_index == l.x) {
elines.push_back((int)transformed_positions.size() - 1);
epositions.push_back({transformed_positions[l.y], shape.radius[l.y]});
} else {
elines.push_back((int)transformed_positions.size());
epositions.push_back({transformed_positions[l.x], shape.radius[l.x]});
epositions.push_back({transformed_positions[l.y], shape.radius[l.y]});
}
last_index = l.y;
}
embree_geom = rtcNewGeometry(
get_embree_device(), RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
rtcSetGeometryVertexAttributeCount(embree_geom, 1);
auto embree_positions = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT4, 4 * 4,
epositions.size());
auto embree_lines = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT, 4, elines.size());
memcpy(embree_positions, epositions.data(), epositions.size() * 16);
memcpy(embree_lines, elines.data(), elines.size() * 4);
} else if (!shape.triangles.empty()) {
embree_geom = rtcNewGeometry(
get_embree_device(), RTC_GEOMETRY_TYPE_TRIANGLE);
rtcSetGeometryVertexAttributeCount(embree_geom, 1);
auto embree_positions = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, 3 * 4,
transformed_positions.size());
auto embree_triangles = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, 3 * 4,
shape.triangles.size());
memcpy(embree_positions, transformed_positions.data(),
transformed_positions.size() * 12);
memcpy(embree_triangles, shape.triangles.data(),
shape.triangles.size() * 12);
} else if (!shape.quads.empty()) {
embree_geom = rtcNewGeometry(get_embree_device(), RTC_GEOMETRY_TYPE_QUAD);
rtcSetGeometryVertexAttributeCount(embree_geom, 1);
auto embree_positions = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, 3 * 4,
transformed_positions.size());
auto embree_quads = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT4, 4 * 4,
shape.quads.size());
memcpy(embree_positions, transformed_positions.data(),
transformed_positions.size() * 12);
memcpy(embree_quads, shape.quads.data(), shape.quads.size() * 16);
} else if (!shape.quadspos.empty()) {
embree_geom = rtcNewGeometry(get_embree_device(), RTC_GEOMETRY_TYPE_QUAD);
rtcSetGeometryVertexAttributeCount(embree_geom, 1);
auto embree_positions = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, 3 * 4,
transformed_positions.size());
auto embree_quads = rtcSetNewGeometryBuffer(embree_geom,
RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT4, 4 * 4,
shape.quadspos.size());
memcpy(embree_positions, transformed_positions.data(),
transformed_positions.size() * 12);
memcpy(embree_quads, shape.quadspos.data(), shape.quadspos.size() * 16);
} else {
throw std::runtime_error("empty bvh");
}
rtcCommitGeometry(embree_geom);
rtcAttachGeometryByID(embree_scene, embree_geom, instance_id);
}
rtcCommitScene(embree_scene);
scene.embree_flattened = true;
}
// Refit a BVH using Embree. Calls `refit_bvh()` if Embree is not
// available.
static void refit_embree_bvh(bvh_shape& bvh) {
throw std::runtime_error("not yet implemented");
}
static bool intersect_embree_bvh(const bvh_shape& shape, const ray3f& ray,
int& element, vec2f& uv, float& distance, bool find_any) {
RTCRayHit embree_ray;
embree_ray.ray.org_x = ray.o.x;
embree_ray.ray.org_y = ray.o.y;
embree_ray.ray.org_z = ray.o.z;
embree_ray.ray.dir_x = ray.d.x;
embree_ray.ray.dir_y = ray.d.y;
embree_ray.ray.dir_z = ray.d.z;
embree_ray.ray.tnear = ray.tmin;
embree_ray.ray.tfar = ray.tmax;
embree_ray.ray.flags = 0;
embree_ray.hit.geomID = RTC_INVALID_GEOMETRY_ID;
embree_ray.hit.instID[0] = RTC_INVALID_GEOMETRY_ID;
RTCIntersectContext embree_ctx;
rtcInitIntersectContext(&embree_ctx);
rtcIntersect1((RTCScene)shape.embree_bvh, &embree_ctx, &embree_ray);
if (embree_ray.hit.geomID == RTC_INVALID_GEOMETRY_ID) return false;
element = (int)embree_ray.hit.primID;
uv = {embree_ray.hit.u, embree_ray.hit.v};
distance = embree_ray.ray.tfar;
return true;
}
static bool intersect_embree_bvh(const bvh_scene& scene, const ray3f& ray,
int& instance, int& element, vec2f& uv, float& distance, bool find_any) {
RTCRayHit embree_ray;
embree_ray.ray.org_x = ray.o.x;
embree_ray.ray.org_y = ray.o.y;
embree_ray.ray.org_z = ray.o.z;
embree_ray.ray.dir_x = ray.d.x;
embree_ray.ray.dir_y = ray.d.y;
embree_ray.ray.dir_z = ray.d.z;
embree_ray.ray.tnear = ray.tmin;
embree_ray.ray.tfar = ray.tmax;
embree_ray.ray.flags = 0;
embree_ray.hit.geomID = RTC_INVALID_GEOMETRY_ID;
embree_ray.hit.instID[0] = RTC_INVALID_GEOMETRY_ID;
RTCIntersectContext embree_ctx;
rtcInitIntersectContext(&embree_ctx);
rtcIntersect1((RTCScene)scene.embree_bvh, &embree_ctx, &embree_ray);
if (embree_ray.hit.geomID == RTC_INVALID_GEOMETRY_ID) return false;
instance = scene.embree_flattened ? (int)embree_ray.hit.geomID
: (int)embree_ray.hit.instID[0];
element = (int)embree_ray.hit.primID;
uv = {embree_ray.hit.u, embree_ray.hit.v};
distance = embree_ray.ray.tfar;
return true;
}
#endif
// BVH primitive with its bbox, its center and the index to the primitive
struct bvh_prim {
bbox3f bbox = invalidb3f;
vec3f center = zero3f;
int primid = 0;
};
// Splits a BVH node using the SAH heuristic. Returns split position and axis.
static pair<int, int> split_sah(vector<bvh_prim>& prims, int start, int end) {
// initialize split axis and position
auto split_axis = 0;
auto mid = (start + end) / 2;
// compute primintive bounds and size
auto cbbox = invalidb3f;
for (auto i = start; i < end; i++) cbbox = merge(cbbox, prims[i].center);
auto csize = cbbox.max - cbbox.min;
if (csize == zero3f) return {mid, split_axis};
// consider N bins, compute their cost and keep the minimum
const int nbins = 16;
auto middle = 0.0f;
auto min_cost = flt_max;
auto area = [](auto& b) {
auto size = b.max - b.min;
return 1e-12f + 2 * size.x * size.y + 2 * size.x * size.z +
2 * size.y * size.z;
};
for (auto saxis = 0; saxis < 3; saxis++) {
for (auto b = 1; b < nbins; b++) {
auto split = cbbox.min[saxis] + b * csize[saxis] / nbins;
auto left_bbox = invalidb3f, right_bbox = invalidb3f;
auto left_nprims = 0, right_nprims = 0;
for (auto i = start; i < end; i++) {
if (prims[i].center[saxis] < split) {
left_bbox = merge(left_bbox, prims[i].bbox);
left_nprims += 1;
} else {
right_bbox = merge(right_bbox, prims[i].bbox);
right_nprims += 1;
}
}
auto cost = 1 + left_nprims * area(left_bbox) / area(cbbox) +
right_nprims * area(right_bbox) / area(cbbox);
if (cost < min_cost) {
min_cost = cost;
middle = split;
split_axis = saxis;
}
}
}
// split
mid = (int)(std::partition(prims.data() + start, prims.data() + end,
[split_axis, middle](
auto& a) { return a.center[split_axis] < middle; }) -
prims.data());
// if we were not able to split, just break the primitives in half
if (mid == start || mid == end) {
throw std::runtime_error("bad bvh split");
split_axis = 0;
mid = (start + end) / 2;
}
return {mid, split_axis};
}
// Splits a BVH node using the balance heuristic. Returns split position and
// axis.
static pair<int, int> split_balanced(
vector<bvh_prim>& prims, int start, int end) {
// initialize split axis and position
auto axis = 0;
auto mid = (start + end) / 2;
// compute primintive bounds and size
auto cbbox = invalidb3f;
for (auto i = start; i < end; i++) cbbox = merge(cbbox, prims[i].center);
auto csize = cbbox.max - cbbox.min;
if (csize == zero3f) return {mid, axis};
// split along largest
if (csize.x >= csize.y && csize.x >= csize.z) axis = 0;
if (csize.y >= csize.x && csize.y >= csize.z) axis = 1;
if (csize.z >= csize.x && csize.z >= csize.y) axis = 2;
// balanced tree split: find the largest axis of the
// bounding box and split along this one right in the middle
mid = (start + end) / 2;
std::nth_element(prims.data() + start, prims.data() + mid, prims.data() + end,
[axis](auto& a, auto& b) { return a.center[axis] < b.center[axis]; });
// if we were not able to split, just break the primitives in half
if (mid == start || mid == end) {
throw std::runtime_error("bad bvh split");
axis = 0;
mid = (start + end) / 2;
}
return {mid, axis};
}
// Splits a BVH node using the middle heutirtic. Returns split position and
// axis.
static pair<int, int> split_middle(
vector<bvh_prim>& prims, int start, int end) {
// initialize split axis and position
auto axis = 0;
auto mid = (start + end) / 2;
// compute primintive bounds and size
auto cbbox = invalidb3f;
for (auto i = start; i < end; i++) cbbox = merge(cbbox, prims[i].center);
auto csize = cbbox.max - cbbox.min;
if (csize == zero3f) return {mid, axis};
// split along largest
if (csize.x >= csize.y && csize.x >= csize.z) axis = 0;
if (csize.y >= csize.x && csize.y >= csize.z) axis = 1;
if (csize.z >= csize.x && csize.z >= csize.y) axis = 2;
// split the space in the middle along the largest axis
auto cmiddle = (cbbox.max + cbbox.min) / 2;
auto middle = cmiddle[axis];
mid = (int)(std::partition(prims.data() + start, prims.data() + end,
[axis, middle](auto& a) { return a.center[axis] < middle; }) -
prims.data());
// if we were not able to split, just break the primitives in half
if (mid == start || mid == end) {
throw std::runtime_error("bad bvh split");
axis = 0;
mid = (start + end) / 2;
}
return {mid, axis};
}
// Build BVH nodes
static void build_bvh_serial(vector<bvh_node>& nodes, vector<bvh_prim>& prims,
const bvh_params& params) {
// prepare to build nodes
nodes.clear();
nodes.reserve(prims.size() * 2);
// queue up first node
auto queue = std::deque<vec3i>{{0, 0, (int)prims.size()}};
nodes.emplace_back();
// create nodes until the queue is empty
while (!queue.empty()) {
// exit if needed
if (params.cancel && *params.cancel) return;
// grab node to work on
auto next = queue.front();
queue.pop_front();
auto nodeid = next.x, start = next.y, end = next.z;
// grab node
auto& node = nodes[nodeid];
// compute bounds
node.bbox = invalidb3f;
for (auto i = start; i < end; i++)
node.bbox = merge(node.bbox, prims[i].bbox);
// split into two children
if (end - start > bvh_max_prims) {
// get split
auto [mid, axis] = (params.high_quality)
? split_sah(prims, start, end)
: split_balanced(prims, start, end);
// make an internal node
node.internal = true;
node.axis = axis;
node.num = 2;
node.prims[0] = (int)nodes.size() + 0;
node.prims[1] = (int)nodes.size() + 1;
nodes.emplace_back();
nodes.emplace_back();
queue.push_back({node.prims[0], start, mid});
queue.push_back({node.prims[1], mid, end});
} else {
// Make a leaf node
node.internal = false;
node.num = end - start;
for (auto i = 0; i < node.num; i++)
node.prims[i] = prims[start + i].primid;
}
}
// cleanup
nodes.shrink_to_fit();
}
// Build BVH nodes
static void build_bvh_parallel(vector<bvh_node>& nodes, vector<bvh_prim>& prims,
const bvh_params& params) {
// prepare to build nodes
nodes.clear();
nodes.reserve(prims.size() * 2);
// queue up first node
auto queue = std::deque<vec3i>{{0, 0, (int)prims.size()}};
nodes.emplace_back();
// synchronization
std::atomic<int> num_processed_prims(0);
std::mutex queue_mutex;
vector<std::future<void>> futures;
auto nthreads = std::thread::hardware_concurrency();
// create nodes until the queue is empty
for (auto thread_id = 0; thread_id < nthreads; thread_id++) {
futures.emplace_back(std::async(std::launch::async,
[&nodes, &prims, ¶ms, &num_processed_prims, &queue_mutex, &queue] {
while (true) {
// exit if needed
if (num_processed_prims >= prims.size()) return;
if (params.cancel && *params.cancel) return;
// grab node to work on
auto next = zero3i;
{
std::lock_guard<std::mutex> lock{queue_mutex};
if (!queue.empty()) {
next = queue.front();
queue.pop_front();
}
}
// wait a bit if needed
if (next == zero3i) {
std::this_thread::sleep_for(std::chrono::microseconds(10));
continue;
}
// grab node
auto nodeid = next.x, start = next.y, end = next.z;
auto& node = nodes[nodeid];
// compute bounds
node.bbox = invalidb3f;
for (auto i = start; i < end; i++)
node.bbox = merge(node.bbox, prims[i].bbox);
// split into two children
if (end - start > bvh_max_prims) {
// get split
auto [mid, axis] = (params.high_quality)
? split_sah(prims, start, end)
: split_balanced(prims, start, end);
// make an internal node
{
std::lock_guard<std::mutex> lock{queue_mutex};
node.internal = true;
node.axis = axis;
node.num = 2;
node.prims[0] = (int)nodes.size() + 0;
node.prims[1] = (int)nodes.size() + 1;
nodes.emplace_back();
nodes.emplace_back();
queue.push_back({node.prims[0], start, mid});
queue.push_back({node.prims[1], mid, end});
}
} else {
// Make a leaf node
node.internal = false;
node.num = end - start;
for (auto i = 0; i < node.num; i++)
node.prims[i] = prims[start + i].primid;
num_processed_prims += node.num;
}
}
}));
}
for (auto& f : futures) f.get();
// cleanup
nodes.shrink_to_fit();
}
void build_bvh(bvh_shape& shape, const bvh_params& params) {
#if YOCTO_EMBREE
// call Embree if needed
if (params.use_embree) {
return build_embree_bvh(shape, params);
}
#endif
// build primitives
auto prims = vector<bvh_prim>{};
if (!shape.points.empty()) {
prims = vector<bvh_prim>(shape.points.size());
for (auto idx = 0; idx < prims.size(); idx++) {
auto& p = shape.points[idx];
auto bbox = point_bounds(shape.positions[p], shape.radius[p]);
prims[idx] = {bbox, center(bbox), idx};
}
} else if (!shape.lines.empty()) {
prims = vector<bvh_prim>(shape.lines.size());
for (auto idx = 0; idx < prims.size(); idx++) {
auto& l = shape.lines[idx];
auto bbox = line_bounds(shape.positions[l.x], shape.positions[l.y],
shape.radius[l.x], shape.radius[l.y]);
prims[idx] = {bbox, center(bbox), idx};
}
} else if (!shape.triangles.empty()) {
prims = vector<bvh_prim>(shape.triangles.size());
for (auto idx = 0; idx < prims.size(); idx++) {
auto& t = shape.triangles[idx];
auto bbox = triangle_bounds(
shape.positions[t.x], shape.positions[t.y], shape.positions[t.z]);
prims[idx] = {bbox, center(bbox), idx};
}
} else if (!shape.quads.empty()) {
prims = vector<bvh_prim>(shape.quads.size());
for (auto idx = 0; idx < prims.size(); idx++) {
auto& q = shape.quads[idx];
auto bbox = quad_bounds(shape.positions[q.x], shape.positions[q.y],
shape.positions[q.z], shape.positions[q.w]);
prims[idx] = {bbox, center(bbox), idx};
}
} else if (!shape.quadspos.empty()) {
prims = vector<bvh_prim>(shape.quadspos.size());
for (auto idx = 0; idx < prims.size(); idx++) {
auto& q = shape.quadspos[idx];
auto bbox = quad_bounds(shape.positions[q.x], shape.positions[q.y],
shape.positions[q.z], shape.positions[q.w]);
prims[idx] = {bbox, center(bbox), idx};
}
} else {
}
// build nodes
if (params.noparallel) {
build_bvh_serial(shape.nodes, prims, params);
} else {
build_bvh_parallel(shape.nodes, prims, params);
}
}
void build_bvh(bvh_scene& scene, const bvh_params& params) {
for (auto idx = 0; idx < scene.shapes.size(); idx++) {
build_bvh(scene.shapes[idx], params);
}
// embree
#if YOCTO_EMBREE
if (params.use_embree) {
if (params.embree_flatten) {
return build_embree_flattened_bvh(scene, params);
} else {
return build_embree_bvh(scene, params);
}
}
#endif
// build primitives
auto prims = vector<bvh_prim>(scene.instances.size());
for (auto idx = 0; idx < prims.size(); idx++) {
auto& instance = scene.instances[idx];
auto& sbvh = scene.shapes[instance.shape];
auto bbox = sbvh.nodes.empty()
? invalidb3f
: transform_bbox(instance.frame, sbvh.nodes[0].bbox);
prims[idx] = {bbox, center(bbox), idx};
}
// build nodes
if (params.noparallel) {
build_bvh_serial(scene.nodes, prims, params);
} else {
build_bvh_parallel(scene.nodes, prims, params);
}
}
void refit_bvh(bvh_shape& shape, const bvh_params& params) {
#if YOCTO_EMBREE
if (shape.embree_bvh) throw std::runtime_error("Embree reftting disabled");
#endif
// refit
for (auto nodeid = (int)shape.nodes.size() - 1; nodeid >= 0; nodeid--) {
auto& node = shape.nodes[nodeid];
node.bbox = invalidb3f;
if (node.internal) {
for (auto i = 0; i < 2; i++) {
node.bbox = merge(node.bbox, shape.nodes[node.prims[i]].bbox);
}
} else if (!shape.points.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& p = shape.points[node.prims[idx]];
node.bbox = merge(
node.bbox, point_bounds(shape.positions[p], shape.radius[p]));
}
} else if (!shape.lines.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& l = shape.lines[node.prims[idx]];
node.bbox = merge(
node.bbox, line_bounds(shape.positions[l.x], shape.positions[l.y],
shape.radius[l.x], shape.radius[l.y]));
}
} else if (!shape.triangles.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& t = shape.triangles[node.prims[idx]];
node.bbox = merge(
node.bbox, triangle_bounds(shape.positions[t.x],
shape.positions[t.y], shape.positions[t.z]));
}
} else if (!shape.quads.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& q = shape.quads[node.prims[idx]];
node.bbox = merge(
node.bbox, quad_bounds(shape.positions[q.x], shape.positions[q.y],
shape.positions[q.z], shape.positions[q.w]));
}
} else if (!shape.quadspos.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& q = shape.quadspos[node.prims[idx]];
node.bbox = merge(
node.bbox, quad_bounds(shape.positions[q.x], shape.positions[q.y],
shape.positions[q.z], shape.positions[q.w]));
}
}
}
}
void refit_bvh(bvh_scene& scene, const vector<int>& updated_shapes,
const bvh_params& params) {
// update shapes
for (auto shape : updated_shapes) refit_bvh(scene.shapes[shape], params);
#if YOCTO_EMBREE
if (scene.embree_bvh) throw std::runtime_error("Embree reftting disabled");
#endif
// refit
for (auto nodeid = (int)scene.nodes.size() - 1; nodeid >= 0; nodeid--) {
auto& node = scene.nodes[nodeid];
node.bbox = invalidb3f;
if (node.internal) {
for (auto i = 0; i < 2; i++) {
node.bbox = merge(node.bbox, scene.nodes[node.prims[i]].bbox);
}
} else {
for (auto idx = 0; idx < node.num; idx++) {
auto& instance = scene.instances[idx];
auto& sbvh = scene.shapes[instance.shape];
auto bbox = sbvh.nodes.empty()
? invalidb3f
: transform_bbox(instance.frame, sbvh.nodes[0].bbox);
node.bbox = merge(node.bbox, bbox);
}
}
}
}
// Intersect ray with a bvh.
bool intersect_bvh(const bvh_shape& shape, const ray3f& ray_, int& element,
vec2f& uv, float& distance, bool find_any) {
#if YOCTO_EMBREE
// call Embree if needed
if (shape.embree_bvh) {
return intersect_embree_bvh(shape, ray_, element, uv, distance, find_any);
}
#endif
// check empty
if (shape.nodes.empty()) return false;
// node stack
int node_stack[128];
auto node_cur = 0;
node_stack[node_cur++] = 0;
// shared variables
auto hit = false;
// copy ray to modify it
auto ray = ray_;
// prepare ray for fast queries
auto ray_dinv = vec3f{1 / ray.d.x, 1 / ray.d.y, 1 / ray.d.z};
auto ray_dsign = vec3i{(ray_dinv.x < 0) ? 1 : 0, (ray_dinv.y < 0) ? 1 : 0,
(ray_dinv.z < 0) ? 1 : 0};
// walking stack
while (node_cur) {
// grab node
auto& node = shape.nodes[node_stack[--node_cur]];
// intersect bbox
// if (!intersect_bbox(ray, ray_dinv, ray_dsign, node.bbox)) continue;
if (!intersect_bbox(ray, ray_dinv, node.bbox)) continue;
// intersect node, switching based on node type
// for each type, iterate over the the primitive list
if (node.internal) {
// for internal nodes, attempts to proceed along the
// split axis from smallest to largest nodes
if (ray_dsign[node.axis]) {
node_stack[node_cur++] = node.prims[0];
node_stack[node_cur++] = node.prims[1];
} else {
node_stack[node_cur++] = node.prims[1];
node_stack[node_cur++] = node.prims[0];
}
} else if (!shape.points.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& p = shape.points[node.prims[idx]];
if (intersect_point(
ray, shape.positions[p], shape.radius[p], uv, distance)) {
hit = true;
element = node.prims[idx];
ray.tmax = distance;
}
}
} else if (!shape.lines.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& l = shape.lines[node.prims[idx]];
if (intersect_line(ray, shape.positions[l.x], shape.positions[l.y],
shape.radius[l.x], shape.radius[l.y], uv, distance)) {
hit = true;
element = node.prims[idx];
ray.tmax = distance;
}
}
} else if (!shape.triangles.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& t = shape.triangles[node.prims[idx]];
if (intersect_triangle(ray, shape.positions[t.x], shape.positions[t.y],
shape.positions[t.z], uv, distance)) {
hit = true;
element = node.prims[idx];
ray.tmax = distance;
}
}
} else if (!shape.quads.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& q = shape.quads[node.prims[idx]];
if (intersect_quad(ray, shape.positions[q.x], shape.positions[q.y],
shape.positions[q.z], shape.positions[q.w], uv, distance)) {
hit = true;
element = node.prims[idx];
ray.tmax = distance;
}
}
} else if (!shape.quadspos.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& q = shape.quadspos[node.prims[idx]];
if (intersect_quad(ray, shape.positions[q.x], shape.positions[q.y],
shape.positions[q.z], shape.positions[q.w], uv, distance)) {
hit = true;
element = node.prims[idx];
ray.tmax = distance;
}
}
}
// check for early exit
if (find_any && hit) return hit;
}
return hit;
}
// Intersect ray with a bvh.
bool intersect_bvh(const bvh_scene& scene, const ray3f& ray_, int& instance,
int& element, vec2f& uv, float& distance, bool find_any,
bool non_rigid_frames) {
#if YOCTO_EMBREE
// call Embree if needed
if (scene.embree_bvh) {
return intersect_embree_bvh(
scene, ray_, instance, element, uv, distance, find_any);
}
#endif
// check empty
if (scene.nodes.empty()) return false;
// node stack
int node_stack[128];
auto node_cur = 0;
node_stack[node_cur++] = 0;
// shared variables
auto hit = false;
// copy ray to modify it
auto ray = ray_;
// prepare ray for fast queries
auto ray_dinv = vec3f{1 / ray.d.x, 1 / ray.d.y, 1 / ray.d.z};
auto ray_dsign = vec3i{(ray_dinv.x < 0) ? 1 : 0, (ray_dinv.y < 0) ? 1 : 0,
(ray_dinv.z < 0) ? 1 : 0};
// walking stack
while (node_cur) {
// grab node
auto& node = scene.nodes[node_stack[--node_cur]];
// intersect bbox
// if (!intersect_bbox(ray, ray_dinv, ray_dsign, node.bbox)) continue;
if (!intersect_bbox(ray, ray_dinv, node.bbox)) continue;
// intersect node, switching based on node type
// for each type, iterate over the the primitive list
if (node.internal) {
// for internal nodes, attempts to proceed along the
// split axis from smallest to largest nodes
if (ray_dsign[node.axis]) {
node_stack[node_cur++] = node.prims[0];
node_stack[node_cur++] = node.prims[1];
} else {
node_stack[node_cur++] = node.prims[1];
node_stack[node_cur++] = node.prims[0];
}
} else {
for (auto i = 0; i < node.num; i++) {
auto& instance_ = scene.instances[node.prims[i]];
auto inv_ray = transform_ray(
inverse(instance_.frame, non_rigid_frames), ray);
if (intersect_bvh(scene.shapes[instance_.shape], inv_ray, element, uv,
distance, find_any)) {
hit = true;
instance = node.prims[i];
ray.tmax = distance;
}
}
}
// check for early exit
if (find_any && hit) return hit;
}
return hit;
}
// Intersect ray with a bvh.
bool intersect_bvh(const bvh_scene& scene, int instance, const ray3f& ray,
int& element, vec2f& uv, float& distance, bool find_any,
bool non_rigid_frames) {
auto& instance_ = scene.instances[instance];
auto inv_ray = transform_ray(inverse(instance_.frame, non_rigid_frames), ray);
return intersect_bvh(
scene.shapes[instance_.shape], inv_ray, element, uv, distance, find_any);
}
// Intersect ray with a bvh.
bool overlap_bvh(const bvh_shape& shape, const vec3f& pos, float max_distance,
int& element, vec2f& uv, float& distance, bool find_any) {
// check if empty
if (shape.nodes.empty()) return false;
// node stack
int node_stack[64];
auto node_cur = 0;
node_stack[node_cur++] = 0;
// hit
auto hit = false;
// walking stack
while (node_cur) {
// grab node
auto& node = shape.nodes[node_stack[--node_cur]];
// intersect bbox
if (!distance_check_bbox(pos, max_distance, node.bbox)) continue;
// intersect node, switching based on node type
// for each type, iterate over the the primitive list
if (node.internal) {
// internal node
node_stack[node_cur++] = node.prims[0];
node_stack[node_cur++] = node.prims[1];
} else if (!shape.points.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& p = shape.points[node.prims[idx]];
if (overlap_point(pos, max_distance, shape.positions[p],
shape.radius[p], uv, distance)) {
hit = true;
element = node.prims[idx];
max_distance = distance;
}
}
} else if (!shape.lines.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& l = shape.lines[node.prims[idx]];
if (overlap_line(pos, max_distance, shape.positions[l.x],
shape.positions[l.y], shape.radius[l.x], shape.radius[l.y], uv,
distance)) {
hit = true;
element = node.prims[idx];
max_distance = distance;
}
}
} else if (!shape.triangles.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& t = shape.triangles[node.prims[idx]];
if (overlap_triangle(pos, max_distance, shape.positions[t.x],
shape.positions[t.y], shape.positions[t.z], shape.radius[t.x],
shape.radius[t.y], shape.radius[t.z], uv, distance)) {
hit = true;
element = node.prims[idx];
max_distance = distance;
}
}
} else if (!shape.quads.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& q = shape.quads[node.prims[idx]];
if (overlap_quad(pos, max_distance, shape.positions[q.x],
shape.positions[q.y], shape.positions[q.z],
shape.positions[q.w], shape.radius[q.x], shape.radius[q.y],
shape.radius[q.z], shape.radius[q.w], uv, distance)) {
hit = true;
element = node.prims[idx];
max_distance = distance;
}
}
} else if (!shape.quadspos.empty()) {
for (auto idx = 0; idx < node.num; idx++) {
auto& q = shape.quadspos[node.prims[idx]];
if (overlap_quad(pos, max_distance, shape.positions[q.x],
shape.positions[q.y], shape.positions[q.z],
shape.positions[q.w], shape.radius[q.x], shape.radius[q.y],
shape.radius[q.z], shape.radius[q.w], uv, distance)) {
hit = true;
element = node.prims[idx];
max_distance = distance;
}
}
}
// check for early exit
if (find_any && hit) return hit;
}
return hit;
}
// Intersect ray with a bvh.
bool overlap_bvh(const bvh_scene& scene, const vec3f& pos, float max_distance,
int& instance, int& element, vec2f& uv, float& distance, bool find_any,
bool non_rigid_frames) {
// check if empty
if (scene.nodes.empty()) return false;
// node stack
int node_stack[64];
auto node_cur = 0;
node_stack[node_cur++] = 0;
// hit
auto hit = false;
// walking stack
while (node_cur) {
// grab node
auto& node = scene.nodes[node_stack[--node_cur]];
// intersect bbox
if (!distance_check_bbox(pos, max_distance, node.bbox)) continue;
// intersect node, switching based on node type
// for each type, iterate over the the primitive list
if (node.internal) {
// internal node
node_stack[node_cur++] = node.prims[0];
node_stack[node_cur++] = node.prims[1];
} else {
for (auto i = 0; i < node.num; i++) {
auto instance_ = scene.instances[node.prims[i]];
auto inv_pos = transform_point(
inverse(instance_.frame, non_rigid_frames), pos);
if (overlap_bvh(scene.shapes[instance_.shape], inv_pos, max_distance,
element, uv, distance, find_any)) {
hit = true;
instance = node.prims[i];
max_distance = distance;
}
}
}
// check for early exit
if (find_any && hit) return hit;
}
return hit;
}
#if 0
// Finds the overlap between BVH leaf nodes.
template <typename OverlapElem>
void overlap_bvh_elems(const bvh_scene_data& bvh1, const bvh_scene_data& bvh2,
bool skip_duplicates, bool skip_self, vector<vec2i>& overlaps,
const OverlapElem& overlap_elems) {
// node stack
vec2i node_stack[128];
auto node_cur = 0;
node_stack[node_cur++] = {0, 0};
// walking stack
while (node_cur) {
// grab node
auto node_idx = node_stack[--node_cur];
const auto node1 = bvh1->nodes[node_idx.x];
const auto node2 = bvh2->nodes[node_idx.y];
// intersect bbox
if (!overlap_bbox(node1.bbox, node2.bbox)) continue;
// check for leaves
if (node1.isleaf && node2.isleaf) {
// collide primitives
for (auto i1 = node1.start; i1 < node1.start + node1.count; i1++) {
for (auto i2 = node2.start; i2 < node2.start + node2.count;
i2++) {
auto idx1 = bvh1->sorted_prim[i1];
auto idx2 = bvh2->sorted_prim[i2];
if (skip_duplicates && idx1 > idx2) continue;
if (skip_self && idx1 == idx2) continue;
if (overlap_elems(idx1, idx2))
overlaps.push_back({idx1, idx2});
}
}
} else {
// descend
if (node1.isleaf) {
for (auto idx2 = node2.start; idx2 < node2.start + node2.count;
idx2++) {
node_stack[node_cur++] = {node_idx.x, (int)idx2};
}
} else if (node2.isleaf) {
for (auto idx1 = node1.start; idx1 < node1.start + node1.count;
idx1++) {
node_stack[node_cur++] = {(int)idx1, node_idx.y};
}
} else {
for (auto idx2 = node2.start; idx2 < node2.start + node2.count;
idx2++) {
for (auto idx1 = node1.start;
idx1 < node1.start + node1.count; idx1++) {
node_stack[node_cur++] = {(int)idx1, (int)idx2};
}
}
}
}
}
}
#endif
bvh_intersection intersect_bvh(
const bvh_shape& shape, const ray3f& ray, bool find_any) {
auto intersection = bvh_intersection{};
intersection.hit = intersect_bvh(shape, ray, intersection.element,
intersection.uv, intersection.distance, find_any);
return intersection;
}
bvh_intersection intersect_bvh(const bvh_scene& scene, const ray3f& ray,
bool find_any, bool non_rigid_frames) {
auto intersection = bvh_intersection{};
intersection.hit = intersect_bvh(scene, ray, intersection.instance,
intersection.element, intersection.uv, intersection.distance, find_any);
return intersection;
}
bvh_intersection intersect_bvh(const bvh_scene& scene, int instance,
const ray3f& ray, bool find_any, bool non_rigid_frames) {
auto intersection = bvh_intersection{};
intersection.hit = intersect_bvh(scene, instance, ray, intersection.element,
intersection.uv, intersection.distance, find_any);
intersection.instance = instance;
return intersection;
}
bvh_intersection overlap_bvh(const bvh_shape& shape, const vec3f& pos,
float max_distance, bool find_any) {
auto intersection = bvh_intersection{};
intersection.hit = overlap_bvh(shape, pos, max_distance, intersection.element,
intersection.uv, intersection.distance, find_any);
return intersection;
}
bvh_intersection overlap_bvh(const bvh_scene& scene, const vec3f& pos,
float max_distance, bool find_any, bool non_rigid_frames) {
auto intersection = bvh_intersection{};
intersection.hit = overlap_bvh(scene, pos, max_distance,
intersection.instance, intersection.element, intersection.uv,
intersection.distance, find_any);
return intersection;
}
} // namespace yocto
// -----------------------------------------------------------------------------
// IMPLEMENTATION OF BVH UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {
// Print bvh statistics.
string format_stats(const bvh_shape& bvh) {
// TODO
auto str = ""s;
return str;
}
string format_stats(const bvh_scene& bvh) {
#if 0
auto num_shapes = (size_t)0;
auto num_instances = (size_t)0;
auto elem_points = (size_t)0;
auto elem_lines = (size_t)0;
auto elem_triangles = (size_t)0;
auto elem_quads = (size_t)0;
auto vert_pos = (size_t)0;
auto vert_radius = (size_t)0;
auto shape_nodes = (size_t)0;
auto scene_nodes = (size_t)0;
auto stored_elem_points = (size_t)0;
auto stored_elem_lines = (size_t)0;
auto stored_elem_triangles = (size_t)0;
auto stored_elem_quads = (size_t)0;
auto stored_vert_pos = (size_t)0;
auto stored_vert_radius = (size_t)0;
auto memory_elems = (size_t)0;
auto memory_verts = (size_t)0;
auto memory_ists = (size_t)0;
auto memory_shape_nodes = (size_t)0;
auto memory_scene_nodes = (size_t)0;
for (auto& sbvh : bvh.shapes) {
shape_nodes += sbvh.nodes.size();
}
num_shapes = bvh.shapes.size();
num_instances = bvh.instances.size();
scene_nodes = bvh.bvh_.nodes.size();
memory_elems = stored_elem_points * sizeof(int) +
stored_elem_lines * sizeof(vec2i) +
stored_elem_triangles * sizeof(vec3i) +
stored_elem_quads * sizeof(vec4i);
memory_verts = stored_vert_pos * sizeof(vec3f) +
stored_vert_radius * sizeof(float);
memory_ists = num_instances * sizeof(bvh_instance);
memory_shape_nodes = shape_nodes * sizeof(bvh_node);
memory_scene_nodes = scene_nodes * sizeof(bvh_node);
auto str = ""s;
str += "num_shapes: " + std::to_string(num_shapes) + "\n";
str += "num_instances: " + std::to_string(num_instances) + "\n";
str += "elem_points: " + std::to_string(elem_points) + "\n";
str += "elem_lines: " + std::to_string(elem_lines) + "\n";
str += "elem_triangles: " + std::to_string(elem_triangles) + "\n";
str += "elem_quads: " + std::to_string(elem_quads) + "\n";
str += "vert_pos: " + std::to_string(vert_pos) + "\n";
str += "vert_radius: " + std::to_string(vert_radius) + "\n";
str += "shape_nodes: " + std::to_string(shape_nodes) + "\n";
str += "scene_nodes: " + std::to_string(scene_nodes) + "\n";
str += "memory_elems: " + std::to_string(memory_elems) + "\n";
str += "memory_verts: " + std::to_string(memory_verts) + "\n";
str += "memory_ists: " + std::to_string(memory_ists) + "\n";
str += "memory_shape_nodes: " + std::to_string(memory_shape_nodes) + "\n";
str += "memory_scene_nodes: " + std::to_string(memory_scene_nodes) + "\n";
#if YOCTO_EMBREE
str += "memory_embree: " + std::to_string(embree_memory) + "\n";
#endif
#endif
// TODO
auto str = ""s;
return str;
}
} // namespace yocto
|