1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
//
// # Yocto/BVH: Tiny library for ray-object intersection using a BVH
//
//
// Yocto/BVH is a simple implementation of ray intersection and
// closest queries using a two-level BVH data structure. We also include
// low-level intersection and closet point primitives.
// Alternatively the library also support wrapping Intel's Embree.
//
//
// ## Ray-Scene and Closest-Point Queries
//
// Yocto/GL provides ray-scene intersection for points, lines, triangles and
// quads accelerated by a two-level BVH data structure. Our BVH is written for
// minimal code and not maximum speed, but still gives reasonable results. We
// suggest the use of Intel's Embree as a more efficient alternative.
//
// In Yocto/Bvh, shapes are described as collections of indexed primitives
// (points/lines/triangles/quads) like the standard triangle mesh used in
// real-time graphics. A scene if represented as transformed instances of
// shapes. The internal data structure is a two-level BVH, with a BVH for each
// shape and one top-level BVH for the whole scene. This design support
// instancing for large scenes and easy BVH refitting for interactive
// applications.
//
// In these functions triangles are parameterized with uv written
// w.r.t the (p1-p0) and (p2-p0) axis respectively. Quads are internally handled
// as pairs of two triangles p0,p1,p3 and p2,p3,p1, with the u/v coordinates
// of the second triangle corrected as 1-u and 1-v to produce a quad
// parametrization where u and v go from 0 to 1. Degenerate quads with p2==p3
// represent triangles correctly, an this convention is used throught the
// library. This is equivalent to Intel's Embree.
//
// Shape and scene data is not copied from the application to the BVH to
// improve memory footprint at the price of convenience. Shape data is
// explixitly passed on evey call, while instance data uses callbacks,
// since each application has its own conventions for storing those.
// To make usage more convenite, we provide `bvh_XXX_data` to hold application
// data and convenience wrappers for all functions.
//
// We support working either on the whole scene or on a single shape. In the
// description below yoi will see this dual API defined.
//
// 1. build the shape/scene BVH with `build_bvh()`;
// 2. perform ray-shape intersection with `intersect_bvh()`
// 3. perform point overlap queries with `overlap_bvh()`
// 4. refit BVH for dynamic applications with `refit_bvh`
//
//
// LICENSE:
//
// Copyright (c) 2016 -- 2019 Fabio Pellacini
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//
#ifndef _YOCTO_BVH_H_
#define _YOCTO_BVH_H_
#ifndef YOCTO_EMBREE
#define YOCTO_EMBREE 1
#endif
#ifndef YOCTO_QUADS_AS_TRIANGLES
#define YOCTO_QUADS_AS_TRIANGLES 1
#endif
// -----------------------------------------------------------------------------
// INCLUDES
// -----------------------------------------------------------------------------
#include "yocto_math.h"
#include <atomic>
// -----------------------------------------------------------------------------
// BVH FOR RAY INTERSECTION AND CLOSEST ELEMENT
// -----------------------------------------------------------------------------
namespace yocto {
// Maximum number of primitives per BVH node.
const int bvh_max_prims = 4;
// BVH array view
template <typename T>
struct bvh_span {
bvh_span() : ptr{nullptr}, count{0} {}
bvh_span(const T* ptr, int count) : ptr{ptr}, count{count} {}
bvh_span(const vector<T>& vec) : ptr{vec.data()}, count{(int)vec.size()} {}
bool empty() const { return count == 0; }
int size() const { return count; }
const T& operator[](int idx) const { return ptr[idx]; }
const T* data() const { return ptr; }
const T* begin() const { return ptr; }
const T* end() const { return ptr + count; }
private:
const T* ptr = nullptr;
int count = 0;
};
// BVH array view with stride
template <typename T>
struct bvh_sspan {
bvh_sspan() : ptr{nullptr}, count{0}, stride{0} {}
bvh_sspan(const void* ptr, int count, int stride)
: ptr{ptr}, count{count}, stride{stride} {}
bool empty() const { return count == 0; }
int size() const { return count; }
const T& operator[](int idx) const {
return *(const T*)((const char*)ptr + (size_t)idx * (size_t)stride);
}
private:
const void* ptr = nullptr;
int count = 0;
int stride = 0;
};
// BVH tree node containing its bounds, indices to the BVH arrays of either
// primitives or internal nodes, the node element type,
// and the split axis. Leaf and internal nodes are identical, except that
// indices refer to primitives for leaf nodes or other nodes for internal nodes.
struct bvh_node {
bbox3f bbox;
short num;
bool internal;
byte axis;
int prims[bvh_max_prims];
};
// BVH tree stored as a node array with the tree structure is encoded using
// array indices. BVH nodes indices refer to either the node array,
// for internal nodes, or the primitive arrays, for leaf nodes.
// Applicxation data is not stored explicitly.
struct bvh_shape {
// elements
bvh_span<int> points = {};
bvh_span<vec2i> lines = {};
bvh_span<vec3i> triangles = {};
bvh_span<vec4i> quads = {};
bvh_span<vec4i> quadspos = {};
// vertices
bvh_span<vec3f> positions = {};
bvh_span<float> radius = {};
// nodes
vector<bvh_node> nodes = {};
#if YOCTO_EMBREE
// Embree opaque data
void* embree_bvh = nullptr;
bool embree_flattened = false;
// Cleanup for embree data
~bvh_shape();
#endif
};
// Instance for a scene BVH.
struct bvh_instance {
frame3f frame = identity3x4f;
int shape = -1;
};
struct bvh_scene {
// instances and shapes
bvh_sspan<bvh_instance> instances = {};
vector<bvh_shape> shapes = {};
// nodes
vector<bvh_node> nodes = {};
#if YOCTO_EMBREE
// Embree opaque data
void* embree_bvh = nullptr;
bool embree_flattened = false;
// Cleanup for embree data
~bvh_scene();
#endif
};
// bvh build params
struct bvh_params {
bool high_quality = false;
#if YOCTO_EMBREE
bool use_embree = false;
bool embree_flatten = false;
bool embree_compact = false;
#endif
bool noparallel = false;
std::atomic<bool>* cancel = nullptr;
};
// Initialize bvh data
inline bvh_shape make_points_bvh(
bvh_span<int> points, bvh_span<vec3f> positions, bvh_span<float> radius) {
return bvh_shape{points, {}, {}, {}, {}, positions, radius};
}
inline bvh_shape make_lines_bvh(
bvh_span<vec2i> lines, bvh_span<vec3f> positions, bvh_span<float> radius) {
return bvh_shape{{}, lines, {}, {}, {}, positions, radius};
}
inline bvh_shape make_triangles_bvh(bvh_span<vec3i> triangles,
bvh_span<vec3f> positions, bvh_span<float> radius) {
return bvh_shape{{}, {}, triangles, {}, {}, positions, radius};
}
inline bvh_shape make_quads_bvh(
bvh_span<vec4i> quads, bvh_span<vec3f> positions, bvh_span<float> radius) {
return bvh_shape{{}, {}, {}, quads, {}, positions, radius};
}
inline bvh_shape make_quadspos_bvh(bvh_span<vec4i> quadspos,
bvh_span<vec3f> positions, bvh_span<float> radius) {
return bvh_shape{{}, {}, {}, {}, quadspos, positions, radius};
}
inline bvh_scene make_instances_bvh(
bvh_sspan<bvh_instance> instances, const vector<bvh_shape>& shapes) {
return bvh_scene{instances, shapes};
}
// Build the bvh acceleration structure.
void build_bvh(bvh_shape& bvh, const bvh_params& params);
void build_bvh(bvh_scene& bvh, const bvh_params& params);
// Refit bvh data
void refit_bvh(bvh_shape& bvh, const bvh_params& params);
void refit_bvh(bvh_scene& bvh, const vector<int>& updated_shapes,
const bvh_params& params);
// Intersect ray with a bvh returning either the first or any intersection
// depending on `find_any`. Returns the ray distance , the instance id,
// the shape element index and the element barycentric coordinates.
bool intersect_bvh(const bvh_shape& bvh, const ray3f& ray, int& element,
vec2f& uv, float& distance, bool find_any = false);
bool intersect_bvh(const bvh_scene& bvh, const ray3f& ray, int& instance,
int& element, vec2f& uv, float& distance, bool find_any = false,
bool non_rigid_frames = true);
// Intersects a single instance.
bool intersect_bvh(const bvh_scene& bvh, int instance, const ray3f& ray,
int& element, vec2f& uv, float& distance, bool find_any = false,
bool non_rigid_frames = true);
// Find a shape element that overlaps a point within a given distance
// max distance, returning either the closest or any overlap depending on
// `find_any`. Returns the point distance, the instance id, the shape element
// index and the element barycentric coordinates.
bool overlap_bvh(const bvh_shape& bvh, const vec3f& pos, float max_distance,
int& element, vec2f& uv, float& distance, bool find_any = false);
bool overlap_bvh(const bvh_scene& bvh, const vec3f& pos, float max_distance,
int& instance, int& element, vec2f& uv, float& distance,
bool find_any = false, bool non_rigid_frames = true);
// Results of intersect_xxx and overlap_xxx functions that include hit flag,
// instance id, shape element id, shape element uv and intersection distance.
// The values are all set for scene intersection. Shape intersection does not
// set the instance id and element intersections do not set shape element id
// and the instance id. Results values are set only if hit is true.
struct bvh_intersection {
int instance = -1;
int element = -1;
vec2f uv = {0, 0};
float distance = 0;
bool hit = false;
};
bvh_intersection intersect_bvh(
const bvh_shape& bvh, const ray3f& ray, bool find_any = false);
bvh_intersection intersect_bvh(const bvh_scene& bvh, const ray3f& ray,
bool find_any = false, bool non_rigid_frames = true);
bvh_intersection intersect_bvh(const bvh_scene& bvh, int instance,
const ray3f& ray, bool find_any = false, bool non_rigid_frames = true);
bvh_intersection overlap_bvh(const bvh_shape& bvh, const vec3f& pos,
float max_distance, bool find_any = false);
bvh_intersection overlap_bvh(const bvh_scene& bvh, const vec3f& pos,
float max_distance, bool find_any = false, bool non_rigid_frames = true);
} // namespace yocto
// -----------------------------------------------------------------------------
// BVH UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {
// Print bvh statistics.
string format_stats(const bvh_shape& bvh);
string format_stats(const bvh_scene& bvh);
} // namespace yocto
// -----------------------------------------------------------------------------
// RAY INTERSECTION AND CLOSEST POINT FUNCTIONS
// -----------------------------------------------------------------------------
namespace yocto {
// Intersect a ray with a point (approximate).
// Based on http://geomalgorithms.com/a02-lines.html.
bool intersect_point(
const ray3f& ray, const vec3f& p, float r, vec2f& uv, float& dist);
// Intersect a ray with a line (approximate).
// Based on http://geomalgorithms.com/a05-intersect-1.html and
// http://geomalgorithms.com/a07-distance.html#
// dist3D_Segment_to_Segment
bool intersect_line(const ray3f& ray, const vec3f& p0, const vec3f& p1,
float r0, float r1, vec2f& uv, float& dist);
// Intersect a ray with a triangle.
bool intersect_triangle(const ray3f& ray, const vec3f& p0, const vec3f& p1,
const vec3f& p2, vec2f& uv, float& dist);
// Intersect a ray with a quad represented as two triangles (0,1,3) and
// (2,3,1), with the uv coordinates of the second triangle corrected by u =
// 1-u' and v = 1-v' to produce a quad parametrization where u and v go from 0
// to 1. This is equivalent to Intel's Embree.
bool intersect_quad(const ray3f& ray, const vec3f& p0, const vec3f& p1,
const vec3f& p2, const vec3f& p3, vec2f& uv, float& dist);
// Intersect a ray with a axis-aligned bounding box.
bool intersect_bbox(const ray3f& ray, const bbox3f& bbox);
// Intersect a ray with a axis-aligned bounding box, implemented as
// "Robust BVH Ray Traversal" by T. Ize published at
// http://jcgt.org/published/0002/02/02/paper.pdf
bool intersect_bbox(const ray3f& ray, const vec3f& ray_dinv,
const vec3i& ray_dsign, const bbox3f& bbox);
// Intersect a ray with a axis-aligned bounding box, implemented as
// "A Ray-Box Intersection Algorithm and Efficient Dynamic Voxel Rendering" at
// http://jcgt.org/published/0007/03/04/
// but using the Wald implementation
bool intersect_bbox(const ray3f& ray, const vec3f& ray_dinv,
const vec3i& ray_dsign, const bbox3f& bbox);
// Check if a point overlaps a position within a max distance.
bool overlap_point(const vec3f& pos, float dist_max, const vec3f& p0, float r0,
vec2f& uv, float& dist);
// Find closest line point to a position.
float closestuv_line(const vec3f& pos, const vec3f& p0, const vec3f& p1);
// Check if a line overlaps a position within a max distance.
bool overlap_line(const vec3f& pos, float dist_max, const vec3f& p0,
const vec3f& p1, float r0, float r1, vec2f& uv, float& dist);
// Find closest triangle point to a position.
vec2f closestuv_triangle(
const vec3f& pos, const vec3f& p0, const vec3f& p1, const vec3f& p2);
// Check if a triangle overlaps a position within a max distance.
bool overlap_triangle(const vec3f& pos, float dist_max, const vec3f& p0,
const vec3f& p1, const vec3f& p2, float r0, float r1, float r2, vec2f& uv,
float& dist);
// Check if a quad overlaps a position within a max distance.
bool overlap_quad(const vec3f& pos, float dist_max, const vec3f& p0,
const vec3f& p1, const vec3f& p2, const vec3f& p3, float r0, float r1,
float r2, float r3, vec2f& uv, float& dist);
// Check if a bounding box overlaps a position within a max distance.
bool overlap_bbox(const vec3f& pos, float dist_max, const bbox3f& bbox);
// Check if two bounding boxes overlap.
bool overlap_bbox(const bbox3f& bbox1, const bbox3f& bbox2);
} // namespace yocto
#endif
|