1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
//
// # Yocto/Image: Tiny imaging Library mostly for rendering and color support
//
//
// Yocto/Image is a collection of image utilities useful when writing rendering
// algorithms. These include a simple image data structure, color conversion
// utilities and tone mapping. We provinde loading and saving functionality for
// images and support PNG, JPG, TGA, BMP, HDR, EXR formats.
//
// This library depends on stb_image.h, stb_image_write.h, stb_image_resize.h,
// tinyexr.h for the IO features. If thoese are not needed, it can be safely
// used without dependencies.
//
//
// ## Image Utilities
//
// Yocto/Image supports a very small set of color and image utilities including
// color utilities, example image creation, tone mapping, image resizing, and
// sunsky procedural images. Yocto/Image is written to support the need of a
// global illumination renderer, rather than the need of generic image editing.
// We support 4-channels float images (assumed to be in linear color) and
// 4-channels byte images (assumed to be in sRGB).
//
//
// 1. store images using the image<T> structure
// 2. load and save images with `load_image()` and `save_image()`
// 3. resize images with `resize()`
// 4. tonemap images with `tonemap()` that convert from linear HDR to
// sRGB LDR with exposure and an optional filmic curve
// 5. make various image examples with the `make_proc_image()` functions
// 6. create procedural sun-sky images with `make_sunsky()`
// 7. many color conversion functions are available in the code below
//
//
//
// LICENSE:
//
// Copyright (c) 2016 -- 2019 Fabio Pellacini
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//
//
// LICENSE for blackbody code
//
// Copyright (c) 2015 Neil Bartlett
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
//
#ifndef _YOCTO_IMAGE_H_
#define _YOCTO_IMAGE_H_
// -----------------------------------------------------------------------------
// INCLUDES
// -----------------------------------------------------------------------------
#include "yocto_math.h"
// -----------------------------------------------------------------------------
// IMAGE DATA AND UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {
// Image container.
template <typename T>
struct image {
// constructors
image() : extent{0, 0}, pixels{} {}
image(const vec2i& size, const T& value = {})
: extent{size}, pixels((size_t)size.x * (size_t)size.y, value) {}
image(const vec2i& size, const T* value)
: extent{size}, pixels(value, value + (size_t)size.x * (size_t)size.y) {}
// size
bool empty() const { return pixels.empty(); }
vec2i size() const { return extent; }
size_t count() const { return pixels.size(); }
bool contains(const vec2i& ij) const {
return ij.x > 0 && ij.x < extent.x && ij.y > 0 && ij.y < extent.y;
}
void resize(const vec2i& size) {
if (size == extent) return;
extent = size;
pixels.resize((size_t)size.x * (size_t)size.y);
}
void assign(const vec2i& size, const T& value = {}) {
extent = size;
pixels.assign((size_t)size.x * (size_t)size.y, value);
}
void shrink_to_fit() { pixels.shrink_to_fit(); }
// element access
T& operator[](int i) { return pixels[i]; }
const T& operator[](int i) const { return pixels[i]; }
T& operator[](const vec2i& ij) { return pixels[ij.y * extent.x + ij.x]; }
const T& operator[](const vec2i& ij) const {
return pixels[ij.y * extent.x + ij.x];
}
// data access
T* data() { return pixels.data(); }
const T* data() const { return pixels.data(); }
// iteration
T* begin() { return pixels.data(); }
T* end() { return pixels.data() + pixels.size(); }
const T* begin() const { return pixels.data(); }
const T* end() const { return pixels.data() + pixels.size(); }
private:
// data
vec2i extent = zero2i;
vector<T> pixels = {};
};
// equality
template <typename T>
inline bool operator==(const image<T>& a, const image<T>& b) {
return a.size() == b.size() && a.pixels == b.pixels;
}
template <typename T>
inline bool operator!=(const image<T>& a, const image<T>& b) {
return a.size() != b.size() || a.pixels != b.pixels;
}
} // namespace yocto
// -----------------------------------------------------------------------------
// IMAGE UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {
// Image region
struct image_region {
vec2i min = zero2i;
vec2i max = zero2i;
image_region() {}
image_region(const vec2i& min, const vec2i& max) : min{min}, max{max} {}
vec2i size() const { return max - min; }
};
// Splits an image into an array of regions
vector<image_region> make_regions(
const vec2i& size, int region_size = 32, bool shuffled = false);
// Gets pixels in an image region
template <typename T>
inline image<T> get_region(const image<T>& img, const image_region& region) {
auto clipped = image<T>{region.size()};
for (auto j = 0; j < region.size().y; j++) {
for (auto i = 0; i < region.size().x; i++) {
clipped[{i, j}] = img[{i + region.min.x, j + region.min.y}];
}
}
return clipped;
}
template <typename T>
inline void set_region(
image<T>& img, const image<T>& region, const vec2i& offset) {
for (auto j = 0; j < region.size().y; j++) {
for (auto i = 0; i < region.size().x; i++) {
if (!img.contains({i, j})) continue;
img[vec2i{i, j} + offset] = region[{i, j}];
}
}
}
template <typename T>
inline void get_region(
image<T>& clipped, const image<T>& img, const image_region& region) {
clipped.resize(region.size());
for (auto j = 0; j < region.size().y; j++) {
for (auto i = 0; i < region.size().x; i++) {
clipped[{i, j}] = img[{i + region.min.x, j + region.min.y}];
}
}
}
// Conversion from/to floats.
image<vec4f> byte_to_float(const image<vec4b>& bt);
image<vec4b> float_to_byte(const image<vec4f>& fl);
void byte_to_float(image<vec4f>& fl, const image<vec4b>& bt);
void float_to_byte(image<vec4b>& bt, const image<vec4f>& fl);
// Conversion between linear and gamma-encoded images.
image<vec4f> srgb_to_rgb(const image<vec4f>& srgb);
image<vec4f> rgb_to_srgb(const image<vec4f>& rgb);
image<vec4f> srgb_to_rgb(const image<vec4b>& srgb);
image<vec4b> rgb_to_srgbb(const image<vec4f>& rgb);
void srgb_to_rgb(image<vec4f>& rgb, const image<vec4f>& srgb);
void rgb_to_srgb(image<vec4f>& srgb, const image<vec4f>& rgb);
// Tone mapping params
struct tonemap_params {
float exposure = 0;
vec3f tint = {1, 1, 1};
float contrast = 0.5;
float logcontrast = 0.5;
float saturation = 0.5;
bool filmic = false;
bool srgb = true;
};
// Equality operators
inline bool operator==(const tonemap_params& a, const tonemap_params& b) {
return memcmp(&a, &b, sizeof(a)) == 0;
}
inline bool operator!=(const tonemap_params& a, const tonemap_params& b) {
return memcmp(&a, &b, sizeof(a)) != 0;
}
// Apply exposure and filmic tone mapping
image<vec4f> tonemap(const image<vec4f>& hdr, const tonemap_params& params);
image<vec4b> tonemapb(const image<vec4f>& hdr, const tonemap_params& params);
void tonemap(image<vec4f>& ldr, const image<vec4f>& hdr,
const image_region& region, const tonemap_params& params);
// minimal color grading
struct colorgrade_params {
float contrast = 0.5;
float shadows = 0.5;
float midtones = 0.5;
float highlights = 0.5;
vec3f shadows_color = {1, 1, 1};
vec3f midtones_color = {1, 1, 1};
vec3f highlights_color = {1, 1, 1};
};
// Equality operators
inline bool operator==(const colorgrade_params& a, const colorgrade_params& b) {
return memcmp(&a, &b, sizeof(a)) == 0;
}
inline bool operator!=(const colorgrade_params& a, const colorgrade_params& b) {
return memcmp(&a, &b, sizeof(a)) != 0;
}
// color grade an image region
image<vec4f> colorgrade(
const image<vec4f>& img, const colorgrade_params& params);
void colorgrade(image<vec4f>& corrected, const image<vec4f>& img,
const image_region& region, const colorgrade_params& params);
// determine white balance colors
vec3f compute_white_balance(const image<vec4f>& img);
// Resize an image.
image<vec4f> resize(const image<vec4f>& img, const vec2i& size);
image<vec4b> resize(const image<vec4b>& img, const vec2i& size);
void resize(image<vec4f>& res, const image<vec4f>& img, const vec2i& size);
void resize(image<vec4b>& res, const image<vec4b>& img, const vec2i& size);
} // namespace yocto
// -----------------------------------------------------------------------------
// IMAGE IO
// -----------------------------------------------------------------------------
namespace yocto {
// Check if an image is HDR based on filename.
bool is_hdr_filename(const string& filename);
// Loads/saves a 4 channels float/byte image in linear color space.
image<vec4f> load_image(const string& filename);
void load_image(const string& filename, image<vec4f>& img);
void save_image(const string& filename, const image<vec4f>& img);
image<vec4b> load_imageb(const string& filename);
void load_imageb(const string& filename, image<vec4b>& img);
void save_imageb(const string& filename, const image<vec4b>& img);
} // namespace yocto
// -----------------------------------------------------------------------------
// EXAMPLE IMAGES
// -----------------------------------------------------------------------------
namespace yocto {
// Parameters for make_proc_image
struct proc_image_params {
// clang-format off
enum struct type_t {
grid, checker, bumps, ramp, gammaramp, uvramp, uvgrid, blackbody, noise,
turbulence, fbm, ridge };
// clang-format on
type_t type = type_t::grid;
vec2i size = {1024, 1024};
float scale = 1;
vec4f color0 = {0, 0, 0, 1};
vec4f color1 = {1, 1, 1, 1};
vec4f noise = {2, 0.5, 8, 1}; // lacunarity, gain, octaves, offset
float borderw = 0;
vec4f borderc = {0, 0, 0, 1};
};
// Make an image
image<vec4f> make_proc_image(const proc_image_params& params);
void make_proc_image(image<vec4f>& img, const proc_image_params& params);
// Make a sunsky HDR model with sun at sun_angle elevation in [0,pif/2],
// turbidity in [1.7,10] with or without sun. The sun can be enabled or
// disabled with has_sun. The sun parameters can be slightly modified by
// changing the sun intensity and temperature. Has a convention, a temperature
// of 0 sets the eath sun defaults (ignoring intensity too).
image<vec4f> make_sunsky(const vec2i& size, float sun_angle,
float turbidity = 3, bool has_sun = false, float sun_intensity = 1,
float sun_radius = 1, const vec3f& ground_albedo = {0.2, 0.2, 0.2});
void make_sunsky(image<vec4f>& img, const vec2i& size, float sun_angle,
float turbidity = 3, bool has_sun = false, float sun_intensity = 1,
float sun_radius = 1, const vec3f& ground_albedo = {0.2, 0.2, 0.2});
// Make an image of multiple lights.
image<vec4f> make_lights(const vec2i& size, const vec3f& le = {1, 1, 1},
int nlights = 4, float langle = pif / 4, float lwidth = pif / 16,
float lheight = pif / 16);
void make_lights(image<vec4f>& img, const vec2i& size,
const vec3f& le = {1, 1, 1}, int nlights = 4, float langle = pif / 4,
float lwidth = pif / 16, float lheight = pif / 16);
// Comvert a bump map to a normal map. All linear color spaces.
image<vec4f> bump_to_normal(const image<vec4f>& img, float scale = 1);
void bump_to_normal(
image<vec4f>& norm, const image<vec4f>& img, float scale = 1);
// Add a border to an image
image<vec4f> add_border(const image<vec4f>& img, int width, const vec4f& color);
void add_border(
image<vec4f>& bordered, image<vec4f>& img, int width, const vec4f& color);
// Make logo images. Image is resized to proper size.
image<vec4b> make_logo(const string& name);
void make_logo(image<vec4f>& img, const string& name);
void make_logo(image<vec4b>& img, const string& name);
image<vec4f> add_logo(
const image<vec4f>& img, const string& name = "logo-medium");
image<vec4b> add_logo(
const image<vec4b>& img, const string& name = "logo-medium");
void add_logo(image<vec4f>& with_logo, const image<vec4f>& img,
const string& name = "logo-medium");
void add_logo(image<vec4b>& with_logo, const image<vec4b>& img,
const string& name = "logo-medium");
// Make an image preset, useful for testing. See implementation for types.
image<vec4f> make_image_preset(const string& type);
void make_image_preset(image<vec4f>& img, const string& type);
void make_image_preset(image<vec4b>& img, const string& type);
void make_image_preset(
image<vec4f>& hdr, image<vec4b>& ldr, const string& type);
} // namespace yocto
// -----------------------------------------------------------------------------
// VOLUME TYPE AND UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {
// Volume container.
template <typename T>
struct volume {
// constructors
volume() : extent{0, 0, 0}, voxels{} {}
volume(const vec3i& size, const T& value)
: extent{size}
, voxels((size_t)size.x * (size_t)size.y * (size_t)size.z, value) {}
volume(const vec3i& size, const T* value)
: extent{size}
, voxels(
value, value + (size_t)size.x * (size_t)size.y * (size_t)size.z) {}
// size
bool empty() const { return voxels.empty(); }
vec3i size() const { return extent; }
size_t count() const { return voxels.size(); }
void resize(const vec3i& size) {
if (size == extent) return;
extent = size;
voxels.resize((size_t)size.x * (size_t)size.y * (size_t)size.z);
}
void assign(const vec3i& size, const T& value) {
extent = size;
voxels.assign((size_t)size.x * (size_t)size.y * (size_t)size.z, value);
}
void shrink_to_fit() { voxels.shrink_to_fit(); }
// element access
T& operator[](size_t i) { return voxels[i]; }
const T& operator[](size_t i) const { return voxels[i]; }
T& operator[](const vec3i& ijk) {
return voxels[ijk.z * extent.x * extent.y + ijk.y * extent.x + ijk.x];
}
const T& operator[](const vec3i& ijk) const {
return voxels[ijk.z * extent.x * extent.y + ijk.y * extent.x + ijk.x];
}
// data access
T* data() { return voxels.data(); }
const T* data() const { return voxels.data(); }
// iteration
T* begin() { return voxels.data(); }
T* end() { return voxels.data() + voxels.size(); }
const T* begin() const { return voxels.data(); }
const T* end() const { return voxels.data() + voxels.size(); }
private:
// data
vec3i extent = zero3i;
vector<float> voxels = {};
};
// equality
template <typename T>
inline bool operator==(const volume<T>& a, const volume<T>& b) {
return a.size() == b.size() && a.voxels == b.voxels;
}
template <typename T>
inline bool operator!=(const volume<T>& a, const volume<T>& b) {
return a.size() != b.size() || a.voxels != b.voxels;
}
// make a simple example volume
void make_voltest(volume<float>& vol, const vec3i& size, float scale = 10,
float exponent = 6);
void make_volpreset(volume<float>& vol, const string& type);
} // namespace yocto
// -----------------------------------------------------------------------------
// VOLUME IMAGE IO
// -----------------------------------------------------------------------------
namespace yocto {
// Loads/saves a 1 channel volume.
void load_volume(const string& filename, volume<float>& vol);
void save_volume(const string& filename, const volume<float>& vol);
} // namespace yocto
// -----------------------------------------------------------------------------
// COLOR CONVERSION UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {
// Conversion between flots and bytes
inline vec4b float_to_byte(const vec4f& a) {
return {(byte)clamp(int(a.x * 256), 0, 255),
(byte)clamp(int(a.y * 256), 0, 255), (byte)clamp(int(a.z * 256), 0, 255),
(byte)clamp(int(a.w * 256), 0, 255)};
}
inline vec4f byte_to_float(const vec4b& a) {
return {a.x / 255.0f, a.y / 255.0f, a.z / 255.0f, a.w / 255.0f};
}
// Luminance
inline float luminance(const vec3f& a) {
return (0.2126f * a.x + 0.7152f * a.y + 0.0722f * a.z);
}
// sRGB non-linear curve
inline float srgb_to_rgb(float srgb) {
return (srgb <= 0.04045) ? srgb / 12.92f
: pow((srgb + 0.055f) / (1.0f + 0.055f), 2.4f);
}
inline float rgb_to_srgb(float rgb) {
return (rgb <= 0.0031308f) ? 12.92f * rgb
: (1 + 0.055f) * pow(rgb, 1 / 2.4f) - 0.055f;
}
inline vec3f srgb_to_rgb(const vec3f& srgb) {
return {srgb_to_rgb(srgb.x), srgb_to_rgb(srgb.y), srgb_to_rgb(srgb.z)};
}
inline vec4f srgb_to_rgb(const vec4f& srgb) {
return {
srgb_to_rgb(srgb.x), srgb_to_rgb(srgb.y), srgb_to_rgb(srgb.z), srgb.w};
}
inline vec3f rgb_to_srgb(const vec3f& rgb) {
return {rgb_to_srgb(rgb.x), rgb_to_srgb(rgb.y), rgb_to_srgb(rgb.z)};
}
inline vec4f rgb_to_srgb(const vec4f& rgb) {
return {rgb_to_srgb(rgb.x), rgb_to_srgb(rgb.y), rgb_to_srgb(rgb.z), rgb.w};
}
// Apply contrast. Grey should be 0.18 for linear and 0.5 for gamma.
inline vec3f contrast(const vec3f& rgb, float contrast, float grey) {
return max(zero3f, grey + (rgb - grey) * (contrast * 2));
}
// Apply contrast in log2. Grey should be 0.18 for linear and 0.5 for gamma.
inline vec3f logcontrast(const vec3f& rgb, float logcontrast, float grey) {
auto epsilon = (float)0.0001;
auto log_grey = log2(grey);
auto log_ldr = log2(rgb + epsilon);
auto adjusted = log_grey + (log_ldr - log_grey) * (logcontrast * 2);
return max(zero3f, exp2(adjusted) - epsilon);
}
// Apply saturation.
inline vec3f saturate(const vec3f& rgb, float saturation,
const vec3f& weights = vec3f{0.333333f}) {
auto grey = dot(weights, rgb);
return max(zero3f, grey + (rgb - grey) * (saturation * 2));
}
// Convert between CIE XYZ and RGB
inline vec3f rgb_to_xyz(const vec3f& rgb) {
// https://en.wikipedia.org/wiki/SRGB
static const auto mat = mat3f{
{0.4124, 0.2126, 0.0193},
{0.3576, 0.7152, 0.1192},
{0.1805, 0.0722, 0.9504},
};
return mat * rgb;
}
inline vec3f xyz_to_rgb(const vec3f& xyz) {
// https://en.wikipedia.org/wiki/SRGB
static const auto mat = mat3f{
{+3.2406, -0.9689, +0.0557},
{-1.5372, +1.8758, -0.2040},
{-0.4986, +0.0415, +1.0570},
};
return mat * xyz;
}
// Convert between CIE XYZ and xyY
inline vec3f xyz_to_xyY(const vec3f& xyz) {
if (xyz == zero3f) return zero3f;
return {
xyz.x / (xyz.x + xyz.y + xyz.z), xyz.y / (xyz.x + xyz.y + xyz.z), xyz.y};
}
inline vec3f xyY_to_xyz(const vec3f& xyY) {
if (xyY.y == 0) return zero3f;
return {xyY.x * xyY.z / xyY.y, xyY.z, (1 - xyY.x - xyY.y) * xyY.z / xyY.y};
}
// Approximate color of blackbody radiation from wavelength in nm.
vec3f blackbody_to_rgb(float temperature);
// Converts between HSV and RGB color spaces.
vec3f hsv_to_rgb(const vec3f& hsv);
vec3f rgb_to_hsv(const vec3f& rgb);
// RGB color spaces
enum struct color_space {
rgb, // default linear space (srgb linear)
srgb, // srgb color space (non-linear)
adobe, // Adobe rgb color space (non-linear)
prophoto, // ProPhoto Kodak rgb color space (non-linear)
rec709, // hdtv color space (non-linear)
rec2020, // uhtv color space (non-linear)
rec2100pq, // hdr color space with perceptual quantizer (non-linear)
rec2100hlg, // hdr color space with hybrid log gamma (non-linear)
aces2065, // ACES storage format (linear)
acescg, // ACES CG computation (linear)
acescc, // ACES color correction (non-linear)
acescct, // ACES color correction 2 (non-linear)
p3dci, // P3 DCI (non-linear)
p3d60, // P3 variation for D60 (non-linear)
p3d65, // P3 variation for D65 (non-linear)
p3display, // Apple display P3
};
// Conversion between rgb color spaces
vec3f color_to_xyz(const vec3f& col, color_space from);
vec3f xyz_to_color(const vec3f& xyz, color_space to);
inline vec3f convert_color(const vec3f& col, color_space from, color_space to) {
if (from == to) return col;
return xyz_to_color(color_to_xyz(col, from), to);
}
} // namespace yocto
#endif
|