1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
//
// # Yocto/Random: Tiny library for random number generatio and Monte Carlo.
//
// Yocto/Random provides utilities for random number generation, hasing,
// Monte Carlo integration and sampling and Perloin noise.
//
//
// ## Random Number Generation, Noise, and Monte Carlo support
//
// This library supports many facilities helpful in writing sampling
// functions targeting path tracing and shape generations. Implementation of
// Perlin noise is include based on stb libraries.
//
// 1. Random number generation with PCG32:
// 1. initialize the random number generator with `make_rng()`
// 2. advance the random number state with `advance_rng()`
// 3. if necessary, you can reseed the rng with `seed_rng()`
// 4. generate random integers in an interval with `rand1i()`
// 5. generate random floats and double in the [0,1) range with
// `rand1f()`, `rand2f()`, `rand3f()`,
// `next_rand1d()`
// 2. Perlin noise: `perlin_noise()` to generate Perlin noise with optional
// wrapping, with fractal variations `perlin_ridge()`,
// `perlin_fbm()`, `perlin_turbulence()`
// 3. Monte Carlo support: warp functions from [0,1)^k domains to domains
// commonly used in path tracing. In particular, use
// `sample_hemisphere()`, `sample_sphere()`,
// `sample_hemisphere_cos()`,
// `sample_hemisphere_cospower()`. `sample_disk()`.
// `sample_cylinder()`. `sample_triangle()`,
// `sample_discrete()`. For each warp, you can compute
// the PDF with `sample_xxx_pdf()`.
//
//
//
// LICENSE:
//
// Copyright (c) 2016 -- 2019 Fabio Pellacini
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//
// LICENSE OF INCLUDED SOFTWARE for Pcg random number generator
//
// This code also includes a small exerpt from http://www.pcg-random.org/
// licensed as follows
// *Really* minimal PCG32 code / (c) 2014 M.E. O'Neill / pcg-random.org
// Licensed under Apache License 2.0 (NO WARRANTY, etc. see website)
//
//
// LICENCE OF INCLUDED SOFTWARE FOR PERLIN NOISE
// https://github.com/nothings/stb/blob/master/stb_perlin.h
//
// ------------------------------------------------------------------------------
// ALTERNATIVE B - Public Domain (www.unlicense.org)
// This is free and unencumbered software released into the public domain.
// Anyone is free to copy, modify, publish, use, compile, sell, or distribute
// this software, either in source code form or as a compiled binary, for any
// purpose, commercial or non-commercial, and by any means. In jurisdictions
// that recognize copyright laws, the author or authors of this software
// dedicate any and all copyright interest in the software to the public domain.
// We make this dedication for the benefit of the public at large and to the
// detriment of our heirs and successors. We intend this dedication to be an
// overt act of relinquishment in perpetuity of all present and future rights to
// this software under copyright law.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
// ------------------------------------------------------------------------------
//
//
#ifndef _YOCTO_RANDOM_H_
#define _YOCTO_RANDOM_H_
// -----------------------------------------------------------------------------
// INCLUDES
// -----------------------------------------------------------------------------
#include "yocto_math.h"
#include <algorithm>
// -----------------------------------------------------------------------------
// RANDOM NUMBER GENERATION
// -----------------------------------------------------------------------------
namespace yocto {
// PCG random numbers from http://www.pcg-random.org/
struct rng_state {
uint64_t state = 0x853c49e6748fea9bULL;
uint64_t inc = 0xda3e39cb94b95bdbULL;
rng_state() : state{0x853c49e6748fea9bULL}, inc{0xda3e39cb94b95bdbULL} {}
rng_state(uint64_t state, uint64_t inc) : state{state}, inc{inc} {}
};
// Next random number, used internally only.
inline uint32_t _advance_rng(rng_state& rng) {
uint64_t oldstate = rng.state;
rng.state = oldstate * 6364136223846793005ULL + rng.inc;
uint32_t xorshifted = (uint32_t)(((oldstate >> 18u) ^ oldstate) >> 27u);
uint32_t rot = (uint32_t)(oldstate >> 59u);
return (xorshifted >> rot) | (xorshifted << ((-rot) & 31));
}
// Init a random number generator with a state state from the sequence seq.
inline rng_state make_rng(uint64_t seed, uint64_t seq = 1) {
auto rng = rng_state();
rng.state = 0U;
rng.inc = (seq << 1u) | 1u;
_advance_rng(rng);
rng.state += seed;
_advance_rng(rng);
return rng;
}
// Next random numbers: floats in [0,1), ints in [0,n).
inline int rand1i(rng_state& rng, int n) { return _advance_rng(rng) % n; }
inline float rand1f(rng_state& rng) {
union {
uint32_t u;
float f;
} x;
x.u = (_advance_rng(rng) >> 9) | 0x3f800000u;
return x.f - 1.0f;
// alternate implementation
// const static auto scale = (float)(1.0 / numeric_limits<uint32_t>::max());
// return advance_rng(rng) * scale;
}
inline vec2f rand2f(rng_state& rng) {
// force order of evaluation by using separate assignments.
auto x = rand1f(rng);
auto y = rand1f(rng);
return {x, y};
}
inline vec3f rand3f(rng_state& rng) {
// force order of evaluation by using separate assignments.
auto x = rand1f(rng);
auto y = rand1f(rng);
auto z = rand1f(rng);
return {x, y, z};
}
// Shuffles a sequence of elements
template <typename T>
inline void shuffle(vector<T>& vals, rng_state& rng) {
// https://en.wikipedia.org/wiki/Fisher–Yates_shuffle
for (auto i = (int)vals.size() - 1; i > 0; i--) {
auto j = rand1i(rng, i + 1);
std::swap(vals[j], vals[i]);
}
}
} // namespace yocto
// -----------------------------------------------------------------------------
// MONETACARLO SAMPLING FUNCTIONS
// -----------------------------------------------------------------------------
namespace yocto {
// Sample an hemispherical direction with uniform distribution.
inline vec3f sample_hemisphere(const vec2f& ruv) {
auto z = ruv.y;
auto r = sqrt(clamp(1 - z * z, 0.0f, 1.0f));
auto phi = 2 * pif * ruv.x;
return {r * cos(phi), r * sin(phi), z};
}
inline float sample_hemisphere_pdf(const vec3f& direction) {
return (direction.z <= 0) ? 0 : 1 / (2 * pif);
}
// Sample an hemispherical direction with uniform distribution.
inline vec3f sample_hemisphere(const vec3f& normal, const vec2f& ruv) {
auto z = ruv.y;
auto r = sqrt(clamp(1 - z * z, 0.0f, 1.0f));
auto phi = 2 * pif * ruv.x;
auto local_direction = vec3f{r * cos(phi), r * sin(phi), z};
return transform_direction(basis_fromz(normal), local_direction);
}
inline float sample_hemisphere_pdf(
const vec3f& normal, const vec3f& direction) {
return (dot(normal, direction) <= 0) ? 0 : 1 / (2 * pif);
}
// Sample a spherical direction with uniform distribution.
inline vec3f sample_sphere(const vec2f& ruv) {
auto z = 2 * ruv.y - 1;
auto r = sqrt(clamp(1 - z * z, 0.0f, 1.0f));
auto phi = 2 * pif * ruv.x;
return {r * cos(phi), r * sin(phi), z};
}
inline float sample_sphere_pdf(const vec3f& w) { return 1 / (4 * pif); }
// Sample an hemispherical direction with cosine distribution.
inline vec3f sample_hemisphere_cos(const vec2f& ruv) {
auto z = sqrt(ruv.y);
auto r = sqrt(1 - z * z);
auto phi = 2 * pif * ruv.x;
return {r * cos(phi), r * sin(phi), z};
}
inline float sample_hemisphere_cos_pdf(const vec3f& direction) {
return (direction.z <= 0) ? 0 : direction.z / pif;
}
// Sample an hemispherical direction with cosine power distribution.
inline vec3f sample_hemisphere_cospower(float exponent, const vec2f& ruv) {
auto z = pow(ruv.y, 1 / (exponent + 1));
auto r = sqrt(1 - z * z);
auto phi = 2 * pif * ruv.x;
return {r * cos(phi), r * sin(phi), z};
}
inline float sample_hemisphere_cospower_pdf(
float exponent, const vec3f& direction) {
return (direction.z <= 0)
? 0
: pow(direction.z, exponent) * (exponent + 1) / (2 * pif);
}
// Sample a point uniformly on a disk.
inline vec2f sample_disk(const vec2f& ruv) {
auto r = sqrt(ruv.y);
auto phi = 2 * pif * ruv.x;
return {cos(phi) * r, sin(phi) * r};
}
inline float sample_disk_pdf() { return 1 / pif; }
// Sample a point uniformly on a cylinder, without caps.
inline vec3f sample_cylinder(const vec2f& ruv) {
auto phi = 2 * pif * ruv.x;
return {sin(phi), cos(phi), ruv.y * 2 - 1};
}
inline float sample_cylinder_pdf() { return 1 / pif; }
// Sample a point uniformly on a triangle returning the baricentric coordinates.
inline vec2f sample_triangle(const vec2f& ruv) {
return {1 - sqrt(ruv.x), ruv.y * sqrt(ruv.x)};
}
// Sample a point uniformly on a triangle.
inline vec3f sample_triangle(
const vec3f& p0, const vec3f& p1, const vec3f& p2, const vec2f& ruv) {
auto uv = sample_triangle(ruv);
return p0 * (1 - uv.x - uv.y) + p1 * uv.x + p2 * uv.y;
}
// Pdf for uniform triangle sampling, i.e. triangle area.
inline float sample_triangle_pdf(
const vec3f& p0, const vec3f& p1, const vec3f& p2) {
return 2 / length(cross(p1 - p0, p2 - p0));
}
// Sample an index with uniform distribution.
inline int sample_uniform(int size, float r) {
return clamp((int)(r * size), 0, size - 1);
}
inline float sample_uniform_pdf(int size) { return (float)1 / (float)size; }
// Sample an index with uniform distribution.
inline float sample_uniform(const vector<float>& elements, float r) {
if (elements.empty()) return {};
auto size = (int)elements.size();
return elements[clamp((int)(r * size), 0, size - 1)];
}
inline float sample_uniform_pdf(const vector<float>& elements) {
if (elements.empty()) return 0;
return 1.0f / (int)elements.size();
}
// Sample a discrete distribution represented by its cdf.
inline int sample_discrete(const vector<float>& cdf, float r) {
r = clamp(r * cdf.back(), (float)0, cdf.back() - (float)0.00001);
auto idx = (int)(std::upper_bound(cdf.data(), cdf.data() + cdf.size(), r) -
cdf.data());
return clamp(idx, 0, (int)cdf.size() - 1);
}
// Pdf for uniform discrete distribution sampling.
inline float sample_discrete_pdf(const vector<float>& cdf, int idx) {
if (idx == 0) return cdf.at(0);
return cdf.at(idx) - cdf.at(idx - 1);
}
} // namespace yocto
// -----------------------------------------------------------------------------
// PERLIN NOISE FUNCTION
// -----------------------------------------------------------------------------
namespace yocto {
// Compute the revised Perlin noise function. Wrap provides a wrapping noise
// but must be power of two (wraps at 256 anyway). For octave based noise,
// good values are obtained with octaves=6 (numerber of noise calls),
// lacunarity=~2.0 (spacing between successive octaves: 2.0 for warpping
// output), gain=0.5 (relative weighting applied to each successive octave),
// offset=1.0 (used to invert the ridges).
inline float perlin_noise(const vec3f& p, const vec3i& wrap = zero3i);
inline float perlin_ridge(const vec3f& p, float lacunarity = 2,
float gain = 0.5, int octaves = 6, float offset = 1,
const vec3i& wrap = zero3i);
inline float perlin_fbm(const vec3f& p, float lacunarity = 2, float gain = 0.5,
int octaves = 6, const vec3i& wrap = zero3i);
inline float perlin_turbulence(const vec3f& p, float lacunarity = 2,
float gain = 0.5, int octaves = 6, const vec3i& wrap = zero3i);
} // namespace yocto
// -----------------------------------------------------------------------------
// IMPLEMENTATION FOR PERLIN NOISE
// -----------------------------------------------------------------------------
namespace yocto {
// clang-format off
inline float _stb__perlin_lerp(float a, float b, float t)
{
return a + (b-a) * t;
}
inline int _stb__perlin_fastfloor(float a)
{
int ai = (int) a;
return (a < ai) ? ai-1 : ai;
}
// different grad function from Perlin's, but easy to modify to match reference
inline float _stb__perlin_grad(int hash, float x, float y, float z)
{
static float basis[12][4] =
{
{ 1, 1, 0 },
{ -1, 1, 0 },
{ 1,-1, 0 },
{ -1,-1, 0 },
{ 1, 0, 1 },
{ -1, 0, 1 },
{ 1, 0,-1 },
{ -1, 0,-1 },
{ 0, 1, 1 },
{ 0,-1, 1 },
{ 0, 1,-1 },
{ 0,-1,-1 },
};
// perlin's gradient has 12 cases so some get used 1/16th of the time
// and some 2/16ths. We reduce bias by changing those fractions
// to 5/64ths and 6/64ths, and the same 4 cases get the extra weight.
static unsigned char indices[64] =
{
0,1,2,3,4,5,6,7,8,9,10,11,
0,9,1,11,
0,1,2,3,4,5,6,7,8,9,10,11,
0,1,2,3,4,5,6,7,8,9,10,11,
0,1,2,3,4,5,6,7,8,9,10,11,
0,1,2,3,4,5,6,7,8,9,10,11,
};
// if you use reference permutation table, change 63 below to 15 to match reference
// (this is why the ordering of the table above is funky)
float *grad = basis[indices[hash & 63]];
return grad[0]*x + grad[1]*y + grad[2]*z;
}
inline float _stb_perlin_noise3(float x, float y, float z, int x_wrap, int y_wrap, int z_wrap)
{
// not same permutation table as Perlin's reference to avoid copyright issues;
// Perlin's table can be found at http://mrl.nyu.edu/~perlin/noise/
// @OPTIMIZE: should this be unsigned char instead of int for cache?
static unsigned char _stb__perlin_randtab[512] =
{
23, 125, 161, 52, 103, 117, 70, 37, 247, 101, 203, 169, 124, 126, 44, 123,
152, 238, 145, 45, 171, 114, 253, 10, 192, 136, 4, 157, 249, 30, 35, 72,
175, 63, 77, 90, 181, 16, 96, 111, 133, 104, 75, 162, 93, 56, 66, 240,
8, 50, 84, 229, 49, 210, 173, 239, 141, 1, 87, 18, 2, 198, 143, 57,
225, 160, 58, 217, 168, 206, 245, 204, 199, 6, 73, 60, 20, 230, 211, 233,
94, 200, 88, 9, 74, 155, 33, 15, 219, 130, 226, 202, 83, 236, 42, 172,
165, 218, 55, 222, 46, 107, 98, 154, 109, 67, 196, 178, 127, 158, 13, 243,
65, 79, 166, 248, 25, 224, 115, 80, 68, 51, 184, 128, 232, 208, 151, 122,
26, 212, 105, 43, 179, 213, 235, 148, 146, 89, 14, 195, 28, 78, 112, 76,
250, 47, 24, 251, 140, 108, 186, 190, 228, 170, 183, 139, 39, 188, 244, 246,
132, 48, 119, 144, 180, 138, 134, 193, 82, 182, 120, 121, 86, 220, 209, 3,
91, 241, 149, 85, 205, 150, 113, 216, 31, 100, 41, 164, 177, 214, 153, 231,
38, 71, 185, 174, 97, 201, 29, 95, 7, 92, 54, 254, 191, 118, 34, 221,
131, 11, 163, 99, 234, 81, 227, 147, 156, 176, 17, 142, 69, 12, 110, 62,
27, 255, 0, 194, 59, 116, 242, 252, 19, 21, 187, 53, 207, 129, 64, 135,
61, 40, 167, 237, 102, 223, 106, 159, 197, 189, 215, 137, 36, 32, 22, 5,
// and a second copy so we don't need an extra mask or static initializer
23, 125, 161, 52, 103, 117, 70, 37, 247, 101, 203, 169, 124, 126, 44, 123,
152, 238, 145, 45, 171, 114, 253, 10, 192, 136, 4, 157, 249, 30, 35, 72,
175, 63, 77, 90, 181, 16, 96, 111, 133, 104, 75, 162, 93, 56, 66, 240,
8, 50, 84, 229, 49, 210, 173, 239, 141, 1, 87, 18, 2, 198, 143, 57,
225, 160, 58, 217, 168, 206, 245, 204, 199, 6, 73, 60, 20, 230, 211, 233,
94, 200, 88, 9, 74, 155, 33, 15, 219, 130, 226, 202, 83, 236, 42, 172,
165, 218, 55, 222, 46, 107, 98, 154, 109, 67, 196, 178, 127, 158, 13, 243,
65, 79, 166, 248, 25, 224, 115, 80, 68, 51, 184, 128, 232, 208, 151, 122,
26, 212, 105, 43, 179, 213, 235, 148, 146, 89, 14, 195, 28, 78, 112, 76,
250, 47, 24, 251, 140, 108, 186, 190, 228, 170, 183, 139, 39, 188, 244, 246,
132, 48, 119, 144, 180, 138, 134, 193, 82, 182, 120, 121, 86, 220, 209, 3,
91, 241, 149, 85, 205, 150, 113, 216, 31, 100, 41, 164, 177, 214, 153, 231,
38, 71, 185, 174, 97, 201, 29, 95, 7, 92, 54, 254, 191, 118, 34, 221,
131, 11, 163, 99, 234, 81, 227, 147, 156, 176, 17, 142, 69, 12, 110, 62,
27, 255, 0, 194, 59, 116, 242, 252, 19, 21, 187, 53, 207, 129, 64, 135,
61, 40, 167, 237, 102, 223, 106, 159, 197, 189, 215, 137, 36, 32, 22, 5,
};
float u,v,w;
float n000,n001,n010,n011,n100,n101,n110,n111;
float n00,n01,n10,n11;
float n0,n1;
unsigned int x_mask = (x_wrap-1) & 255;
unsigned int y_mask = (y_wrap-1) & 255;
unsigned int z_mask = (z_wrap-1) & 255;
int px = _stb__perlin_fastfloor(x);
int py = _stb__perlin_fastfloor(y);
int pz = _stb__perlin_fastfloor(z);
int x0 = px & x_mask, x1 = (px+1) & x_mask;
int y0 = py & y_mask, y1 = (py+1) & y_mask;
int z0 = pz & z_mask, z1 = (pz+1) & z_mask;
int r0,r1, r00,r01,r10,r11;
#define _stb__perlin_ease(a) (((a*6-15)*a + 10) * a * a * a)
x -= px; u = _stb__perlin_ease(x);
y -= py; v = _stb__perlin_ease(y);
z -= pz; w = _stb__perlin_ease(z);
r0 = _stb__perlin_randtab[x0];
r1 = _stb__perlin_randtab[x1];
r00 = _stb__perlin_randtab[r0+y0];
r01 = _stb__perlin_randtab[r0+y1];
r10 = _stb__perlin_randtab[r1+y0];
r11 = _stb__perlin_randtab[r1+y1];
n000 = _stb__perlin_grad(_stb__perlin_randtab[r00+z0], x , y , z );
n001 = _stb__perlin_grad(_stb__perlin_randtab[r00+z1], x , y , z-1 );
n010 = _stb__perlin_grad(_stb__perlin_randtab[r01+z0], x , y-1, z );
n011 = _stb__perlin_grad(_stb__perlin_randtab[r01+z1], x , y-1, z-1 );
n100 = _stb__perlin_grad(_stb__perlin_randtab[r10+z0], x-1, y , z );
n101 = _stb__perlin_grad(_stb__perlin_randtab[r10+z1], x-1, y , z-1 );
n110 = _stb__perlin_grad(_stb__perlin_randtab[r11+z0], x-1, y-1, z );
n111 = _stb__perlin_grad(_stb__perlin_randtab[r11+z1], x-1, y-1, z-1 );
n00 = _stb__perlin_lerp(n000,n001,w);
n01 = _stb__perlin_lerp(n010,n011,w);
n10 = _stb__perlin_lerp(n100,n101,w);
n11 = _stb__perlin_lerp(n110,n111,w);
n0 = _stb__perlin_lerp(n00,n01,v);
n1 = _stb__perlin_lerp(n10,n11,v);
return _stb__perlin_lerp(n0,n1,u);
}
inline float _stb_perlin_ridge_noise3(float x, float y, float z,float lacunarity, float gain, float offset, int octaves,int x_wrap, int y_wrap, int z_wrap)
{
int i;
float frequency = 1.0f;
float prev = 1.0f;
float amplitude = 0.5f;
float sum = 0.0f;
for (i = 0; i < octaves; i++) {
float r = (float)(_stb_perlin_noise3(x*frequency,y*frequency,z*frequency,x_wrap,y_wrap,z_wrap));
r = r<0 ? -r : r; // fabs()
r = offset - r;
r = r*r;
sum += r*amplitude*prev;
prev = r;
frequency *= lacunarity;
amplitude *= gain;
}
return sum;
}
inline float _stb_perlin_fbm_noise3(float x, float y, float z,float lacunarity, float gain, int octaves,int x_wrap, int y_wrap, int z_wrap)
{
int i;
float frequency = 1.0f;
float amplitude = 1.0f;
float sum = 0.0f;
for (i = 0; i < octaves; i++) {
sum += _stb_perlin_noise3(x*frequency,y*frequency,z*frequency,x_wrap,y_wrap,z_wrap)*amplitude;
frequency *= lacunarity;
amplitude *= gain;
}
return sum;
}
inline float _stb_perlin_turbulence_noise3(float x, float y, float z, float lacunarity, float gain, int octaves,int x_wrap, int y_wrap, int z_wrap)
{
int i;
float frequency = 1.0f;
float amplitude = 1.0f;
float sum = 0.0f;
for (i = 0; i < octaves; i++) {
float r = _stb_perlin_noise3(x*frequency,y*frequency,z*frequency,x_wrap,y_wrap,z_wrap)*amplitude;
r = r<0 ? -r : r; // fabs()
sum += r;
frequency *= lacunarity;
amplitude *= gain;
}
return sum;
}
// clang-format on
// adapeted stb_perlin.h
inline float perlin_noise(const vec3f& p, const vec3i& wrap) {
return _stb_perlin_noise3(p.x, p.y, p.z, wrap.x, wrap.y, wrap.z);
}
// adapeted stb_perlin.h
inline float perlin_ridge(const vec3f& p, float lacunarity, float gain,
int octaves, float offset, const vec3i& wrap) {
return _stb_perlin_ridge_noise3(
p.x, p.y, p.z, lacunarity, gain, offset, octaves, wrap.x, wrap.y, wrap.z);
}
// adapeted stb_perlin.h
inline float perlin_fbm(const vec3f& p, float lacunarity, float gain,
int octaves, const vec3i& wrap) {
return _stb_perlin_fbm_noise3(
p.x, p.y, p.z, lacunarity, gain, octaves, wrap.x, wrap.y, wrap.z);
}
// adapeted stb_perlin.h
inline float perlin_turbulence(const vec3f& p, float lacunarity, float gain,
int octaves, const vec3i& wrap) {
return _stb_perlin_turbulence_noise3(
p.x, p.y, p.z, lacunarity, gain, octaves, wrap.x, wrap.y, wrap.z);
}
} // namespace yocto
#endif
|