File: yocto_scene.h

package info (click to toggle)
goxel 0.10.6-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 11,076 kB
  • sloc: ansic: 97,667; cpp: 52,249; python: 132; makefile: 81; xml: 55
file content (576 lines) | stat: -rw-r--r-- 22,341 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
//
// # Yocto/Scene: Tiny library for scene representation
//
//
// Yocto/Scene is a library to represent 3D scenes using a simple data-driven
// and value oriented design.
//
//
// ## Simple scene representation
//
// Yocto/Scene define a simple scene data structure useful to create quick demos
// and as the repsetnation upon which the path tracer works.
//
// In Yocto scenes, shapes are represented as indexed collections of points,
// lines, triangles, quads and bezier segments. Each shape may contain
// only one element type. Shapes are organized into a scene by creating shape
// instances, each its own transform. Materials are specified like in OBJ and
// glTF and include emission, base-metallic and diffuse-specular
// parametrization, normal, occlusion and displacement mapping. Finally, the
// scene containers cameras and environment maps. Quad support in shapes is
// experimental and mostly supported for loading and saving. Lights in
// Yocto/Scene are pointers to either instances or environments. The scene
// supports an optional node hierarchy with animation modeled on the glTF model.
//
// 1. load a scene with Yocto/SceneIO,
// 2. use `compute_shape_box()/compute_scene_box()` to compute element bounds
// 3. compute interpolated values over scene elements with `evaluate_XXX()`
//    functions
// 4. for ray-intersection and closest point queries, use
//    'make_bvh()`/`refit_bvh()`
//
//

//
// LICENSE:
//
// Copyright (c) 2016 -- 2019 Fabio Pellacini
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//

#ifndef _YOCTO_SCENE_H_
#define _YOCTO_SCENE_H_

// -----------------------------------------------------------------------------
// INCLUDES
// -----------------------------------------------------------------------------

#include "yocto_bvh.h"
#include "yocto_image.h"
#include "yocto_math.h"

// -----------------------------------------------------------------------------
// SCENE DATA
// -----------------------------------------------------------------------------
namespace yocto {

// Camera based on a simple lens model. The camera is placed using a frame.
// Camera projection is described in photorgaphics terms. In particular,
// we specify fil size (35mm by default), the lens' focal length, the focus
// distance and the lens aperture. All values are in meters.
// Here are some common aspect ratios used in video and still photography.
// 3:2    on 35 mm:  0.036 x 0.024
// 16:9   on 35 mm:  0.036 x 0.02025 or 0.04267 x 0.024
// 2.35:1 on 35 mm:  0.036 x 0.01532 or 0.05640 x 0.024
// 2.39:1 on 35 mm:  0.036 x 0.01506 or 0.05736 x 0.024
// 2.4:1  on 35 mm:  0.036 x 0.015   or 0.05760 x 0.024 (approx. 2.39 : 1)
// To compute good apertures, one can use the F-stop number from phostography
// and set the aperture to focal_leangth/f_stop.
struct yocto_camera {
  string  uri          = "";
  frame3f frame        = identity3x4f;
  bool    orthographic = false;
  float   lens         = 0.050;
  vec2f   film         = {0.036, 0.024};
  float   focus        = flt_max;
  float   aperture     = 0;
};

// Texture containing either an LDR or HDR image. Textures are rendered
// using linear interpolation (unless `no_interoilation` is set) and
// weith tiling (unless `clamp_to_edge` is set). HdR images are encoded
// in linear color space, while LDRs are encoded as sRGB. The latter
// conversion can be disabled with `ldr_as_linear` for example to render
// normal maps.
struct yocto_texture {
  string       uri = "";
  image<vec4f> hdr = {};
  image<vec4b> ldr = {};
};

// Volumetric texture containing a float only volume data. See texture
// above for other propoerties.
struct yocto_voltexture {
  string        uri = "";
  volume<float> vol = {};
};

// Material for surfaces, lines and triangles.
// For surfaces, uses a microfacet model with thin sheet transmission.
// The model is based on OBJ, but contains glTF compatibility.
// For the documentation on the values, please see the OBJ format.
struct yocto_material {
  string uri = "";

  // lobes
  vec3f emission        = {0, 0, 0};
  vec3f diffuse         = {0, 0, 0};
  vec3f specular        = {0, 0, 0};
  float roughness       = 0;
  float metallic        = 0;
  vec3f coat            = {0, 0, 0};
  vec3f transmission    = {0, 0, 0};
  vec3f voltransmission = {0, 0, 0};
  vec3f volmeanfreepath = {0, 0, 0};
  vec3f volemission     = {0, 0, 0};
  vec3f volscatter      = {0, 0, 0};
  float volanisotropy   = 0;
  float volscale        = 0.01;
  float opacity         = 1;
  bool  thin            = false;

  // textures
  int  emission_tex     = -1;
  int  diffuse_tex      = -1;
  int  specular_tex     = -1;
  int  metallic_tex     = -1;
  int  roughness_tex    = -1;
  int  transmission_tex = -1;
  int  subsurface_tex   = -1;
  int  coat_tex         = -1;
  int  opacity_tex      = -1;
  int  normal_tex       = -1;
  bool gltf_textures    = false;  // glTF packed textures

  // volume textures
  int voldensity_tex = -1;
};

// Shape data represented as an indexed meshes of elements.
// May contain either points, lines, triangles and quads.
// Additionally, we support faceavarying primitives where each verftex data
// has its own topology.
struct yocto_shape {
  // shape data
  string uri = "";

  // primitives
  vector<int>   points    = {};
  vector<vec2i> lines     = {};
  vector<vec3i> triangles = {};
  vector<vec4i> quads     = {};

  // face-varying primitives
  vector<vec4i> quadspos      = {};
  vector<vec4i> quadsnorm     = {};
  vector<vec4i> quadstexcoord = {};

  // vertex data
  vector<vec3f> positions = {};
  vector<vec3f> normals   = {};
  vector<vec2f> texcoords = {};
  vector<vec4f> colors    = {};
  vector<float> radius    = {};
  vector<vec4f> tangents  = {};
};

// Shape data represented as an indexed meshes of elements.
// This object exists only to allow for further subdivision. The current
// subdiviion data is stored in the pointed to shape, so the rest of the system
// does not need to known about subdivs. While this is mostly helpful for
// subdivision surfaces, we store here all data that we possibly may want to
// subdivide, for later use.
struct yocto_subdiv {
  // shape data
  string uri = "";

  // tesselated shape
  int shape = -1;

  // subdision properties
  int  subdivisions = 0;
  bool catmullclark = false;
  bool smooth       = false;
  bool facevarying  = false;

  // displacement information
  float displacement     = 0;
  int   displacement_tex = -1;

  // primitives
  vector<int>   points    = {};
  vector<vec2i> lines     = {};
  vector<vec3i> triangles = {};
  vector<vec4i> quads     = {};

  // face-varying primitives
  vector<vec4i> quadspos      = {};
  vector<vec4i> quadsnorm     = {};
  vector<vec4i> quadstexcoord = {};

  // vertex data
  vector<vec3f> positions = {};
  vector<vec3f> normals   = {};
  vector<vec2f> texcoords = {};
  vector<vec4f> colors    = {};
  vector<float> radius    = {};
};

// Instance of a visible shape in the scene.
struct yocto_instance {
  string  uri      = "";
  frame3f frame    = identity3x4f;
  int     shape    = -1;
  int     material = -1;
};

// Environment map.
struct yocto_environment {
  string  uri          = "";
  frame3f frame        = identity3x4f;
  vec3f   emission     = {0, 0, 0};
  int     emission_tex = -1;
};

// Node in a transform hierarchy.
struct yocto_scene_node {
  string        uri         = "";
  int           parent      = -1;
  frame3f       local       = identity3x4f;
  vec3f         translation = {0, 0, 0};
  vec4f         rotation    = {0, 0, 0, 1};
  vec3f         scale       = {1, 1, 1};
  vector<float> weights     = {};
  int           camera      = -1;
  int           instance    = -1;
  int           environment = -1;

  // compute properties
  vector<int> children = {};
};

// Keyframe data.
struct yocto_animation {
  enum struct interpolation_type { linear, step, bezier };
  string                uri           = "";
  string                filename      = "";
  string                group         = "";
  interpolation_type    interpolation = interpolation_type::linear;
  vector<float>         times         = {};
  vector<vec3f>         translations  = {};
  vector<vec4f>         rotations     = {};
  vector<vec3f>         scales        = {};
  vector<vector<float>> morphs        = {};
  vector<int>           targets       = {};
};

// Scene comprised an array of objects whose memory is owened by the scene.
// All members are optional,Scene objects (camera, instances, environments)
// have transforms defined internally. A scene can optionally contain a
// node hierarchy where each node might point to a camera, instance or
// environment. In that case, the element transforms are computed from
// the hierarchy. Animation is also optional, with keyframe data that
// updates node transformations only if defined.
struct yocto_scene {
  string                    uri          = "";
  vector<yocto_camera>      cameras      = {};
  vector<yocto_shape>       shapes       = {};
  vector<yocto_instance>    instances    = {};
  vector<yocto_material>    materials    = {};
  vector<yocto_texture>     textures     = {};
  vector<yocto_environment> environments = {};
  vector<yocto_subdiv>      subdivs      = {};
  vector<yocto_voltexture>  voltextures  = {};
  vector<yocto_scene_node>  nodes        = {};
  vector<yocto_animation>   animations   = {};
};

}  // namespace yocto

// -----------------------------------------------------------------------------
// SCENE UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {

// Merge a scene into another
void merge_scene(yocto_scene& scene, const yocto_scene& merge);

// Print scene statistics.
string format_stats(
    const yocto_scene& scene, const string& prefix = "", bool verbose = false);

// Add missing names, normals, tangents and hierarchy.
void add_normals(yocto_scene& scene);
void add_tangent_spaces(yocto_scene& scene);
void add_materials(yocto_scene& scene);
void add_cameras(yocto_scene& scene);
void add_radius(yocto_scene& scene, float radius = 0.001f);

// Normalize URIs and add missing ones. Assumes names are unique.
void normalize_uris(yocto_scene& sceme);
void rename_instances(yocto_scene& scene);

// Add a sky environment
void add_sky(yocto_scene& scene, float sun_angle = pif / 4);

// Reduce memory usage
void trim_memory(yocto_scene& scene);

// Checks for validity of the scene.
void print_validation(const yocto_scene& scene, bool notextures = false);

}  // namespace yocto

// -----------------------------------------------------------------------------
// EVALUATION OF SCENE PROPERTIES
// -----------------------------------------------------------------------------
namespace yocto {

// Update node transforms.
void update_transforms(
    yocto_scene& scene, float time = 0, const string& anim_group = "");

// Compute animation range.
vec2f compute_animation_range(
    const yocto_scene& scene, const string& anim_group = "");

// Computes shape/scene approximate bounds.
bbox3f compute_bounds(const yocto_shape& shape);
bbox3f compute_bounds(const yocto_scene& scene);

// Compute shape vertex normals
vector<vec3f> compute_normals(const yocto_shape& shape);
void          compute_normals(const yocto_shape& shape, vector<vec3f>& normals);

// Apply subdivision and displacement rules.
void subdivide_shape(yocto_shape& shape, int subdivisions, bool catmullclark,
    bool compute_normals);
void displace_shape(yocto_shape& shape, const yocto_texture& displacement,
    float scale, bool compute_normals);
void tesselate_subdiv(yocto_scene& scene, yocto_subdiv& subdiv);
void tesselate_subdivs(yocto_scene& scene);

// Build/refit the bvh acceleration structure.
bvh_scene make_bvh(const yocto_scene& scene, const bvh_params& params);
void      make_bvh(
         bvh_scene& bvh, const yocto_scene& scene, const bvh_params& params);
void refit_bvh(bvh_scene& bvh, const yocto_scene& scene,
    const vector<int>& updated_shapes, const bvh_params& params);

// Shape values interpolated by interpoalting vertex values of the `eid` element
// with its barycentric coordinates `euv`.
vec3f eval_position(const yocto_shape& shape, int element, const vec2f& uv);
vec3f eval_normal(const yocto_shape& shape, int element, const vec2f& uv);
vec2f eval_texcoord(const yocto_shape& shape, int element, const vec2f& uv);
vec4f eval_color(const yocto_shape& shape, int element, const vec2f& uv);
float eval_radius(const yocto_shape& shape, int element, const vec2f& uv);
pair<mat3f, bool> eval_tangent_basis(
    const yocto_shape& shape, int element, const vec2f& uv);
// Shape element values.
vec3f              eval_element_normal(const yocto_shape& shape, int element);
pair<vec3f, vec3f> eval_element_tangents(
    const yocto_shape& shape, int element, const vec2f& uv = zero2f);
pair<mat3f, bool> eval_element_tangent_basis(
    const yocto_shape& shape, int element, const vec2f& uv = zero2f);

// Sample a shape element based on area/length.
pair<int, vec2f> sample_shape(const yocto_shape& shape,
    const vector<float>& cdf, float re, const vec2f& ruv);
vector<float>    sample_shape_cdf(const yocto_shape& shape);
void             sample_shape_cdf(const yocto_shape& shape, vector<float>& cdf);
float sample_shape_pdf(const yocto_shape& shape, const vector<float>& cdf,
    int element, const vec2f& uv);

// Evaluate a texture.
vec2i texture_size(const yocto_texture& texture);
vec4f lookup_texture(
    const yocto_texture& texture, int i, int j, bool ldr_as_linear = false);
vec4f eval_texture(const yocto_texture& texture, const vec2f& texcoord,
    bool ldr_as_linear = false, bool no_interpolation = false,
    bool clamp_to_edge = false);
float lookup_voltexture(
    const yocto_voltexture& texture, int i, int j, int k, bool ldr_as_linear);
float eval_voltexture(const yocto_voltexture& texture, const vec3f& texcoord,
    bool ldr_as_linear = false, bool no_interpolation = false,
    bool clamp_to_edge = false);

// Set and evaluate camera parameters. Setters take zeros as default values.
vec2f camera_fov(const yocto_camera& camera);
float camera_yfov(const yocto_camera& camera);
float camera_aspect(const yocto_camera& camera);
vec2i camera_resolution(const yocto_camera& camera, int resolution);
void  set_yperspective(yocto_camera& camera, float yfov, float aspect,
     float focus, float film = 0.036f);
// Sets camera field of view to enclose all the bbox. Camera view direction
// fiom size and forcal lemgth can be overridden if we pass non zero values.
void set_view(yocto_camera& camera, const bbox3f& bbox,
    const vec3f& view_direction = zero3f);

// Generates a ray from the image coordinates `uv` and lens coordinates `luv`.
ray3f eval_camera(
    const yocto_camera& camera, const vec2f& uv, const vec2f& luv);
// Generates a ray from a camera for pixel `ij`, the image size `resolution`,
// the sub-pixel coordinates `puv` and the lens coordinates `luv`.
ray3f eval_camera(const yocto_camera& camera, const vec2i& ij,
    const vec2i& resolution, const vec2f& puv, const vec2f& luv);

// Material values packed into a convenience structure.
struct material_point {
  vec3f emission      = {0, 0, 0};
  vec3f diffuse       = {0, 0, 0};
  vec3f specular      = {0, 0, 0};
  vec3f coat          = {0, 0, 0};
  vec3f transmission  = {0, 0, 0};
  float roughness     = 0;
  vec3f voldensity    = {0, 0, 0};
  vec3f volemission   = {0, 0, 0};
  vec3f volscatter    = {0, 0, 0};
  float volanisotropy = 0;
  float opacity       = 1;
  bool  thin          = false;
};
material_point eval_material(const yocto_scene& scene,
    const yocto_material& material, const vec2f& texcoord,
    const vec4f& shape_color);

// Instance values interpolated using barycentric coordinates.
// Handles defaults if data is missing.
vec3f eval_position(const yocto_scene& scene, const yocto_instance& instance,
    int element, const vec2f& uv);
vec3f eval_normal(const yocto_scene& scene, const yocto_instance& instance,
    int element, const vec2f& uv, bool non_rigid_frame = false);
vec3f eval_shading_normal(const yocto_scene& scene,
    const yocto_instance& instance, int element, const vec2f& uv,
    const vec3f& direction, bool non_rigid_frame = false);
vec3f eval_element_normal(const yocto_scene& scene,
    const yocto_instance& instance, int element, bool non_rigid_frame = false);
material_point eval_material(const yocto_scene& scene,
    const yocto_instance& instance, int element, const vec2f& uv);

// Environment texture coordinates from the incoming direction.
vec2f eval_texcoord(
    const yocto_environment& environment, const vec3f& direction);
// Evaluate the incoming direction from the uv.
vec3f eval_direction(
    const yocto_environment& environment, const vec2f& environment_uv);
// Evaluate the environment emission.
vec3f eval_environment(const yocto_scene& scene,
    const yocto_environment& environment, const vec3f& direction);
// Evaluate all environment emission.
vec3f eval_environment(const yocto_scene& scene, const vec3f& direction);

// Sample an environment based on either texel values of uniform
vec3f         sample_environment(const yocto_scene& scene,
            const yocto_environment& environment, const vector<float>& texels_cdf,
            float re, const vec2f& ruv);
vector<float> sample_environment_cdf(
    const yocto_scene& scene, const yocto_environment& environment);
void  sample_environment_cdf(const yocto_scene& scene,
     const yocto_environment& environment, vector<float>& texels_cdf);
float sample_environment_pdf(const yocto_scene& scene,
    const yocto_environment& environment, const vector<float>& texels_cdf,
    const vec3f& direction);

}  // namespace yocto

// -----------------------------------------------------------------------------
// ANIMATION UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {

// Find the first keyframe value that is greater than the argument.
inline int keyframe_index(const vector<float>& times, const float& time);

// Evaluates a keyframed value using step interpolation.
template <typename T>
inline T keyframe_step(
    const vector<float>& times, const vector<T>& vals, float time);

// Evaluates a keyframed value using linear interpolation.
template <typename T>
inline vec4f keyframe_slerp(
    const vector<float>& times, const vector<vec4f>& vals, float time);

// Evaluates a keyframed value using linear interpolation.
template <typename T>
inline T keyframe_linear(
    const vector<float>& times, const vector<T>& vals, float time);

// Evaluates a keyframed value using Bezier interpolation.
template <typename T>
inline T keyframe_bezier(
    const vector<float>& times, const vector<T>& vals, float time);

}  // namespace yocto

// -----------------------------------------------------------------------------
// IMPLEMENTATION OF ANIMATION UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {

// Find the first keyframe value that is greater than the argument.
inline int keyframe_index(const vector<float>& times, const float& time) {
  for (auto i = 0; i < times.size(); i++)
    if (times[i] > time) return i;
  return (int)times.size();
}

// Evaluates a keyframed value using step interpolation.
template <typename T>
inline T keyframe_step(
    const vector<float>& times, const vector<T>& vals, float time) {
  if (time <= times.front()) return vals.front();
  if (time >= times.back()) return vals.back();
  time     = clamp(time, times.front(), times.back() - 0.001f);
  auto idx = keyframe_index(times, time);
  return vals.at(idx - 1);
}

// Evaluates a keyframed value using linear interpolation.
template <typename T>
inline vec4f keyframe_slerp(
    const vector<float>& times, const vector<vec4f>& vals, float time) {
  if (time <= times.front()) return vals.front();
  if (time >= times.back()) return vals.back();
  time     = clamp(time, times.front(), times.back() - 0.001f);
  auto idx = keyframe_index(times, time);
  auto t   = (time - times.at(idx - 1)) / (times.at(idx) - times.at(idx - 1));
  return slerp(vals.at(idx - 1), vals.at(idx), t);
}

// Evaluates a keyframed value using linear interpolation.
template <typename T>
inline T keyframe_linear(
    const vector<float>& times, const vector<T>& vals, float time) {
  if (time <= times.front()) return vals.front();
  if (time >= times.back()) return vals.back();
  time     = clamp(time, times.front(), times.back() - 0.001f);
  auto idx = keyframe_index(times, time);
  auto t   = (time - times.at(idx - 1)) / (times.at(idx) - times.at(idx - 1));
  return vals.at(idx - 1) * (1 - t) + vals.at(idx) * t;
}

// Evaluates a keyframed value using Bezier interpolation.
template <typename T>
inline T keyframe_bezier(
    const vector<float>& times, const vector<T>& vals, float time) {
  if (time <= times.front()) return vals.front();
  if (time >= times.back()) return vals.back();
  time     = clamp(time, times.front(), times.back() - 0.001f);
  auto idx = keyframe_index(times, time);
  auto t   = (time - times.at(idx - 1)) / (times.at(idx) - times.at(idx - 1));
  return interpolate_bezier(
      vals.at(idx - 3), vals.at(idx - 2), vals.at(idx - 1), vals.at(idx), t);
}

}  // namespace yocto

#endif