1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
//
// # Yocto/Scene: Tiny library for scene representation
//
//
// Yocto/Scene is a library to represent 3D scenes using a simple data-driven
// and value oriented design.
//
//
// ## Simple scene representation
//
// Yocto/Scene define a simple scene data structure useful to create quick demos
// and as the repsetnation upon which the path tracer works.
//
// In Yocto scenes, shapes are represented as indexed collections of points,
// lines, triangles, quads and bezier segments. Each shape may contain
// only one element type. Shapes are organized into a scene by creating shape
// instances, each its own transform. Materials are specified like in OBJ and
// glTF and include emission, base-metallic and diffuse-specular
// parametrization, normal, occlusion and displacement mapping. Finally, the
// scene containers cameras and environment maps. Quad support in shapes is
// experimental and mostly supported for loading and saving. Lights in
// Yocto/Scene are pointers to either instances or environments. The scene
// supports an optional node hierarchy with animation modeled on the glTF model.
//
// 1. load a scene with Yocto/SceneIO,
// 2. use `compute_shape_box()/compute_scene_box()` to compute element bounds
// 3. compute interpolated values over scene elements with `evaluate_XXX()`
// functions
// 4. for ray-intersection and closest point queries, use
// 'make_bvh()`/`refit_bvh()`
//
//
//
// LICENSE:
//
// Copyright (c) 2016 -- 2019 Fabio Pellacini
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//
#ifndef _YOCTO_SCENE_H_
#define _YOCTO_SCENE_H_
// -----------------------------------------------------------------------------
// INCLUDES
// -----------------------------------------------------------------------------
#include "yocto_bvh.h"
#include "yocto_image.h"
#include "yocto_math.h"
// -----------------------------------------------------------------------------
// SCENE DATA
// -----------------------------------------------------------------------------
namespace yocto {
// Camera based on a simple lens model. The camera is placed using a frame.
// Camera projection is described in photorgaphics terms. In particular,
// we specify fil size (35mm by default), the lens' focal length, the focus
// distance and the lens aperture. All values are in meters.
// Here are some common aspect ratios used in video and still photography.
// 3:2 on 35 mm: 0.036 x 0.024
// 16:9 on 35 mm: 0.036 x 0.02025 or 0.04267 x 0.024
// 2.35:1 on 35 mm: 0.036 x 0.01532 or 0.05640 x 0.024
// 2.39:1 on 35 mm: 0.036 x 0.01506 or 0.05736 x 0.024
// 2.4:1 on 35 mm: 0.036 x 0.015 or 0.05760 x 0.024 (approx. 2.39 : 1)
// To compute good apertures, one can use the F-stop number from phostography
// and set the aperture to focal_leangth/f_stop.
struct yocto_camera {
string uri = "";
frame3f frame = identity3x4f;
bool orthographic = false;
float lens = 0.050;
vec2f film = {0.036, 0.024};
float focus = flt_max;
float aperture = 0;
};
// Texture containing either an LDR or HDR image. Textures are rendered
// using linear interpolation (unless `no_interoilation` is set) and
// weith tiling (unless `clamp_to_edge` is set). HdR images are encoded
// in linear color space, while LDRs are encoded as sRGB. The latter
// conversion can be disabled with `ldr_as_linear` for example to render
// normal maps.
struct yocto_texture {
string uri = "";
image<vec4f> hdr = {};
image<vec4b> ldr = {};
};
// Volumetric texture containing a float only volume data. See texture
// above for other propoerties.
struct yocto_voltexture {
string uri = "";
volume<float> vol = {};
};
// Material for surfaces, lines and triangles.
// For surfaces, uses a microfacet model with thin sheet transmission.
// The model is based on OBJ, but contains glTF compatibility.
// For the documentation on the values, please see the OBJ format.
struct yocto_material {
string uri = "";
// lobes
vec3f emission = {0, 0, 0};
vec3f diffuse = {0, 0, 0};
vec3f specular = {0, 0, 0};
float roughness = 0;
float metallic = 0;
vec3f coat = {0, 0, 0};
vec3f transmission = {0, 0, 0};
vec3f voltransmission = {0, 0, 0};
vec3f volmeanfreepath = {0, 0, 0};
vec3f volemission = {0, 0, 0};
vec3f volscatter = {0, 0, 0};
float volanisotropy = 0;
float volscale = 0.01;
float opacity = 1;
bool thin = false;
// textures
int emission_tex = -1;
int diffuse_tex = -1;
int specular_tex = -1;
int metallic_tex = -1;
int roughness_tex = -1;
int transmission_tex = -1;
int subsurface_tex = -1;
int coat_tex = -1;
int opacity_tex = -1;
int normal_tex = -1;
bool gltf_textures = false; // glTF packed textures
// volume textures
int voldensity_tex = -1;
};
// Shape data represented as an indexed meshes of elements.
// May contain either points, lines, triangles and quads.
// Additionally, we support faceavarying primitives where each verftex data
// has its own topology.
struct yocto_shape {
// shape data
string uri = "";
// primitives
vector<int> points = {};
vector<vec2i> lines = {};
vector<vec3i> triangles = {};
vector<vec4i> quads = {};
// face-varying primitives
vector<vec4i> quadspos = {};
vector<vec4i> quadsnorm = {};
vector<vec4i> quadstexcoord = {};
// vertex data
vector<vec3f> positions = {};
vector<vec3f> normals = {};
vector<vec2f> texcoords = {};
vector<vec4f> colors = {};
vector<float> radius = {};
vector<vec4f> tangents = {};
};
// Shape data represented as an indexed meshes of elements.
// This object exists only to allow for further subdivision. The current
// subdiviion data is stored in the pointed to shape, so the rest of the system
// does not need to known about subdivs. While this is mostly helpful for
// subdivision surfaces, we store here all data that we possibly may want to
// subdivide, for later use.
struct yocto_subdiv {
// shape data
string uri = "";
// tesselated shape
int shape = -1;
// subdision properties
int subdivisions = 0;
bool catmullclark = false;
bool smooth = false;
bool facevarying = false;
// displacement information
float displacement = 0;
int displacement_tex = -1;
// primitives
vector<int> points = {};
vector<vec2i> lines = {};
vector<vec3i> triangles = {};
vector<vec4i> quads = {};
// face-varying primitives
vector<vec4i> quadspos = {};
vector<vec4i> quadsnorm = {};
vector<vec4i> quadstexcoord = {};
// vertex data
vector<vec3f> positions = {};
vector<vec3f> normals = {};
vector<vec2f> texcoords = {};
vector<vec4f> colors = {};
vector<float> radius = {};
};
// Instance of a visible shape in the scene.
struct yocto_instance {
string uri = "";
frame3f frame = identity3x4f;
int shape = -1;
int material = -1;
};
// Environment map.
struct yocto_environment {
string uri = "";
frame3f frame = identity3x4f;
vec3f emission = {0, 0, 0};
int emission_tex = -1;
};
// Node in a transform hierarchy.
struct yocto_scene_node {
string uri = "";
int parent = -1;
frame3f local = identity3x4f;
vec3f translation = {0, 0, 0};
vec4f rotation = {0, 0, 0, 1};
vec3f scale = {1, 1, 1};
vector<float> weights = {};
int camera = -1;
int instance = -1;
int environment = -1;
// compute properties
vector<int> children = {};
};
// Keyframe data.
struct yocto_animation {
enum struct interpolation_type { linear, step, bezier };
string uri = "";
string filename = "";
string group = "";
interpolation_type interpolation = interpolation_type::linear;
vector<float> times = {};
vector<vec3f> translations = {};
vector<vec4f> rotations = {};
vector<vec3f> scales = {};
vector<vector<float>> morphs = {};
vector<int> targets = {};
};
// Scene comprised an array of objects whose memory is owened by the scene.
// All members are optional,Scene objects (camera, instances, environments)
// have transforms defined internally. A scene can optionally contain a
// node hierarchy where each node might point to a camera, instance or
// environment. In that case, the element transforms are computed from
// the hierarchy. Animation is also optional, with keyframe data that
// updates node transformations only if defined.
struct yocto_scene {
string uri = "";
vector<yocto_camera> cameras = {};
vector<yocto_shape> shapes = {};
vector<yocto_instance> instances = {};
vector<yocto_material> materials = {};
vector<yocto_texture> textures = {};
vector<yocto_environment> environments = {};
vector<yocto_subdiv> subdivs = {};
vector<yocto_voltexture> voltextures = {};
vector<yocto_scene_node> nodes = {};
vector<yocto_animation> animations = {};
};
} // namespace yocto
// -----------------------------------------------------------------------------
// SCENE UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {
// Merge a scene into another
void merge_scene(yocto_scene& scene, const yocto_scene& merge);
// Print scene statistics.
string format_stats(
const yocto_scene& scene, const string& prefix = "", bool verbose = false);
// Add missing names, normals, tangents and hierarchy.
void add_normals(yocto_scene& scene);
void add_tangent_spaces(yocto_scene& scene);
void add_materials(yocto_scene& scene);
void add_cameras(yocto_scene& scene);
void add_radius(yocto_scene& scene, float radius = 0.001f);
// Normalize URIs and add missing ones. Assumes names are unique.
void normalize_uris(yocto_scene& sceme);
void rename_instances(yocto_scene& scene);
// Add a sky environment
void add_sky(yocto_scene& scene, float sun_angle = pif / 4);
// Reduce memory usage
void trim_memory(yocto_scene& scene);
// Checks for validity of the scene.
void print_validation(const yocto_scene& scene, bool notextures = false);
} // namespace yocto
// -----------------------------------------------------------------------------
// EVALUATION OF SCENE PROPERTIES
// -----------------------------------------------------------------------------
namespace yocto {
// Update node transforms.
void update_transforms(
yocto_scene& scene, float time = 0, const string& anim_group = "");
// Compute animation range.
vec2f compute_animation_range(
const yocto_scene& scene, const string& anim_group = "");
// Computes shape/scene approximate bounds.
bbox3f compute_bounds(const yocto_shape& shape);
bbox3f compute_bounds(const yocto_scene& scene);
// Compute shape vertex normals
vector<vec3f> compute_normals(const yocto_shape& shape);
void compute_normals(const yocto_shape& shape, vector<vec3f>& normals);
// Apply subdivision and displacement rules.
void subdivide_shape(yocto_shape& shape, int subdivisions, bool catmullclark,
bool compute_normals);
void displace_shape(yocto_shape& shape, const yocto_texture& displacement,
float scale, bool compute_normals);
void tesselate_subdiv(yocto_scene& scene, yocto_subdiv& subdiv);
void tesselate_subdivs(yocto_scene& scene);
// Build/refit the bvh acceleration structure.
bvh_scene make_bvh(const yocto_scene& scene, const bvh_params& params);
void make_bvh(
bvh_scene& bvh, const yocto_scene& scene, const bvh_params& params);
void refit_bvh(bvh_scene& bvh, const yocto_scene& scene,
const vector<int>& updated_shapes, const bvh_params& params);
// Shape values interpolated by interpoalting vertex values of the `eid` element
// with its barycentric coordinates `euv`.
vec3f eval_position(const yocto_shape& shape, int element, const vec2f& uv);
vec3f eval_normal(const yocto_shape& shape, int element, const vec2f& uv);
vec2f eval_texcoord(const yocto_shape& shape, int element, const vec2f& uv);
vec4f eval_color(const yocto_shape& shape, int element, const vec2f& uv);
float eval_radius(const yocto_shape& shape, int element, const vec2f& uv);
pair<mat3f, bool> eval_tangent_basis(
const yocto_shape& shape, int element, const vec2f& uv);
// Shape element values.
vec3f eval_element_normal(const yocto_shape& shape, int element);
pair<vec3f, vec3f> eval_element_tangents(
const yocto_shape& shape, int element, const vec2f& uv = zero2f);
pair<mat3f, bool> eval_element_tangent_basis(
const yocto_shape& shape, int element, const vec2f& uv = zero2f);
// Sample a shape element based on area/length.
pair<int, vec2f> sample_shape(const yocto_shape& shape,
const vector<float>& cdf, float re, const vec2f& ruv);
vector<float> sample_shape_cdf(const yocto_shape& shape);
void sample_shape_cdf(const yocto_shape& shape, vector<float>& cdf);
float sample_shape_pdf(const yocto_shape& shape, const vector<float>& cdf,
int element, const vec2f& uv);
// Evaluate a texture.
vec2i texture_size(const yocto_texture& texture);
vec4f lookup_texture(
const yocto_texture& texture, int i, int j, bool ldr_as_linear = false);
vec4f eval_texture(const yocto_texture& texture, const vec2f& texcoord,
bool ldr_as_linear = false, bool no_interpolation = false,
bool clamp_to_edge = false);
float lookup_voltexture(
const yocto_voltexture& texture, int i, int j, int k, bool ldr_as_linear);
float eval_voltexture(const yocto_voltexture& texture, const vec3f& texcoord,
bool ldr_as_linear = false, bool no_interpolation = false,
bool clamp_to_edge = false);
// Set and evaluate camera parameters. Setters take zeros as default values.
vec2f camera_fov(const yocto_camera& camera);
float camera_yfov(const yocto_camera& camera);
float camera_aspect(const yocto_camera& camera);
vec2i camera_resolution(const yocto_camera& camera, int resolution);
void set_yperspective(yocto_camera& camera, float yfov, float aspect,
float focus, float film = 0.036f);
// Sets camera field of view to enclose all the bbox. Camera view direction
// fiom size and forcal lemgth can be overridden if we pass non zero values.
void set_view(yocto_camera& camera, const bbox3f& bbox,
const vec3f& view_direction = zero3f);
// Generates a ray from the image coordinates `uv` and lens coordinates `luv`.
ray3f eval_camera(
const yocto_camera& camera, const vec2f& uv, const vec2f& luv);
// Generates a ray from a camera for pixel `ij`, the image size `resolution`,
// the sub-pixel coordinates `puv` and the lens coordinates `luv`.
ray3f eval_camera(const yocto_camera& camera, const vec2i& ij,
const vec2i& resolution, const vec2f& puv, const vec2f& luv);
// Material values packed into a convenience structure.
struct material_point {
vec3f emission = {0, 0, 0};
vec3f diffuse = {0, 0, 0};
vec3f specular = {0, 0, 0};
vec3f coat = {0, 0, 0};
vec3f transmission = {0, 0, 0};
float roughness = 0;
vec3f voldensity = {0, 0, 0};
vec3f volemission = {0, 0, 0};
vec3f volscatter = {0, 0, 0};
float volanisotropy = 0;
float opacity = 1;
bool thin = false;
};
material_point eval_material(const yocto_scene& scene,
const yocto_material& material, const vec2f& texcoord,
const vec4f& shape_color);
// Instance values interpolated using barycentric coordinates.
// Handles defaults if data is missing.
vec3f eval_position(const yocto_scene& scene, const yocto_instance& instance,
int element, const vec2f& uv);
vec3f eval_normal(const yocto_scene& scene, const yocto_instance& instance,
int element, const vec2f& uv, bool non_rigid_frame = false);
vec3f eval_shading_normal(const yocto_scene& scene,
const yocto_instance& instance, int element, const vec2f& uv,
const vec3f& direction, bool non_rigid_frame = false);
vec3f eval_element_normal(const yocto_scene& scene,
const yocto_instance& instance, int element, bool non_rigid_frame = false);
material_point eval_material(const yocto_scene& scene,
const yocto_instance& instance, int element, const vec2f& uv);
// Environment texture coordinates from the incoming direction.
vec2f eval_texcoord(
const yocto_environment& environment, const vec3f& direction);
// Evaluate the incoming direction from the uv.
vec3f eval_direction(
const yocto_environment& environment, const vec2f& environment_uv);
// Evaluate the environment emission.
vec3f eval_environment(const yocto_scene& scene,
const yocto_environment& environment, const vec3f& direction);
// Evaluate all environment emission.
vec3f eval_environment(const yocto_scene& scene, const vec3f& direction);
// Sample an environment based on either texel values of uniform
vec3f sample_environment(const yocto_scene& scene,
const yocto_environment& environment, const vector<float>& texels_cdf,
float re, const vec2f& ruv);
vector<float> sample_environment_cdf(
const yocto_scene& scene, const yocto_environment& environment);
void sample_environment_cdf(const yocto_scene& scene,
const yocto_environment& environment, vector<float>& texels_cdf);
float sample_environment_pdf(const yocto_scene& scene,
const yocto_environment& environment, const vector<float>& texels_cdf,
const vec3f& direction);
} // namespace yocto
// -----------------------------------------------------------------------------
// ANIMATION UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {
// Find the first keyframe value that is greater than the argument.
inline int keyframe_index(const vector<float>& times, const float& time);
// Evaluates a keyframed value using step interpolation.
template <typename T>
inline T keyframe_step(
const vector<float>& times, const vector<T>& vals, float time);
// Evaluates a keyframed value using linear interpolation.
template <typename T>
inline vec4f keyframe_slerp(
const vector<float>& times, const vector<vec4f>& vals, float time);
// Evaluates a keyframed value using linear interpolation.
template <typename T>
inline T keyframe_linear(
const vector<float>& times, const vector<T>& vals, float time);
// Evaluates a keyframed value using Bezier interpolation.
template <typename T>
inline T keyframe_bezier(
const vector<float>& times, const vector<T>& vals, float time);
} // namespace yocto
// -----------------------------------------------------------------------------
// IMPLEMENTATION OF ANIMATION UTILITIES
// -----------------------------------------------------------------------------
namespace yocto {
// Find the first keyframe value that is greater than the argument.
inline int keyframe_index(const vector<float>& times, const float& time) {
for (auto i = 0; i < times.size(); i++)
if (times[i] > time) return i;
return (int)times.size();
}
// Evaluates a keyframed value using step interpolation.
template <typename T>
inline T keyframe_step(
const vector<float>& times, const vector<T>& vals, float time) {
if (time <= times.front()) return vals.front();
if (time >= times.back()) return vals.back();
time = clamp(time, times.front(), times.back() - 0.001f);
auto idx = keyframe_index(times, time);
return vals.at(idx - 1);
}
// Evaluates a keyframed value using linear interpolation.
template <typename T>
inline vec4f keyframe_slerp(
const vector<float>& times, const vector<vec4f>& vals, float time) {
if (time <= times.front()) return vals.front();
if (time >= times.back()) return vals.back();
time = clamp(time, times.front(), times.back() - 0.001f);
auto idx = keyframe_index(times, time);
auto t = (time - times.at(idx - 1)) / (times.at(idx) - times.at(idx - 1));
return slerp(vals.at(idx - 1), vals.at(idx), t);
}
// Evaluates a keyframed value using linear interpolation.
template <typename T>
inline T keyframe_linear(
const vector<float>& times, const vector<T>& vals, float time) {
if (time <= times.front()) return vals.front();
if (time >= times.back()) return vals.back();
time = clamp(time, times.front(), times.back() - 0.001f);
auto idx = keyframe_index(times, time);
auto t = (time - times.at(idx - 1)) / (times.at(idx) - times.at(idx - 1));
return vals.at(idx - 1) * (1 - t) + vals.at(idx) * t;
}
// Evaluates a keyframed value using Bezier interpolation.
template <typename T>
inline T keyframe_bezier(
const vector<float>& times, const vector<T>& vals, float time) {
if (time <= times.front()) return vals.front();
if (time >= times.back()) return vals.back();
time = clamp(time, times.front(), times.back() - 0.001f);
auto idx = keyframe_index(times, time);
auto t = (time - times.at(idx - 1)) / (times.at(idx) - times.at(idx - 1));
return interpolate_bezier(
vals.at(idx - 3), vals.at(idx - 2), vals.at(idx - 1), vals.at(idx), t);
}
} // namespace yocto
#endif
|