1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
|
# Creates: ind_1.12.png, ind_2.48.png
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from ase.io import read
def do(freq):
# Read cube file
cube = read(f'ind_{freq:.2f}.cube', full_output=True)
d_g = cube['data']
atoms = cube['atoms']
box = np.diag(atoms.get_cell())
ng = d_g.shape
# Take slice of data array
d_yx = d_g[:, :, ng[2] // 2]
x = np.linspace(0, box[0], ng[0])
xlabel = u'x (Å)'
y = np.linspace(0, box[1], ng[1])
ylabel = u'y (Å)'
# Plot
plt.figure(figsize=(8, 3.5))
ax = plt.subplot(1, 1, 1)
X, Y = np.meshgrid(x, y)
dmax = max(d_yx.min(), d_yx.max())
vmax = 0.9 * dmax
vmin = -vmax
plt.pcolormesh(X, Y, d_yx.T, cmap='RdBu_r', vmin=vmin, vmax=vmax)
contours = np.sort(np.outer([-1, 1], [0.02]).ravel() * dmax)
plt.contour(X, Y, d_yx.T, contours, cmap='RdBu_r', vmin=-1e-10, vmax=1e-10)
for atom in atoms:
pos = atom.position
plt.scatter(pos[0], pos[1], s=100, c='k', marker='o')
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.xlim([x[0], x[-1]])
plt.ylim([y[0], y[-1]])
ax.set_aspect('equal')
plt.title(f'Induced density of Na8 at {freq:.2f} eV')
plt.tight_layout()
plt.savefig(f'ind_{freq:.2f}.png')
do(1.12)
do(2.48)
|