File: functionals.rst

package info (click to toggle)
gpaw 21.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 14,492 kB
  • sloc: python: 121,997; ansic: 14,138; sh: 1,125; csh: 139; makefile: 43
file content (230 lines) | stat: -rw-r--r-- 5,396 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
.. _xc_functionals:

====================================
Exchange and correlation functionals
====================================

.. index:: libxc


Libxc
=====

We used the functionals from libxc_.  ...



Calculation of GGA potential
============================


In libxc_ we have (see also "Standard subroutine calls" on ccg_dft_design_)
`\sigma_0=\sigma_{\uparrow\uparrow}`,
`\sigma_1=\sigma_{\uparrow\downarrow}` and
`\sigma_2=\sigma_{\downarrow\downarrow}` with

.. math::

  \sigma_{ij} = \mathbf{\nabla}n_i \cdot \mathbf{\nabla}n_j


.. _libxc: http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

.. _ccg_dft_design: http://www.cse.scitech.ac.uk/ccg/dft/design.html


Uniform 3D grid
===============

We use a finite-difference stencil to calculate the gradients:

.. math::

  \mathbf{\nabla}n_g = \sum_{g'} \mathbf{D}_{gg'} n_{g'}.

The `x`-component of `\mathbf{D}_{gg'}` will be non-zero only when `g`
and `g'` grid points are neighbors in the `x`-direction, where the
values will be `1/(2h)` when `g'` is to the right of `g` and `-1/(2h)`
when `g'` is to the left of `g`.  Similar story for the `y` and `z`
components.

Let's look at the spin-`k` XC potential from the energy expression
`\sum_g\epsilon(\sigma_{ijg})`:

.. math::

  v_{kg} = \sum_{g'} \frac{\partial \epsilon(\sigma_{ijg'})}{\partial n_{kg}}
  = \sum_{g'} 
  \frac{\partial \epsilon(\sigma_{ijg'})}{\partial \sigma_{ijg'}}
  \frac{\partial \sigma_{ijg'}}{\partial n_{kg}}

Using `v_{ijg}=\partial \epsilon(\sigma_{ijg})/\partial \sigma_{ijg}`,
`\mathbf{D}_{gg'}=-\mathbf{D}_{g'g}` and

.. math::

  \frac{\partial \sigma_{ijg'}}{\partial n_{kg}} =
  (\delta_{jk} \mathbf{D}_{g'g} \cdot \mathbf{\nabla}n_{ig'} +
   \delta_{ik} \mathbf{D}_{g'g} \cdot \mathbf{\nabla}n_{jg'}),

we get:

.. math::

  v_{kg} = -\sum_{g'} \mathbf{D}_{gg'} \cdot
  (v_{ijg'} [\delta_{jk} \mathbf{\nabla}n_{ig'} +
             \delta_{ik}  \mathbf{\nabla}n_{jg'}]).


The potentials from the general energy expression
`\sum_g\epsilon(\sigma_{0g}, \sigma_{1g}, \sigma_{2g})` will be:

.. math::

  v_{\uparrow g} = -\sum_{g'} \mathbf{D}_{gg'} \cdot
  (2v_{\uparrow\uparrow g'} \mathbf{\nabla}n_{\uparrow g'} +
   v_{\uparrow\downarrow g'} \mathbf{\nabla}n_{\downarrow g'})

and

.. math::

  v_{\downarrow g} = -\sum_{g'} \mathbf{D}_{gg'} \cdot
  (2v_{\downarrow\downarrow g'} \mathbf{\nabla}n_{\downarrow g'} +
   v_{\uparrow\downarrow g'} \mathbf{\nabla}n_{\uparrow g'}).



PAW correction
==============

Spin-paired case:

.. math::

   \Delta E =
   \sum_g 4 \pi w r_g^2 \Delta r_g
   [\epsilon(n_g, \sigma_g) - \epsilon(\tilde n_g, \tilde\sigma_g)],

where `w` is the weight ...

.. math::

    n_g =
    \sum_{i_ii_2} D_{i_1i_2}
    \phi_{j_1g} Y_{L_1}
    \phi_{j_2g} Y_{L_2}
    + n_c(r_g)
    = \sum_L n_{Lg} Y_L,

where

.. math::

    n_{Lg} =
    \sum_q D_{Lq} n_{qg} + \delta_{L,0} \sqrt{4 \pi} n_c(r_g)

and 

.. math::

   D_{Lq} = \sum_p D_p G_{L_1L_2}^L \delta_{q_p,q} = \sum_p D_p B_{Lpq}.

.. math::

    \mathbf{\nabla} n_g =
    \sum_L Y_L \sum_{g'} D_{gg'} n_{Lg'} \hat{\mathbf{r}} +
    \sum_L \frac{n_{Lg}}{r_g} r \mathbf{\nabla} Y_L =
    a_g \hat{\mathbf{r}} + \mathbf{b}_g / r_g.

Notice that `r \mathbf{\nabla} Y_L` is independent of `r` - just as
`Y_L` is.  From the two contributions, which are orthogonal
(`\hat{\mathbf{r}} \cdot \mathbf{b}_g = 0`), we get

.. math::

    \sigma_g =
    a_g^2 + \mathbf b_g \cdot \mathbf b_g / r_g^2.


.. math::

    \frac{\partial \Delta E}{\partial n_{Lg}} =
    4 \pi w \sum_{g'} r_{g'}^2 \Delta r_{g'}
    \frac{\partial \epsilon}{\partial \sigma_{g'}}
    \frac{\partial \sigma_{g'}}{\partial n_{Lg}}.

Inserting

.. math::

    \frac{\partial \sigma_{g'}}{\partial n_{Lg}} =
    2 a_{g'} Y_L D_{g'g} +
    2 \mathbf b_g \cdot (r \mathbf{\nabla} Y_L) \delta_{gg'} / r_g^2,

we get

.. math::

    \frac{\partial \Delta E}{\partial n_{Lg}} =
    8 \pi w \sum_{g'} r_{g'}^2 \Delta r_{g'}
    \frac{\partial \epsilon}{\partial \sigma_{g'}}
    a_{g'} Y_L D_{g'g} +
    8 \pi w \Delta r_g
    \frac{\partial \epsilon}{\partial \sigma_g}
    \mathbf b_g \cdot (r \mathbf{\nabla} Y_L).


Non-collinear case
------------------

.. math::

    \mathbf{m}_g
    = \sum_L \mathbf{M}_{Lg} Y_L.

.. math::

    n_{\alpha g} = (n_g + \alpha m_g) / 2.

.. math::

    2 \mathbf{\nabla} n_{\alpha g} =
    \mathbf{\nabla} n_g +
    \alpha \sum_L (
    Y_L \sum_{g'} D_{gg'}
    \frac{\mathbf{m}_g \cdot \mathbf{M}_{Lg'}}{m_g} \hat{\mathbf{r}} +
    \frac{\mathbf{m}_g \cdot \mathbf{M}_{Lg}}{m_g r_g}
    r \mathbf{\nabla} Y_L)

.. math::

    =
    (a_g + \alpha c_g) \hat{\mathbf{r}} +
    (\mathbf{b}_g + \alpha \mathbf{d}_g) / r_g.

.. math::

    4 \sigma_{\alpha \beta g} =
    (a_g + \alpha c_g) (a_g + \beta c_g)
    + (\mathbf{b}_g + \alpha \mathbf{d}_g) \cdot
    (\mathbf{b}_g + \beta \mathbf{d}_g) / r_g^2.

.. math::

    \frac{\partial c_g}{\partial \mathbf{M}_{Lg'}} =
    \frac{Y_L}{m_g} (
    D_{gg'} \mathbf{m}_g +
    \delta_{gg'} \mathbf{m}_g' -
    \delta_{gg'} \frac{\mathbf{m}_g \cdot \mathbf{m}_g'}{m_g^2}
    \mathbf{m}_g).

.. math::

    \frac{\partial (\mathbf{d}_g)_\gamma}{\partial \mathbf{M}_{Lg'}} =
    \frac{Y_L \delta_{gg'}}{m_g} (
    \mathbf{m}_g r \nabla_\gamma Y_L +
    \sum_{L'} \mathbf{M}_{L'g} r \nabla_\gamma Y_{L'} -
    \frac{\mathbf{m}_g}{m_g^2}
    \sum_{L'} \mathbf{m}_g \cdot \mathbf{M}_{L'g} r \nabla_\gamma
    Y_{L'}).